In-place molecular preservation of cellulose in 5,000-year-old archaeological textiles - Archive ouverte HAL
Article Dans Une Revue Proceedings of the National Academy of Sciences of the United States of America Année : 2020

In-place molecular preservation of cellulose in 5,000-year-old archaeological textiles

Résumé

The understanding of fossilization mechanisms at the nanoscale remains extremely challenging despite its fundamental interest and its implications for paleontology, archaeology, geoscience, and environmental and material sciences. The mineralization mechanism by which cellulosic, keratinous, and silk tissues fossilize in the vicinity of archaeological metal artifacts offers the most exquisite preservation through a mechanism unexplored on the nanoscale. It is at the center of the vast majority of ancient textiles preserved under nonextreme conditions, known through extremely valuable fragments. Here we show the reconstruction of the nanoscale mechanism leading to the preservation of an exceptional collection of ancient cellulosic textiles recovered in the ancient Near East (4,000 to 5,000 years ago). We demonstrate that even the most mineralized fibers, which contain inorganic compounds throughout their histology, enclose preserved cel-lulosic remains in place. We evidence a process that combines the three steps of water transport of biocidal metal cations and soil solutes, degradation and loss of crystallinity of cellulosic polysaccharides, and silicification. cultural heritage | fossilization | cellulosic textiles | nanoimaging | synchrotron
Fichier principal
Vignette du fichier
Reynaud20b.pdf (1.92 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-02915782 , version 1 (19-08-2020)

Licence

Identifiants

Citer

Corentin Reynaud, Mathieu Thoury, Alexandre Dazzi, Gael Latour, Mario Scheel, et al.. In-place molecular preservation of cellulose in 5,000-year-old archaeological textiles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (33), pp.19670-19676. ⟨10.1073/pnas.2004139117⟩. ⟨hal-02915782⟩
537 Consultations
141 Téléchargements

Altmetric

Partager

More