ON CERTAIN TANNAKIAN CATEGORIES OF INTEGRABLE CONNECTIONS OVER KÄHLER MANIFOLDS
Résumé
Given a compact Kähler manifold X, it is shown that pairs of the form (E, D), where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on E, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...