Collatz conjecture Demonstration of the relationship between the numbers of even and odd steps before reaching 1, and the initial odd value of a Collatz sequence that converges - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Collatz conjecture Demonstration of the relationship between the numbers of even and odd steps before reaching 1, and the initial odd value of a Collatz sequence that converges

Farid Baleh

Résumé

The relationship between the numbers of even steps (P), the number of odd steps (I) and the odd initial value u0 of a compressed Collatz sequence that converges is as follows: I+P= E[log2⁡((3^I)*u0)]+1 Where: E(x) is the integer part of the real number x; log2(x) is the base two logarithm of the real number x; E[log2⁡(u0)] is the exponent of the biggest power of 2 that is strictly less than the odd natural number u_0; I+P is the total stopping time of the compressed sequence.
Fichier principal
Vignette du fichier
Collatz_Relation stopping times and u0.pdf (390.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02935616 , version 1 (24-09-2020)

Identifiants

  • HAL Id : hal-02935616 , version 1

Citer

Farid Baleh. Collatz conjecture Demonstration of the relationship between the numbers of even and odd steps before reaching 1, and the initial odd value of a Collatz sequence that converges. In press. ⟨hal-02935616⟩
391 Consultations
272 Téléchargements

Partager

More