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ON CERTAIN TANNAKIAN CATEGORIES OF INTEGRABLE
CONNECTIONS OVER KÄHLER MANIFOLDS

INDRANIL BISWAS, JOÃO PEDRO DOS SANTOS, SORIN DUMITRESCU,
AND SEBASTIAN HELLER

Abstract. Given a compact Kähler manifold X, it is shown that pairs of the form
(E, D), where E is a trivial holomorphic vector bundle on X, and D is an integrable
holomorphic connection on E, produce a neutral Tannakian category. The corresponding
pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-
algebraic affine group scheme for a compact Riemann surface determines uniquely the
isomorphism class of the Riemann surface.

1. Introduction

A question of Ghys asks the following: Is there a pair of the form (M, D), where M

is a compact Riemann surface of genus at least two, and D is an irreducible holomorphic

SL(2,C)–connection on the rank two trivial holomorphic vector bundle O⊕2
M , such that

the image of the monodromy homomorphism for D is contained in a cocompact lattice of

SL(2,C). The motivation for this question comes from the study of compact quotients of

SL(2,C) by lattices. Such quotients are compact non-Kähler manifolds. While they can’t

contain a complex surface [HM, p. 239, Theorem 2], it is not known whether they can

contain compact Riemann surfaces of genus g > 1. A positive answer to Ghys’ question

would provide a nontrivial holomorphic map from the Riemann surface M to the quotient

of SL(2,C) by the cocompact lattice containing the image of the monodromy homomor-

phism for D. In fact the two problems are equivalent (see [CDHL] for explanations for

the origin of Ghys’ question).

Let us also mention that a related question of characterizing rank two holomorphic

vector bundles V over a compact Riemann surface, such that for some holomorphic con-

nection on V the image of the associated monodromy homomorphism is Fuchsian, was

raised in [Ka, p. 556] (there this question is attributed to Bers).

The above, still open questions of Bers and Ghys, and some related questions in

[CDHL, Ka], motivated us to investigate the holomorphic connections on a trivial holomor-

phic vector bundle. Answering a question asked in [CDHL], examples of irreducible holo-

morphic SL(2,C)–connection with real monodromy, on the trivial holomorphic SL(2,C)–

bundle over a compact Riemann surface, were constructed in [BDH].
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Here we consider integrable holomorphic connections on trivial holomorphic vector

bundles over a compact Kähler manifold X. Once we fix a base point x0 ∈ X in order to

define a fiber functor, using the Tannakian category theory it is shown that this category

produces a quotient of the pro-algebraic completion $(X, x0) of the fundamental group

π1(X, x0) (the details are in Section 3); this quotient is denoted by Θ(X, x0). Then we

prove a Torelli type Theorem with respect to Θ(X, x0), for compact Riemann surfaces

and also for compact complex tori.

The main results of Section 3 and Section 4 are the following:

(1) For compact Kähler manifolds X and Y , the natural homomorphism

Θ(X, x0)×Θ(Y, y0) −→ Θ(X × Y, (x0, y0))

is an isomorphism. (See Proposition 3.9.)

(2) Let β : X −→ Y be an orientation preserving diffeomorphism between compact

Riemann surfaces such that the corresponding homomorphism

β\ : $(X, x0) −→ $(Y, β(x0))

descends to a homomorphism from Θ(X, x0) to Θ(Y, β(x0)). Then the two Rie-

mann surfaces X and Y are isomorphic. (See Theorem 4.1.)

(3) Let ϕ : T −→ S be a diffeomorphism between two compact complex tori such that

the corresponding homomorphism

ϕ∗ : $(T, x0) −→ $(S, ϕ(x0))

descends to a homomorphism from Θ(T, x0) to Θ(S, ϕ(x0)). Then there is a bi-

holomorphism

T −→ S

which is homotopic to the map ϕ. (See Proposition 4.2.)

In Section 5 we consider integrable holomorphic connections on holomorphic vector

bundles over X which decompose into a direct sum of holomorphic line bundles. Using

the Tannakian category theory in a similar way, we show that this category also produces

a quotient ∆(X, x0) of the pro-algebraic completion $(X, x0) of the fundamental group

π1(X, x0). Then we adapt our methods in Section 4 in order to prove the same Torelli

type theorems for ∆(X, x0).

As is well-known, the category of vector bundles easily fails to be abelian, but as

observed as far back as [Se, Propsoition 3.1], semi-stability can be brought in to mend

this failure and produce interesting abelian categories of vector bundles. Section 6 connects

the group scheme Θ to such an idea. Using the abelian category of pseudostable vector

bundles to produce an affine group scheme πS(X, x0), we show that Θ(X, x0)×πS(X, x0)

captures a large piece of $(X, x0); see Theorem 6.5. The construction of πS(X, x0)

crucially uses foundational works of Simpson.
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2. Neutral Tannakian categories for a Kähler manifold

Let X be a compact connected Kähler manifold of complex dimension d. Fix a Kähler

form ω on X. The degree of a torsionfree coherent analytic sheaf F on X is defined to be

degree(F ) := (c1(detF ) ∪ ωd−1) ∩ [X] ∈ R .

Here and elsewhere, we write ci for the i–th Chern class in H2i
dR(X, R) and define detF

following [Ko, Ch. V, § 6]. The real number

µ(F ) :=
degree(F )

rank(F )

is called the slope of F .

Fix a base point x0 ∈ X. Let

φ : π1(X, x0) −→ $(X, x0) (2.1)

be the pro-algebraic completion of the fundamental group π1(X, x0). We recall that

$(X, x0) is a pro-algebraic affine group scheme over C which is uniquely characterized

by the following property: for any homomorphism

γ : π1(X, x0) −→ G

to a complex affine algebraic group G, there is a unique algebraic homomorphism

γ̂ : $(X, x0) −→ G

such that γ̂ ◦ φ = γ. There are mainly two equivalent constructions of $(X, x0): one by

means of the Tannakian category of finite dimensional representations of π1(X, x0) and

Tannakian duality [DMOS] and the other by Freyd’s adjoint functor theorem applied to

the C–points functor from group schemes to groups [Fr, p. 84, 3.J].

We shall recall from [Si2, p. 70] three neutral Tannakian categories associated to the

pointed Kähler manifold (X, x0) which, in particular, furnish a Tannakian description of

$(X, x0).

Let CdR(X) denote the category whose objects are pairs of the form (E, D), where E is a

holomorphic vector bundle on X and D is an integrable holomorphic connection on E (see

[At] for holomorphic connections). Morphisms from (E, D) to (E ′, D′) are all holomorphic

homomorphisms of vector bundles h : E −→ E ′ that intertwine the connections D and

D′, meaning D′ ◦ h = (h ⊗ IdΩ1
X

) ◦D as differential operators from E to E ′ ⊗ Ω1
X with

Ω1
X being the holomorphic cotangent bundle of X. This category is equipped with the

operators of direct sum, tensor product and dualization. More precisely, CdR(X) is a

rigid abelian tensor category (see [DMOS, p. 118, definition 1.14] for rigid abelian tensor

categories). It is straightforward to check that this category CdR(X), equipped with the

faithful fiber functor that sends any object (E, D) to the fiber E|x0 over x0 ∈ X, defines

a neutral Tannakian category (see [DMOS, p. 138, Definition 2.19], [Sa], [Si2, p. 67], [No,

p. 76] for neutral Tannakian category). Given any neutral Tannakian category, a theorem

of Saavedra Rivano associates to it a pro-algebraic affine group scheme over C [DMOS,

p. 130, Theorem 2.11] (and the remark following [DMOS, p. 138, Definition 2.19]), [Sa],
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[No, p. 77, Theorem 1.1], [Si2, p. 69]. Therefore, the neutral Tannakian category CdR(X)

corresponds to a pro-algebraic affine group scheme over C.

Let CB(X) denote the category whose objects are all finite dimensional complex repre-

sentations of π1(X, x0). Using the tautological fiber functor, it defines a neutral Tannakian

category. The pro-algebraic affine group scheme over C corresponding to CB(X), by the

above mentioned theorem of Saavedra Rivano ([Sa], [DMOS, p. 130, Theorem 2.11]), is

$(X, x0) in (2.1) [Si2, p. 69, Lemma 6.1].

A Higgs bundle on X is a pair of the form (E, θ), where E is a holomorphic vector

bundle of X and θ ∈ H0(X, End(E)⊗ Ω1
X) with θ

∧
θ = 0 [Si1], [Si2]; the holomorphic

section θ is called a Higgs field on E. A Higgs bundle (E, θ) is called stable (respectively,

semistable) if

µ(F ) < µ(E) (respectively, µ(F ) ≤ µ(E))

for every coherent analytic subsheaf F ⊂ E with 0 < rank(F ) < rank(E) and θ(F ) ⊂
F ⊗ Ω1

X .

Let CDol(X) denote the category whose objects are Higgs bundles (E, θ) such that

ch2(E) ∪ ωd−2 = 0 and there is a filtration of holomorphic subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ei ⊂ · · · ⊂ E`−1 ⊂ E` = E

satisfying the following three conditions:

(1) θ(Ej) ⊂ Ej ⊗ Ω1
X for all 1 ≤ j ≤ `,

(2) degree(Ej/Ej−1) = 0 for all 1 ≤ j ≤ `, and

(3) the Higgs bundle (Ej/Ej−1, θ) is stable for all 1 ≤ j ≤ ` (the Higgs field on

Ej/Ej−1 induced by θ is also denoted by θ).

In [BG] such Higgs bundles are called pseudostable.

A homomorphism from (E, θ) to (E ′, θ′) is a holomorphic homomorphism

h : E −→ E ′

such that θ′ ◦ h = (h ⊗ IdΩ1
X

) ◦ θ as homomorphisms from E to E ′ ⊗ Ω1
X . It is known

that CDol(X) is a rigid abelian tensor category [Si2, p. 70]. This category CDol(X) admits

the faithful fiber functor that sends any object (E, θ) to the fiber E|x0 . In other words,

CDol(X) is a neutral Tannakian category.

The two categories CdR(X) and CB(X) are equivalent by the Riemann–Hilbert corre-

spondence that assigns to a flat connection the corresponding monodromy representa-

tion. Using fundamental theorems of Corlette, [Co], and Simpson, [Si1], in [Si2] Simpson

proved that the category CDol(X) is equivalent to CdR(X) (see [Si2, p. 36, Lemma 3.5],

[Si2, p. 70]). Therefore, all these three neutral Tannakian categories, namely CdR(X),

CB(X) and CDol(X), produce the same pro-algebraic affine group scheme over C using the

theorem of Saavedra Rivano mentioned earlier ([Sa], [DMOS, p. 130, Theorem 2.11]). In

other words, each of these three neutral Tannakian categories produces the pro-algebraic

affine group scheme $(X, x0) in (2.1).
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When X is a smooth complex projective variety, and the cohomology class of the closed

form ω is rational, then the category CDol(X) coincides with the category of semistable

Higgs bundles (E, θ) on X with ch2(E) ∪ ωd−2 = 0 and degree(E) = 0 [Si2, p. 39,

Theorem 2].

3. The Tannakian subcategory TdR of CdR

3.1. The Tannakian category and the associated group scheme.

Definition 3.1. Let TdR(X) be the full subcategory of CdR(X) (defined in Section 2)

whose objects are all the couples (E, D) satisfying the condition that the holomorphic

vector bundle E is holomorphically trivial.

Clearly, TdR(X) is stable under tensor products and duals. The identity object (OX , d),

where d is the de Rham differential, certainly is an object of TdR(X). In addition TdR(X)

is stable under quotients, as shown by the next proposition.

Proposition 3.2. Let (E, D) = (O⊕rX , D) be an object of TdR(X) and

q : (O⊕rX , D) −→ (E ′, D′)

an epimorphism in CdR(X). Then the holomorphic vector bundle E ′ is also trivial.

Proof. We note that degree(E ′) = 0 because E ′ carries an integrable connection [At,

pp. 192–193, Theorem 4], [GH, p. 141, Proposition]. Let r′ be the rank of E ′, and introduce

Gr(r, r′), the Grassmann manifold of r′ dimensional quotients of Cr. Note that the trivial

bundle O⊕rGr(r,r′) comes with a tautological quotient of rank r′, call it O⊕rGr(r,r′) −→ U .

Then, q induces a morphism f : X −→ Gr(r, r′) such that E ′ = f ∗U . In particular,

we have c1(f ∗(detU)) = c1(E ′) = 0. The fact that det(U) is ample implies that f is a

constant map [GH, p. 177]. Hence, E ′ is holomorphically trivial. �

Corollary 3.3. The full subcategory TdR(X) of CdR(X) is an abelian subcategory.

Proof. Let α : (E, D) −→ (E ′, D′) be an arrow in TdR(X). Now, Image(α) is a sub-

connection, call it (I, D′), of (E ′, D′) and we have an epimorphism α : (E, D) −→
(I, D′) in CdR(X). We conclude from Proposition 3.2 that (I, D′) is an object of TdR(X).

Again from Proposition 3.2 it follows that coker(α) is an object of TdR(X) because it is a

quotient of an object of TdR(X). Finally, working with duals, these arguments give that

kernel(α) is also in TdR(X). Hence, the standard criterion for a subcategory to be an

abelian subcategory can be applied [Fr, Theorem 3.41]. �

Let

Θ(X, x0) (3.1)

be the affine group scheme over C corresponding to TdR(X) via [DMOS, p. 130, Theorem

2.11] by means of the exact functor (E, D) 7−→ E|x0 . From Proposition 3.2 and the
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standard criterion [DMOS, Proposition 2.21, p.139] we conclude that the natural arrow

of group schemes

qX : $(X, x0) −→ Θ(X, x0) (3.2)

is a quotient homomorphism.

Clearly, for any given holomorphic map f : Y −→ X, we obtain tensor functors

f# : CdR(X) −→ CdR(Y )

and

f# : TdR(X) −→ TdR(Y )

defined by (E, D) 7−→ (f ∗E, f ∗D). If, in addition, we let y0 ∈ Y be a point which is

taken to x0, we derive homomorphisms of group schemes

f\ : $(Y, y0) −→ $(X, x0)

and

f\ : Θ(Y, y0) −→ Θ(X, x0) .

Using the equivalence of categories between CDol(X) and CdR(X) mentioned in Section

2, the above subcategory TdR(X) of CdR(X) gives a Tannakian full subcategory of CDol(X).

It is natural to ask the following:

Question 3.4. What is a direct description of the Tannakian full subcategory of CDol(X)

corresponding to the subcategory TdR(X) of CdR(X)?

3.2. Characters of Θ: multiplicative and additive. Let Gm be the multiplicative

group of nonzero scalars and Ga the additive group of scalars. Let G be an affine group

scheme over C. Two of the most basic abstract groups associated to it are its group

of characters Hom(G, Gm) and its group of additive characters Hom(G, Ga) (notations

are those of [Wa, p. 5, 1.2]). These are denoted respectively by X(G) and Xa(G) in what

follows. (We note that Xa(G) comes with the extra structure of a C-vector space.) Clearly,

X(G) is the group of isomorphism classes of rank one representations of G. In turn, the

standard immersion of Ga into GL(2,C) permits us to view Xa(G) as the vector space

ExtG(1, 1) parametrizing extensions of the trivial representation by itself. We shall record

some observations on characters and additive characters of $(X, x0) and Θ(X, x0). In

what follows,

Picτ (X)

is the subgroup of Pic(X) formed by the classes of line bundles with vanishing first Chern

class. Recall that according to our convention, Chern classes are real. The subgroup

Pic0(X) of classes having vanishing integral first Chern class is of finite index in Picτ (X)

as we learn from the theorem of the base.

Lemma 3.5. The map

H0(X, Ω1
X) −→ X(Θ(X, x0))
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sending a form α to the isomorphism class (OX , d + α) is an isomorphism. The group

X($(X, x0)) sits in a short exact sequence

1 −→ X(Θ(X, x0)) −→ X($(X, x0)) −→ Picτ (X) −→ 1 .

Proof. The first claim is very simple and its verification is omitted. Then, if (L, ∇) is

an integrable connection with L a holomorphic line bundle, the interpretation of c1(L)

as curvature form [GH, p. 141, Proposition] assures that L ∈ Picτ (X), and we obtain

the arrow X($(X, x0)) −→ Picτ (X). The kernel is precisely the group of (isomorphism

classes of) objects in TdR(X) of rank one, which is X(Θ(X, x0)). That any class in Picτ (X)

carries an integrable connection is explained by [LT, p. 40, Corollary 1.3.12]. �

We shall now be concerned with additive characters or, with the vector spaces

Xa($(X, x0)) ' ExtCdR(X)(1, 1)

and

Xa(Θ(X, x0)) ' ExtTdR(X)(1, 1) ,

where 1 is the identity object of the pertinent categories.

Let H1
dR(X, C) be H1(X, Ω•X) [GH, p. 446], which is of course canonically isomorphic

to H1(X, C) [GH, p. 448], and let

λX : H0(X, Ω1
X) −→ H1

dR(X, C) (3.3)

be the natural arrow obtained from the fact that global holomorphic one forms on X are

closed.

Lemma 3.6. There are functorial isomorphisms of vector spaces

ExtCdR(X)(1, 1)
∼−→ H1

dR(X, C)

and

ExtTdR(X)(1, 1)
∼−→ H0(X, Ω1

X) .

Under these isomorphisms, the canonic arrow

ExtTdR(X)(1, 1) −→ ExtCdR(X)(1, 1)

corresponds to λX in (3.3).

Proof. Let (E, ∇) ∈ CdR(X) be an extension of (OX , d) by itself. Let U = {Ui} be an

open covering of X on which we have ei ∈ H0(Ui, E) mapping to 1 ∈ OX(Ui). Consider

the holomorphic 1–form θi on Ui such that ∇(ei) = 1 ⊗ θi. Then, on Ui ∩ Uj, we have

ei = aij · 1 + ej with aij a holomorphic function. The element

(θi, aij) ∈ C0(U, Ω1
X)⊕ C1(U, OX)

defines a cocycle of the total Čech complex associated to the bicomplex (Cp(U,Ωq
X))0≤p,q:

the form θi is closed and daij = θi−θj. Hence, {(θi, aij)} gives an element of H1
dR(X, C),

call it [E, ∇]. Note that a 1-cocycle with coefficients in GL2 representing the vector bundle
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E is given by the matrices

(
1 −aij
0 1

)
so that E is isomorphic to O2

X if and only if there

exists, after eventually passing to a finer covering, a 0–cochain (hi) with

hj − hi = −aij .

In this case, [E, ∇] belongs to the subspace H0(X, Ω1
X) ⊂ H1

dR(X, C).

It is a lengthy but straightforward verification to show that

ExtCdR(X)(1, 1) −→ H1
dR(X, C) , (E, ∇) 7−→ [E, ∇]

is bijective. �

3.3. Properties of the pro-algebraic group scheme Θ.

Lemma 3.7. Let X and Y be compact connected Kähler manifolds and V a holomorphic

vector bundle on X × Y of rank r such that

• the restriction of V to {x} × Y is holomorphically isomorphic to O⊕rY for every

x ∈ X, and

• the restriction of V to X × {y} is holomorphically isomorphic to O⊕rX for every

y ∈ Y .

Then V is holomorphically isomorphic to O⊕rX×Y .

Proof. Fix a point y0 ∈ Y . For any x ∈ X, the restriction Vx of V to {x}×Y trivializable.

Hence the evaluation to y0 of sections of Vx

H0(Y, Vx) −→ Vx,y0 , σ 7−→ σ(y0)

is an isomorphism. This implies that for the natural projection pX : X × Y −→ X, the

direct image of V to X is

pX∗ V = V y0 := V |X×{y0} . (3.4)

The vector bundle V y0 is supposed to be holomorphically trivial. Fixing r linearly inde-

pendent holomorphic sections {s1, · · · , sr} of V y0 , we get a holomorphic trivialization of

V y0 . Using the isomorphism in (3.4), each si produces a section

s̃i ∈ H0(X, pX∗ V ) = H0(X × Y, V ) .

Now these holomorphic sections {s̃1, · · · , s̃r} of V trivialize V holomorphically. �

Proposition 3.8. The group scheme Θ(X, x0) is the projective limit of connected alge-

braic groups.

Proof. Consider an algebraic quotient Θ(X, x0) −→ Θ′. We need to show that Θ′ is

connected and this amounts to showing that if Θ′ −→ G is an algebraic quotient mor-

phism to a finite group G, then G is the trivial group. Now, write R for the left regular

representation of G and note that the multiplication operation R ⊗ R −→ R and the

identity C −→ R are G–equivariant. Transporting R to the category TdR(X) via the

defining equivalence of Θ(X, x0), we obtain an object (R, ∇) of rank |G| together with



TANNAKIAN SUBCATEGORIES OF INTEGRABLE HOLOMORPHIC CONNECTIONS 9

arrows OX −→ R and R⊗R −→ R such that, endowed with them, R becomes a locally

free OX–algebra. Note, in addition, that giving R ⊗ R the tensor product connection,

the arrow R⊗R −→ R is also horizontal.

Let f : Y −→ X be the analytic spectrum of R; it is a finite morphism of complex

spaces [SC, Exposé 19] such that f∗OY = R. In addition, it is not hard to see that f

is a local biholomorphism so that Y is a compact complex manifold. Indeed, we have a

G–equivariant isomorphism of R-algebras R ⊗ R −→ R⊕|G| which allows us to see that

for each x ∈ X, the Rx–algebra Rx ⊗OX,x
Rx (multiplication on the left) is isomorphic

to R⊕|G|x . Consequently, OX,x −→ Rx is an étale morphism by flat descent.

Finally, Y is connected since any idempotent e ∈ H0(X, R) is horizontal so that it

produces a horizontal arrow OX −→ R and then a G–invariant element of R.

Because

1 = dimH0(Y, OY )

= dimH0(X, R)

= |G| · dimH0(X, OX),

we conclude that |G| = 1. �

Proposition 3.9. Let (X, x0) and (Y, y0) be pointed compact Kähler manifolds. Set

P = X × Y , and let i : X −→ P (respectively, j : Y −→ P ) stand for the immersion

defined by x 7−→ (x, y0) (respectively, y 7−→ (x0, y)). Then, the arrow of affine group

schemes

(i\, j\) : Θ(X, x0)×Θ(Y, y0) −→ Θ(P, (x0, y0))

is an isomorphism.

Proof. Let p (respectively, q) be the natural projection of P to X (respectively, Y ). In

what follows, we abandon reference to the base points.

We know that the natural morphism

(i\, j\) : $(X)×$(Y ) −→ $(P )

is an isomorphism.

We claim that i\ : Θ(X) −→ Θ(P ) is a closed and normal immersion.

First note that i\ is closed since p\ ◦ i\ : Θ(X) −→ Θ(X) is the identity map. Next, i\
is normal since i\ : $(X) −→ $(P ) is a normal immersion and we posses the following

commutative diagram

$(X)
i\−→ $(P )

qX

y qP

y
Θ(X)

i\−→ Θ(P )

in which the vertical arrows are the quotient morphisms. This proves the claim.

Clearly, the same arguments apply to j\ : Θ(Y ) −→ Θ(P ).
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Let

χ : Θ(P ) −→ Q

be the cokernel of i\ : Θ(X) −→ Θ(P ) [Wa, 16.3, Theorem]. It is easy to see that the

kernel of the composition

Θ(Y )
j\−→ Θ(P )

χ−→ Q

is trivial; indeed, q\ : Θ(P ) −→ Θ(Y ) factors as

Θ(P )
χ−→ Q

r−→ Θ(Y )

since q\ ◦ i\ is trivial, and idΘ(Y ) = q\ ◦ j\. We conclude that Im(i\)∩ Im(j\) = {e}. Now,

a well-known lemma from group theory says that

(i\, j\) : Θ(X)×Θ(Y ) −→ Θ(P )

is a normal monomorphism of group schemes [Bo, I.4.9, p. 48, Proposition 15]. As such,

it is a closed immersion [Wa, 15.3, Theorem]. Finally, since

(i\, j\) : $(X)×$(Y ) −→ $(P )

is a quotient morphism, we conclude that (i\, j\) : Θ(X)× Θ(Y ) −→ Θ(P ) is also one.

Hence, Θ(X)×Θ(Y ) ' Θ(P ). �

Take a pointed compact Kähler manifold (X, x0). Let

Γ ⊂ H0(X, Ω1
X)∗ (3.5)

be the image of the homomorphism H1(X, Z) −→ H0(X, Ω1
X)∗ that sends any γ ∈

H1(X, Z) to the element of the dual vector space H0(X, Ω1
X)∗ defined by the integral

ν 7−→
∫
γ

ν , ν ∈ H0(X, Ω1
X) .

Let A(X) = H0(X, Ω1
X)∗/Γ be the Albanese variety of X. Let

A : X −→ A(X) (3.6)

be the Albanese map defined by

A(x)(ν) =

∫ x

x0

ν ;

this does not depend on the choice of path from x0 to x. We have H0(X, Ω1
X) =

H0(A(X), Ω1
A(X)), and the homomorphism

α : H0(A(X), Ω1
A(X)) −→ H0(X, Ω1

X) (3.7)

defined by ξ 7−→ A∗ξ, for all ξ ∈ H0(A(X), Ω1
A(X)), is an isomorphism. Hence the

homomorphism

α : H1(A(X), OA(X)) = H0(A(X), Ω1
A(X)) −→ H0(X, Ω1

X) = H1(X, OX) (3.8)

is an isomorphism.

In view of the isomorphism α in (3.7) we conclude that there is a natural bijection

between the holomorphic connections on O⊕rX and the holomorphic connections on O⊕rA(X);



TANNAKIAN SUBCATEGORIES OF INTEGRABLE HOLOMORPHIC CONNECTIONS 11

this isomorphism sends a holomorphic connection D on O⊕rA(X) to the holomorphic con-

nection A∗D on O⊕rX = A∗O⊕rA(X).

If D is integrable, then A∗D is integrable. Notice that the converse need not be true

in general. To construct examples of non-integrable D such that A∗D is integrable, we

recall that there are examples of (M, D), where M is a compact Riemann surface and D
is an irreducible holomorphic connection on O⊕2

M [CDHL], [BD], [BDH] (any holomorphic

connection on a Riemann surface is automatically integrable). Since the fundamental

group of a compact complex torus T is abelian, there is no irreducible integrable connection

on a rank two bundle over T. Also, the pullback of a reducible connection is reducible.

Therefore, for any (M, D) as above, the corresponding holomorphic connection on the

Albanese variety A(M) is not integrable.

Note that Γ in (3.5) is a quotient of π1(X, x0), because H1(X, Z) is a quotient of

π1(X, x0), and Γ is a quotient of H1(X, Z).

Proposition 3.10. Let D be an integrable holomorphic connection on O⊕rX . Then there

is an integrable holomorphic connection D̃ on O⊕rA(X) such that

(O⊕rX , D) = (A∗O⊕rA(X), A
∗D̃) ,

where A is the map in (3.6), if and only if the monodromy representation

ρD : π1(X, x0) −→ GL(r,C)

for D factors through the quotient group Γ of π1(X, x0).

Proof. We have π1(A(X)) = Γ, and the homomorphism

A∗ : π1(X, x0) −→ π1(A(X))

induced by the Albanese map A in (3.6) actually coincides with the quotient homomor-

phism π1(X, x0) −→ Γ. Therefore, if

(O⊕rX , D) = (A∗O⊕rA(X), A
∗D̃)

for some integrable holomorphic connection D̃ on O⊕rA(X), then the monodromy repre-

sentation ρD : π1(X, x0) −→ GL(r,C) for D factors through the quotient group Γ of

π1(X, x0).

To prove the converse, assume that the monodromy representation ρD : π1(X, x0) −→
GL(r,C) for D factors through the quotient group Γ of π1(X, x0). Therefore, the repre-

sentation

ρ′D : Γ = π1(A(X), A(x0)) −→ GL(r,C) (3.9)

given by ρD produces a pair (V, D̃), where

• V is a holomorphic vector bundle of rank r on A(X),

• D̃ is an integrable holomorphic connection on V , and

• (A∗V, A∗D̃) = (O⊕rX , D).
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Therefore, to prove the proposition it suffices to show that

V ' O⊕rA(X) . (3.10)

Consider Cr as a Γ–module using ρ′D (in (3.9)) and the standard action of GL(r,C) on

Cr Since Γ is an abelian group, we contend that the Γ–module Cr decomposes as

Cr =
m⊕
i=1

Li ⊗ Ui , (3.11)

where Li (respectively, Ui) is a one-dimensional (respectively, unipotent) representation of

Γ. Indeed, let S be an indecomposable summand of the Γ–module Cr and, for any given

γ ∈ Γ, consider the decomposition of S into generalized eigenspaces:
⊕

i Si. Since every

δ ∈ Γ commutes with γ, we can say that every Si is invariant under Γ; it follows that

γ has a single eigenvalue in S (recall that S is indecomposable). Associating to each γ

the previous eigenvalue, we get a homomorphism Γ −→ C∗ and hence a one dimensional

representation L. Now, L∨ ⊗ S is indecomposable and has only one eigenvalue, namely

1; here L∨ denotes the dual of L. Simultaneous triangularization — which follows easily

from the fact that Γ is abelian — now shows that L∨ ⊗ S is unipotent thus establishing

the decomposition in (3.11).

From (3.11) we obtain a decomposition of the connection (V, D̃) as

V =
m⊕
i=1

Li ⊗ Ui , (3.12)

where Li stands for a rank one integrable connection and Ui for a unipotent one. Note

that, since Ui is unipotent, each Li is a sub-connection of V and hence A∗Li is a sub-

connection of A∗V . Using a dualization and Proposition 3.2, we can say that the vector

bundle underlying A∗Li is trivial. Since the homomorphism

Pic0(A(X)) −→ Pic0(X) , L 7−→ A∗L ,

where A is the map in (3.6), is an isomorphism, we conclude that

the underlying holomorphic line bundle of Li in (3.12) is trivial (3.13)

for all 1 ≤ i ≤ m.

Next, we note that the connection A∗Ui is a sub-connection of A∗(V ) ⊗ (A∗L∨i ) and

hence, applying a dualization and Proposition 3.2, from (3.13) we conclude that A∗Ui ∈
TdR(X). Now, using that the homomorphism

H1(A(X), OA(X)) −→ H1(X, OX) , θ 7−→ A∗θ

is an isomorphism (see (3.8)), and that extensions of OA(X) by OA(X) are parametrized

by the cohomology space H1(A(X), OA(X)), a straightforward induction argument proves

that Ui is trivial. This shows that Ui ∈ TdR(A(X)). �

Let us now study the case of “abelian” Kähler manifolds by first recalling certain

fundamental facts from the theory of affine group schemes.
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Let U be an algebraic affine and unipotent group scheme over C [Wa, 8.3]: there is

a closed immersion of U into some group of strict upper triangular matrices. Endowing

the nilpotent Lie algebra Lie(U) with its Baker–Campbell–Hausdorff multiplication, it is

known that

exp : Lie(U) −→ U

is an isomorphism of group schemes [Ho, Theorem XVII.4.2, p. 232.]; in particular, if

U is in addition a commutative group scheme, then U ' Gr
a for some r. Moreover,

r = dimC Hom(U, Ga) [Wa, Theorem 8.4]. Said differently,

U ' Hom(U, Ga) .

Still in the topic of affine group schemes, for any given abstract abelian group Λ, we

shall denote by Diag(Λ) the diagonalizable group scheme corresponding to the abstract

group Λ as explained in [Wa, 2.2]; on the level of C-points, Diag(Λ) is just Hom(Λ, C×).

Proposition 3.11. Suppose that π1(X, x0) is abelian. Then

Θ(X, x0) ' H0(X, Ω1
X)×Diag(H0(X, Ω1

X)) .

Proof. Since π1(X, x0) is abelian, the group scheme $(X, x0) is abelian. This implies

that Θ(X, x0) is abelian and hence is a product of a unipotent U and a diagonal D

group scheme [Wa, p. 70, Theorem, 9.5]. The arguments made in Lemma 3.5 and Lemma

3.6 jointly with the preliminary material on group schemes recalled above now allow us

to explicitly determine U and D as wanted. Indeed, the group of characters of U × D
(respectively, additive characters) is simply the group of characters of D (respectively,

additive characters of U) as explained in [Wa, Chapter 8], Corollary in 8.3 and Exercise

6. �

4. Riemann surfaces and compact complex tori

4.1. Neutral Tannakian category for a Riemann surface. Let X and Y be two

compact connected Riemann surfaces of common genus g, with g ≥ 1. Fix a point

x0 ∈ X. Let

β : X −→ Y (4.1)

be a C∞ orientation preserving diffeomorphism. Let

β̂ : π1(X, x0) −→ π1(Y, β(x0))

be the homomorphism of fundamental groups induced by β. It produces a unique algebraic

homomorphism

β\ : $(X, x0) −→ $(Y, β(x0)) (4.2)

such that β\ ◦ φ = φY ◦ β̂, where φ is the homomorphism in (2.1) and

φY : π1(Y, β(x0)) −→ $(Y, β(x0))

is the similar homomorphism for Y .
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We will say that the homomorphism β\ in (4.2) descends to a homomorphism from

Θ(X, x0), constructed in (3.1), to Θ(Y, β(x0)) if there is a homomorphism

β′\ : Θ(X, x0) −→ Θ(Y, β(x0))

such that

β′\ ◦ qX = qY ◦ β\ ,
where qX is the homomorphism in (3.2) and qY : $(Y, β(x0)) −→ Θ(Y, β(x0)) is the

similar homomorphism for Y , while β\ is constructed in (4.2).

Theorem 4.1. Assume that the homomorphism β\ in (4.2) descends to a homomorphism

from Θ(X, x0) to Θ(Y, β(x0)). Then the two Riemann surfaces X and Y are isomorphic.

Proof. Let β′\ : Θ(X, x0) −→ Θ(Y, β(x0)) be a homomorphism such that the diagram

$(X, x0)
β\−→ $(Y, β(x0))

qX

y qY

y
Θ(X, x0)

β′
\−→ Θ(Y, β(x0))

(4.3)

is commutative. Let
Xa(Θ(Y, β(x0))) −→ Xa(Θ(X, x0))

λ2
y λ1

y
Xa($(Y, β(x0)))

ρ−→ Xa($(X, x0))

(4.4)

be the corresponding commutative diagram of vector spaces (see Section 3.2).

Now, according to Lemma 3.6,

Xa(Θ(X, x0)) = H0(X, Ω1
X) and Xa($(X, x0)) = H1

dR(X, C) .

Similarly, we have

Xa(Θ(Y, β(x0))) = H0(Y, Ω1
Y ) and Xa($(Y, β(x0))) = H1

dR(Y, C) .

The homomorphism λ1 in (4.4) is the natural inclusion of H0(X, Ω1
X) in H1

dR(X, C) given

by the fact that any holomorphic 1–form on X is closed. The homomorphism

ρ : H1
dR(Y, C) = Xa($(Y, β(x0))) −→ Xa($(X, x0)) = H1

dR(X, C) (4.5)

in (4.4) coincides with the pullback homomorphism

β∗ : H1
dR(Y, C) −→ H1

dR(X, C) , c 7−→ β∗c , (4.6)

where β is diffeomorphism in (4.1).

For the isomorphism β∗ in (4.6), we have

β∗(H1(Y, Z)) = H1(X, Z) .

Furthermore, since the diffeomorphism β is orientation preserving, it takes the natural

symplectic pairing on H1
dR(Y, C) defined by

c1 ⊗ c2 7−→
∫
Y

c1 ∧ c2 ∈ C (4.7)
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to the corresponding symplectic pairing on H1
dR(X, C).

The Jacobian J(Y ) of Y coincides with the following quotient:

(H1
dR(Y, C)/H0(Y, Ω1

Y ))/H1(Y, Z) = J(Y ) ,

and the natural principal polarization on J(Y ) is constructed using the pairing in (4.7)

and the complex structure of H1
dR(Y, C). More precisely, the holomorphic tangent bundle

TJ(Y ) of J(Y ) is the trivial holomorphic bundle J(Y )×H0(Y, Ω1
Y ) −→ J(Y ) with fiber

H0(Y, Ω1
Y ) = H1(Y, OY ). The Hermitian form on H0(Y, Ω1

Y ) defined by

c1 ⊗ c2 7−→ −
√
−1

∫
Y

c1 ∧ c2 ∈ C , c1, c2 ∈ H0(Y, Ω1
Y )

produces the canonical principal polarization on J(Y ).

We noted above that the C–linear isomorphism β∗ in (4.6) takes H1(Y, Z) to isomor-

phically H1(X, Z) and takes the symplectic pairing in (4.7) to the corresponding pairing

for X. Since

ρ = β∗ ,

where ρ is the homomorphism in (4.5) (and (4.4)), from the commutativity of the dia-

gram in (4.4) we now conclude that J(Y ) is isomorphic to the Jacobian J(X) of X as a

principally polarized abelian variety. Now from the standard Torelli theorem (see [ACGH,

Ch. VI, § 3, pp. 245–246]) we conclude that X is isomorphic to Y . �

4.2. Neutral Tannakian category for a compact complex torus. Let T be a com-

pact complex torus of complex dimension d. The group scheme $(T, x0) is abelian

because π1(T, x0) is so. Hence the quotient Θ(X, x0) of $(T, x0) is also abelian. As

in the proof of Theorem 4.1 we consider the corresponding additive character spaces

Xa($(T, x0)) and Xa(Θ(T, x0)) and their Lie algebras. From Lemma 3.6 we have

Xa($(T, x0)) = H1
dR(T, C)

and

Xa(Θ(T, x0)) = H0(T, Ω1
T) ,

where Ω1
T is the holomorphic cotangent bundle of T. Consider the linear map

Ψ : H0(T, Ω1
T) = Xa(Θ(T, x0)) −→ Xa($(T, x0)) = H1

dR(T, C) (4.8)

induced by the homomorphism qT in (3.2). We note that Ψ coincides with the natural

inclusion of H0(T, Ω1
T) in H1

dR(T, C) given by the fact that any holomorphic 1–form on

T is closed.

Let S be a compact complex torus of complex dimension d, and let

ϕ : T −→ S

be a diffeomorphism. Let

ϕ\ : $(T, x0) −→ $(S, ϕ(x0)) (4.9)
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be the homomorphism corresponding to ϕ. We say that ϕ\ descends to a homomorphism

from Θ(T, x0) to Θ(S, ϕ(x0)) if there is a homomorphism

ϕ′\ : Θ(T, x0) −→ Θ(S, ϕ(x0))

such that the diagram

$(T, x0)
ϕ\−→ $(S, ϕ(x0))

qT

y qS

y
Θ(T, x0)

ϕ′
\−→ Θ(S, ϕ(x0))

(4.10)

is commutative, where qT and qS are the projections in (3.2).

Proposition 4.2. Let ϕ : T −→ S be a diffeomorphism such that the homomorphism

ϕ\ in (4.9) descends to a homomorphism from Θ(T, x0) to Θ(S, ϕ(x0)). Then there is a

biholomorphism

ϕ̃ : T −→ S
which is homotopic to the map ϕ.

Proof. Let ϕ′\ : Θ(T, x0) −→ Θ(S, ϕ(x0)) be the homomorphism such the diagram in

(4.10) is commutative. Let

H0(S, Ω1
S) = Xa(Θ(S, ϕ(x0))) −→ Xa(Θ(T, x0)) = H0(T, Ω1

T)

ξ2
y ξ1

y
H1
dR(S, C) = Xa($(S, ϕ(x0)))

δ−→ Xa($(T, x0)) = H1
dR(T, C)

(4.11)

be the commutative diagram of C–linear maps corresponding to (4.10).

Let

ϕ∗ : H1(S, C) −→ H1(T, C), c 7−→ ϕ∗c (4.12)

be the pullback map. The homomorphism δ in (4.11) coincides with the homomorphism

ϕ∗ in (4.12). Therefore, from (4.11) we conclude that

ϕ∗(H0(S, Ω1
S)) = H0(T, Ω1

T) . (4.13)

We also have

ϕ∗(H1(S, Z)) = H1(T, Z) (4.14)

because ϕ is a diffeomorphism.

We consider T (respectively, S) as a complex abelian Lie group by taking x0 (respec-

tively, ϕ(x0)) to be the identity element of T (respectively, S). From (4.13) and (4.14) it

follows immediately that the homomorphism ϕ∗ in (4.12) induces a holomorphic isomor-

phism

ϕ̃∨ : S∨ := (H1
dR(S, C)/H0(S, Ω1

S))/H
1(S, Z)

−→ (H1
dR(T, C)/H0(T, Ω1

T))/H1(T, Z) = T∨ ;

here S∨ = Pic0(S) is the dual torus of S, and T∨ = Pic0(T) is the dual torus of T. Let

ϕ̃ : T = (T∨)∨ −→ (S∨)∨ = S

be the dual of the above homomorphism ϕ̃∨.
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From the construction of the above homomorphism ϕ̃ it is evident that the pullback

homomorphism

ϕ̃∗ : H1
dR(S, C) −→ H1

dR(T, C), c 7−→ ϕ̃∗c

coincides with the homomorphism ϕ∗ in (4.12). This implies that the two maps ϕ̃ and ϕ

are homotopic. �

5. Completely decomposable vector bundles

As before, X is a compact connected Kähler manifold. We define and study in this

section a subcategory of CdR(X) given by the following:

Definition 5.1. Let DdR(X) be the full subcategory of CdR(X) whose objects are pairs

(E, D) satisfying the condition that the holomorphic vector bundle E is a direct sum of

holomorphic line bundles.

It is straightforward to check that DdR(X) is stable under tensor products and duals.

In order to prove that DdR(X) is abelian we will need the next two lemmas.

Lemma 5.2. Let L be a holomorphic line bundle on X. Then L admits a holomorphic

connection if and only if c1(L) = 0. If L admits a holomorphic connection, then any

holomorphic connection on L is integrable.

Let Li, 1 ≤ i ≤ r, be holomorphic line bundles on X such that the holomorphic vector

bundle
⊕r

i=1 Li admits a holomorphic connection. Then each Li admits a holomorphic

connection; in other words, c1(Li) = 0.

Proof. Since X is Kähler, if L admits a holomorphic connection, then c1(L) = 0 [At,

pp. 192–193, Theorem 4]. If c1(L) = 0, then L admits an integrable holomorphic connec-

tion ∇L whose monodromy lies in U(1) see [LT, Corollary 1.3.12, p.40]; note also that any

holomorphic line bundle admits a Hermitian–Einstein metric [UY], [LT, p. 61, Theorem

3.0.1].

If L admits a (integrable) holomorphic connection∇L, then any holomorphic connection

on L is of the form ∇L + β, where β ∈ H0(X, Ω1
X). The curvature of ∇L + β is dβ,

because ∇L is integrable. Since any holomorphic 1–form on X is closed, we conclude that

∇L + β is integrable.

Let pj :
⊕r

i=1 Li −→ Lj be the projection to the j–th factor. Then for any holomorphic

connection D on
⊕r

i=1 Li, the composition of homomorphisms

Lj ↪→
r⊕
i=1

Li
D−→ (

r⊕
i=1

Li)⊗ Ω1
X

pj⊗Id
Ω1
X−→ Lj ⊗ Ω1

X

is a holomorphic connection on Lj. �



18 I. BISWAS, J. P. DOS SANTOS, S. DUMITRESCU, AND S. HELLER

Lemma 5.3. Let Li, 1 ≤ i ≤ r, and Lj, 1 ≤ j ≤ `, be holomorphic line bundles on X

such that ci(Li) = 0 = c1(Lj) for all i, j. Let

f :
r⊕
i=1

Li −→
⊕̀
j=1

Lj

be a holomorphic homomorphism. Then the following two hold:

(1) If kernel(f) 6= 0, then kernel(f) is a direct sum of holomorphic line bundles of

vanishing first Chern class.

(2) If cokernel(f) 6= 0, then cokernel(f) is a direct sum of holomorphic line bundles

of vanishing first Chern class.

Proof. Equip each Li (respectively, Lj) with an integrable holomorphic connection ∇i

(respectively, ∇̃j) such that the monodromy lies in U(1). The holomorphic homomorphism

f intertwines the connections
⊕r

i=1∇i on
⊕r

i=1 Li and
⊕`

j=1 ∇̃j on
⊕`

j=1 Lj [LT, p. 50,

Theorem 2.2.1]. Consequently, kernel(f) is a holomorphic subbundle of
⊕r

i=1 Li preserved

by
⊕r

i=1∇i, and cokernel(f) is a quotient bundle of
⊕`

j=1 Lj on which
⊕`

j=1 ∇̃j induces

a holomorphic connection. This implies that

degree(kernel(f)) = 0 = degree(cokernel(f)) (5.1)

(see Lemma 5.2).

Since
⊕r

i=1 Li is polystable of degree zero, and it is a direct sum of line bundles, from

the observation in (5.1) that degree(kernel(f)) = 0 it follows that kernel(f) is a direct

sum of holomorphic line bundles of degree zero. Since
⊕`

j=1 Lj is polystable of degree

zero, and it is a direct sum of line bundles (if it is nonzero), from the observation in (5.1)

that degree(cokernel(f)) = 0 it follows that cokernel(f) is a direct sum of holomorphic

line bundles of degree zero (if it is nonzero). �

Using Lemma 5.3 it can be deduced that the category DdR(X) is abelian.

Fix a point x0 ∈ X. Equip the category DdR(X) with the exact functor to the category

of finite dimensional complex vector spaces defined by (E, D) 7−→ E|x0 . Let

∆(X, x0) (5.2)

be the affine group scheme over C corresponding to DdR(X) [DMOS, p. 130, Theorem

2.11]. Note that ∆(X, x0) is the target of a morphism of affine group schemes

$(X, x0) −→ ∆(X, x0) (5.3)

which, according to the the standard criterion [DMOS, Proposition 2.21, p.139] amplified

by [BHdS, Lemma 2.1], and Lemma 5.3 is a quotient morphism.

The homomorphism qX in (3.2) factors through the quotient ∆(X, x0) and gives a

quotient homomorphism

pX : ∆(X, x0) −→ Θ(X, x0) . (5.4)
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For a pointed compact Kähler manifold (Y, y0) it can be shown that the natural homo-

morphism

∆(X, x0)×∆(Y, y0) −→ ∆(X × Y, (x0, y0))

is an isomorphism; it’s proof is similar to that of Proposition 3.9.

The homomorphism of additive character C–vector spaces

Xa(Θ(X, x0)) −→ Xa(∆(X, x0))

induced by pX in (5.4) is an isomorphism as follows from Lemma 5.3 and the interpretation

of these vector spaces as extension groups (see Section 3.2). In view of this, examining

the proofs of Theorem 4.1 and Proposition 4.2 we conclude that these two results remain

valid if Θ(X, x0) is replaced by the group scheme ∆(X, x0) in (5.2).

6. Connections on pseudostable vector bundles

We shall now relate the group scheme Θ(X, x0) of Section 3.1 to another group scheme

which deals only with a full subcategory of vector bundles.

Definition 6.1. A holomorphic vector bundle E over X is said to be pseudostable (see

[BG]) if the object Higgs vector bundle (E, 0) lies in the category CDol(X) introduced in

Section 2. To wit,

• degree(E) = 0,

• ch2(E) ∧ ωd−2 = 0, and

• there exists a filtration of E by holomorphic subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ E`−1 ⊂ E` = E

in which every Ej/Ej−1, 1 ≤ j ≤ `, is stable and of degree zero.

(Actually the third condition implies the first condition.) The full subcategory of pseu-

dostable vector bundles on X will be denoted by Vects
0(X).

The following theorem, which is based on the works of Simpson and Corlette, is proved

in [Si2] (see [Si2, pp. 35–37, (3.4.1)–(3.4.5)] and [Si2, p. 70]).

Theorem 6.2 ([Si2, (3.4.1)–(3.4.5)]).

(1) The category Vects
0(X) is abelian and stable under the tensor product of vector

bundles.

(2) Any E ∈ Vects
0(X) carries a canonical holomorphic integrable connection.

(3) If X is projective, and the cohomology class of ω is rational, then Vects
0(X) coin-

cides with the category of all semistable vector bundles E such that ch1(E)∧ωd−1 =

ch2(E) ∧ ωd−2 = 0 (see [Si2, p. 39, Theorem 2] for it).

Remark 6.3. As mentioned in Section 2, the category CDol(X) is equivalent to CdR(X)

[Si2, p. 36, Lemma 3.5]. Take (E, θ) ∈ CDol(X), and let (V, ∇) ∈ CdR(X) be the object

corresponding to (E, θ) by the equivalence of categories between CDol(X) and CdR(X). Al-

though the C∞ vector bundles underlying E and V coincide, their holomorphic structure



20 I. BISWAS, J. P. DOS SANTOS, S. DUMITRESCU, AND S. HELLER

do not coincide in general. However, when θ = 0, then the holomorphic structures of E

and V coincide. Therefore, ∇ is a holomorphic integrable connection on V = E. We note

that when E is polystable, then this holomorphic connection ∇ on E coincides with the

unique holomorphic integrable connection on E whose monodromy is unitary. See [BS,

p. 4004, Theorem 3.1] for a generalization of this canonical connection on E ∈ Vects
0(X)

to principal bundles.

Remark 6.4. Take E1, E2 ∈ Vects
0(X). The canonical holomorphic integrable connec-

tions on E1 and E2 (see Remark 6.3) will be denoted by ∇1 and ∇2 respectively. Let

Φ : E1 −→ E2

be a homomorphism of coherent analytic sheaves. Then Φ is a homomorphism from

(E1, 0) ∈ CDol(X) to (E2, 0) ∈ CDol(X). Therefore, from the equivalence of categories

between CDol(X) and CdR(X) ([Si2, p. 36, Lemma 3.5]) we conclude that Φ is a homo-

morphism from (E1, ∇1) ∈ CdR(X) to (E2, ∇2) ∈ CdR(X). In particular, Φ(E1) ⊂ E2

is preserved by the connection ∇2 on E2. Now setting E1 to be the trivial line bundle OX
we conclude that every holomorphic section s ∈ H0(X, E2) is flat (same as integrable)

with respect to the connection ∇2 on E2. It also follows that the canonical connection on

E1⊕E2 coincides with ∇1⊕∇2. Moreover, the canonical connection on E1⊗E2 (respec-

tively, Hom(E1, E2)) coincides with the connection on E1⊗E2 (respectively, Hom(E1, E2))

induced by ∇1 and ∇2. These properties of the canonical connection were crucial in the

proofs of [BS, p. 4004, Theorem 3.1] and [BG, p. 20, Theorem 1.1].

It then follows that there exists an affine group scheme πS(X, x0) over C such that the

functor

•|x0 : Vects
0(X) −→ VectC

induces an equivalence between Vects
0(X) and the category of finite dimensional algebraic

representations of πS(X, x0).

Following the path of previous sections, we define SdR(X) as the full subcategory of

CdR(X) consisting of those (E, ∇) such that E belongs to Vects
0(X). This produces

another group scheme

Σ(X, x0) (6.1)

whose category of representations is, via the functor •|x0 , simply SdR(X).

Using the forgetful functor

U : SdR(X) −→ Vects
0(X)

and a the natural inclusion

J : TdR(X) −→ SdR(X),

we arrive at morphisms

πS(X, x0)
uX−→ Σ(X, x0)

jX−→ Θ(X, x0) . (6.2)

Clearly, jX ◦ uX is the trivial homomorphism.
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Theorem 6.5. In (6.2), the morphism uX is a closed immersion, jX is a quotient map

and the image of uX is the kernel of jX . In addition, uX possesses a left inverse

vX : Σ(X, x0) −→ πS(X, x0)

so that

(vX , jX) : Σ(X, x0) −→ πS(X, x0)×Θ(X, x0)

is an isomorphism.

Proof. The morphism qX : $(X, x0) −→ Θ(X, x0) in (3.2) factors through jX so that

the fact that qX is a quotient morphism shows that jX is likewise. That jX is a closed

immersion follows from the standard criterion [DMOS, p. 139, Proposition 2.21] and

Theorem 6.2.

Let us now prove that uX identifies Σ(X, x0) with Ker(qX) by verifying conditions

(iii)-a, (iii)-b and (iii)-c of Theorem A.1 in [EHS]. Condition (iii)-a is a tautology, while

Theorem 6.2 immediately ensures (iii)-c. We then need to assure the validity of (iii)-

b, which translates as follows. Given (E, ∇) ∈ SdR(X), the image of the canonical

morphism

H0(X, E)⊗C OX −→ E

is invariant under ∇. Now, this follows from Remark 6.4.

Assigning to any pseudostable vector bundle E ∈ Vects
0(X) the canonical integrable

holomorphic connection on E (see Theorem 6.2(2)), a functor is obtained; call it

V : Vects
0(X) −→ SdR(X) .

This V is a tensor functor (see Remark 6.4). Hence V produces the section vX to uX .

Elementary group theoretic manipulations and faithful flatness of jX [Wa, Theorem of

14.1] now tell us that (vX , jX) is an isomorphism. �

Note that, the natural map ExtSdR(X)(1, 1) −→ ExtCdR(X)(1, 1) is automatically an

isomorphism since a vector bundle realizing an extension of OX by itself is immediately

pseudostable. It follows that the space of additive characters of Σ(X, x0) is simply

H1
dR(X, C) (see Lemma 3.6). As the space of extensions of 1 by itself in Vects

0(X)

is clearly H1(X, OX), the decomposition in Theorem 6.5 recovers the decomposition

H1
dR(X, C) ' H0(X, Ω1

X)⊕H1(X, OX).

Remark 6.6. Let Ṽect
s

0(X) be the full subcategory of Vects
0(X) defined by all holomor-

phic vector bundles in Vects
0(X) that are direct sum of holomorphic line bundles. It is a

Tannakian subcategory, and defines a quotient group scheme

πS(X, x0) −→ π̃S(X, x0)

of πS(X, x0). Form the proof of Theorem 6.5 it is straightforward to deduce that

∆(X, x0) = π̃S(X, x0)×Θ(X, x0) ,

where ∆(X, x0) is constructed in (5.2).
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Institut de Mathématiques de Jussieu – Paris Rive Gauche, 4 place Jussieu, Case 247,
75252 Paris Cedex 5, France

Email address: joao pedro.dos santos@yahoo.com
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