Affine category O, Koszul duality and Zuckerman functors - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Affine category O, Koszul duality and Zuckerman functors

Résumé

The parabolic category $\mathcal{O}$ for affine ${\mathfrak{gl}}_N$ at level $-N-e$ admits a structure of a categorical representation of $\widetilde{\mathfrak{sl}}_e$ with respect to some endofunctors $E$ and $F$. This category contains a smaller category $\mathbf{A}$ that categorifies the higher level Fock space. We prove that the functors $E$ and $F$ in the category $\mathbf{A}$ are Koszul dual to Zuckerman functors. The key point of the proof is to show that the functor $F$ for the category $\mathbf{A}$ at level $-N-e$ can be decomposed in terms of the components of the functor $F$ for the category $\mathbf{A}$ at level $-N-e-1$. To prove this, we use the following fact: a category with an action of $\widetilde{\mathfrak sl}_{e+1}$ contains a (canonically defined) subcategory with an action of $\widetilde{\mathfrak sl}_{e}$. We also prove a general statement that says that in some general situation a functor that satisfies a list of axioms is automatically Koszul dual to some sort of Zuckerman functor.
Fichier principal
Vignette du fichier
S0001870821003601.pdf (929.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02908133 , version 1 (02-08-2023)

Licence

Identifiants

  • HAL Id : hal-02908133 , version 1
  • ARXIV : 2007.11267
  • PII : S0001-8708(21)00360-1

Citer

Ruslan Maksimau. Affine category O, Koszul duality and Zuckerman functors. 2023. ⟨hal-02908133⟩
53 Consultations
19 Téléchargements

Altmetric

Partager

More