Article Dans Une Revue Numerical Algorithms Année : 2021

Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layers

Résumé

This paper is devoted to the derivation and analysis of accurate and efficient Perfectly Matched Layers (PML) or efficient absorbing layers for solving fractional Laplacian equations within Initial Boundary Value Problems (IBVP). Two main approaches are derived: we first propose a Fourier-based pseu-dospectral method, and then present a real space method based on an efficient computation of the fractional Laplacian with PML. Some numerical experiments and analytical results are proposed along the paper to illustrate the presented methods.
Fichier principal
Vignette du fichier
fraclapNAAcceptedVersionHAL.pdf (1.19 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02915068 , version 1 (13-08-2020)

Identifiants

Citer

Xavier Antoine, Emmanuel Lorin, Yong Zhang. Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layers. Numerical Algorithms, 2021, 87, pp.409-444. ⟨10.1007/s11075-020-00972-z⟩. ⟨hal-02915068⟩
97 Consultations
289 Téléchargements

Altmetric

Partager

More