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Abstract

The parabolic category O for affine gl at level —N — e admits a
structure of a categorical representation of ;[E with respect to some end-
ofunctors F and F. This category contains a smaller category A that
categorifies the higher level Fock space. We prove that the functors F
and F in the category A are Koszul dual to Zuckerman functors.

The key point of the proof is to show that the functor F' for the cate-
gory A at level —IN — e can be decomposed in terms of the components of
the functor F for the category A at level —NN —e — 1. To prove this, we
use the following fact from [9]: a category with an action of sl.41 contains
a (canonically defined) subcategory with an action of sle.

We also prove a general statement that says that in some general
situation a functor that satisfies a list of axioms is automatically Koszul
dual to some sort of Zuckerman functor.
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1 Introduction

Let O, be the parabolic category O with parabolic type v of the affine version
of the Lie algebra gl at level —N —e. In [15], a categorical representation of
the affine Kac-Moody algebra ;[e in O”, is considered. In particular, this means
that there are exact biadjoint functors E;, F;: O, — O”_ for i € [0, e— 1] which
induce a representation of the Lie algebra s, on the Grothendieck group [0 ]
of O¥,. The precise definition of a categorical representation is given in Section
2.8. The category 0%, admits a decomposition

0’.= oy

HEZE

that lifts the decomposition of the sl,-module [OY.] in a direct sum of weight
spaces.

The category Oy, is Koszul by [18]. Tts Koszul dual category is the category
O‘,i . defined similarly to Of at a positive level. In particular, the Koszul du-
ality exchanges the parameter v (the parabolic type) with the parameter p (the
singular type). The Koszul duality yields an equivalence of bounded derived
categories Db(Ol’j) ~ D"(O}, ,). More details about the Koszul duality can be
found in [3].

Let ag, -+, ae_1 be the simple roots of ;[e. We have
Ei(OZ) - OZ+%, Fi(OZ) - OZ—ai'

The aim of this paper is to prove that the Koszul dual functors
D0} ,) = D*(0,1™), DYO}.) = D*(0,™)
to the functors

E;: D*(O%) — D*(O%,

o) Fi:Db(OZ) — Db(o;,ai).

are the Zuckerman functors. This statement is an affine version of a similar
statement proved in [16] and [13].

Unfortunately, we cannot solve this problem for the full category O. But we
are able to do this for a subcategory A of O.

By definition, the Zuckerman functor is a composition of a parabolic inclu-
sion functor with a parabolic truncation functor. Thus it is natural to try to
decompose the functors F; and F; in two "smaller" functors. More precisely,
we want to show that the functor Fi: Oy, — O}, (and similarly for E;) between
the blocks! Oy, and Oy, can be decomposed as Oy, — Oy, , — Oy, where the
block Oy, , is "more regular" than O} and than O},. The additional difficulty

'We abuse the terminology using the word "block" here. We don’t claim that Oy is

indecomposable. The word "block" is used here by analogy with the non-parabolic finite type
category O, where similar subcategories are indeed blocks.



is that there is no good candidate for such a block at the level —N — e, but
there is one at another level: —N — (e + 1).

Now we describe more precisely our strategy of finding such a decomposition.
Let 52, E;, F; be defined in the same way as O}, Ei, F; with e replaced by
e+ 1. Let ag,---,a, be the simple roots of 5~[e+1. Fix k € [0,e — 1]. For an
e-tuple p = (p1, -+, fte) we set

T (Mla"'7/1/k707/1/k+17"',/143) lfk;éO,
a (Oﬁula"'aﬂe) if k=0.

Note that we have (u — ) = T — @ — @41 because

u_ak:(/“‘L17"'7/~‘Lk_1a:uk+1+1a"'a:u€)

and
E_ak_ak-‘rl = (Hla"'uuk_1707/’Lk+1+15"'nu€)'

By [5], there is an equivalence of categories 0: O}, — 5;. The direct sum of

such equivalences identifies the category O, with a direct factor of the category

?i(eﬂ). We want to compare the ;[e—action on OY_ with the 5~[e+1—action on

(&

O_ (¢41)- More precisely, we want to prove the following conjecture.

Conjecture 1.1. The following diagram of functors is commutative.

— — Fp —
v k v k1 v

Oﬁ Oﬁ—ak O.T"—ak — Qg4

6 91 (1)
v v

Oy Fr Oh—an

Now, if the conjecture is true, then it implies a decomposition that we ex-
pected. After that we could use an argument similar to [13] to show that the
functor Fj, is Koszul dual to the parabolic inclusion functor and the functor
F41 is Koszul dual to the parabolic truncation functor. Then we can deduce
that Fj, is Koszul dual to the Zuckerman functor (which is the composition of
the parabolic inclusion functor and the parabolic truncation functor). Thus the
problem is reduced to the proof of this conjecture.

It is not hard to see that the diagram from Conjecture 1.1 is commutative at
the level of Grothendieck groups. In the case of the category O of gl (instead
of affine gly) this is already enough to prove the analogue of Conjecture 1.1,
using the theory of projective functors. Indeed, [1, Thm. 3.4] implies that two
projective functors are isomorphic if their actions on the Grothendieck group
coincide. Unfortunately, there is no satisfactory theory of projective functors
for the affine case (an attempt to develop such a theory was given in [6]).

We choose another strategy to prove this conjecture. It is based on the main
result of [9], relating the notion of a categorical representation of sl, with the



notion of a categorical representation of 5~[e+1. Let us fix the following inclusion
of Lie algebras sl, C sleq1

e, ifrel0k—1],
ey — ek, er+1] fr=k,
ery1 ifrefk+1,e—1],

fr ifrel0k—1),
f’r"_> [fk?-‘rlafk] if’l“:k},
fr1 ifrefk+1e—1],

where e, and f,., r € [0,e — 1], are the standard generators of 5~[e, see Section
2.1. Abusing the notation, we also denote by e, and f., r € [0, ¢], the standard
generators of 5~[e+1.

The Lie algebra ;[e has a categorical representation in the category O¥,
while the Lie algebra 5~[e+1 has a categorical representation in the category
511(6“). By [9, Thm. 3.5], each category C with a categorical action of sl
contains (under some assumptions) a (canonically defined) subcategory C C C
that inherits a categorical action of 5~[e from the categorical action of 5~[e+1 on
C. In particular, if we take C = 63(8+1), then the subcategory C can be easily
identified with O¥_ using equivalences 6 like in (1).

We get two categorical representations of 5~[e in O :

e the original one,

e the g[e—categorical representation structure induced from the 5~[6+1—categorical
representation structure in O’:(e 1)

To prove Conjecture 1.1, it is enough to prove that these two categorical repre-
sentation structures are the same.

Unfortunately we cannot apply the uniqueness theorem for categorical rep-
resentations because the sl.-module categorified by O, is not simple. However,
we can obtain a weaker version of Conjecture 1.1. The category O, contains
subcategories A”[a], parameterized by a € QF, where Q is the positive part
of the root lattice of sl,. The direct sum of such categories categorifies the Fock
space.? In this case we can use the technique similar to one used in [15]. This
technique allows to prove in some cases that two categorical representations that
categorify the Fock space are the same. We get the following.

For i € [0,e — 1] we have F;(A¥[a]) C A¥[a + a;]. Let A”[@] be defined in
the same way as AY[a] with respect to the parameter e 4 1 instead of e. Let |«|
be the height of . For each o € QF, we construct @ = ¢(a) € Q;h where the
map ¢: Qe — Qc11 is defined in Section 2.2 (see also Section 2.3).

The main result of Section 2 is the following theorem.

2To get a categorification of the Fock space, we sum by «, but the values of N and v are
not fixed. For each a we need N and v such that v, > |af. See [15, Sec. 7.4] for more details.



Theorem 1.2. Fize > 2 andv = (v1,---,v;). There exists § € Q;l such that
for each o € QF satisfying

Vr e [1,1], vy > o,
there are equivalences of categories 0),: A¥[a] — A”[f + @] and Oy ta,: AV o+
o] = A”[B+ @+ a + Apy1] such that the following diagram is commutative

— FriFr —v
A'B+a /=5 A'[B+a+ag + aps]

‘] o]

Avla]  —2  AY[Bra+al

O

The paper has the following structure.

In Section 2, we use the categorical representations to decompose the functor
F in the category A (Theorem 1.2). We do this in the following way. We con-
sider a category A that is equivalent to A as a category, but the functors F; and
F; on A are defined with respect to another categorical action that comes from
level =N — (e +1). We want to find a (probably different) equivalence between
A and A that identifies the functors. The paper [15] compares A (together with
E; and F;) with the category O for the rational Cherednik algebra. We use a
similar argument to compare A with the same category O. As a consequence,
we manage to compare A with A (together with the functors F; and F;).

In Section 3 we prove that in some cases the functors F and F for the
category O admit graded lifts. For this we use Soergel’s functor V.

In Section 4 we prove that the functors E and F for the category A are
Koszul dual to Zuckerman functors. In fact, in Section 4.5 we prove a more
general and more abstract statement that says that in some general situation a
functor that satisfies a list of axioms is automatically Koszul dual to some sort
of Zuckerman functor. The proof of this statement uses the approach of [13].

The technique of restriction of categorical representations in [9] is developed
for solving the problem in the present paper. However, this technique has an
independent interest: another application is given in [14, Sec. 7].

It is important to emphasize the relation between the present paper and
the preprint [10]. The preprint [10] is expected to be published as two different
papers: the first of them is [9], the second one is the present paper. The first part
contains general results about KLR algebras and categorical representations.
The second part is an application of the first part. The present paper is rewritten
(compared to [10]) in a way that we never use KLR algebras explicitly. This
makes the paper more independent from [9].

2 The category O

For a noetherian ring A we denote by mod(A) the abelian category of left finitely
generated A-modules. We denote by N the set of non-negative integers. By a



commutative diagram of functors we always mean a diagram that commutes up
to an isomorphism of functors.

2.1 Kac-Moody algebras associated with a quiver

Let T' = (I, H) be a quiver without 1-loops with the set of vertices I and the set
of arrows H. For 4,5 € I let h; ; be the number of arrows from ¢ to j and set
also a; j = 26; j—h; j—h; ;. Let gr be the Kac-Moody algebra over C associated
with the matrix (a; ;). More precisely, the algebra g; is generated by elements
ei, fi, hi for i € I satisfying the following relations:

[eivfj} = 5ijhi,

[hisei] = aije;,

his /51 = —aijfj,

[hishs] =0,
ad(e;)' "%i(e;) = 0 if i # j,
ad(f)' =" (f;) = 0 if i # j.

For each i € I let a; be the simple root corresponding to e;. Set

Q]:@ZOQ', Q}":@Nai.

iel i€l

Let X1 be the free abelian group with basis {g;; ¢ € I'}. Set also

X? = @N&l
il

For a € QF denote by |a] its height, i.e., for a« = Y icr dici, di € N, we have
o] = iy die Set 1% = {i= (i1, ,iqp) € 1 3 ;) = a}.

Let ' = (I, Hx) be the quiver with the set of vertices I, = Z and the
set of arrows Hoo = {i = i+ 1; i € I}. In this case we will simply write
sl for the Lie algebra g7, . We stress that here we get a "two-sided" sl the
generators of sl,, are parameterized by Z and not by N.

Assume that e > 1 is an integer. Let I'. = (I, H.) be the quiver with the
set of vertices I, = Z/eZ and the set of arrows H, = {i —» i+ 1; i € I.}. Then
gz, is the Lie algebra sl, =sl, ® C[t,t '] @ C1.

Assume that I' = (I, H) is a quiver whose connected components are of the
form I'., with e € N, e > 1 or e = co. For ¢ € I denote by ¢ + 1 and ¢ — 1 the
(unique) vertices in I such that there are arrows ¢ =i+ 1 and i — 1 — 4.

Let us also consider the following additive map

L:Q[—)X[, Q; > & — €541

Fix a formal variable x and set X) = X;@®Zyx. We can lift the Z-linear map
L to a Z-linear map

XQr — X[, e — i1 — X



Note that the map X: Q; — X} is injective (while ¢ is not injective). We
may omit the symbols ¢, X and write « instead of ¢(a) or X(a).
We will also abbreviate

Qe:Qlea Xe:XIE7 Xé(:XZ

2.2 Doubled quiver

Now we recall the notion of a doubled quiver introduced in [9, Sec. 2B|.

Let ' = (I, H) be a quiver without 1-loops. Fix a decomposition I = Iy Iy
such that there are no arrows between the vertices in I;. In this section we
define a doubled quiver T = (I, H) associated with (T, Iy, I;). The motivation
of this definition is that there is a relation between categorical representations
of gr and of g7, see [9] for more details. Later, we will apply this relation to the
categorical representation in the category O.

The idea of how we get T’ from I' is to "double" each vertex in the set I;
(we do not touch the vertices from Iy). We replace each vertex ¢ € I; by a
couple of vertices i' and 2 with an arrow ;' — 2. Each arrow entering to %
should be replaced by an arrow entering to i', each arrow coming from 4 should
be replaced by an arrow coming from i2. See [9, Sec. 2B] for a more formal
definition of the quiver I'. This construction will be used in the present paper
for two special types of quivers mentioned in Section 2.3.

Set I = [yen 1%, 1
The concatenation yields a monoid structure on I°° and T7°. Let @: I — I
be the unique morphism of monoids such that for i € I C I°*° we have

N = if i € Io,
W)_{ (it,i2) ifiel.

—d —d .
= HdeN I", where I? T  are the cartesian products.

There is a unique Z-linear map ¢: Qr — Q7 such that ¢(1%) C I*(® for each
o€ Q}*‘. It is given by

¢(a7) _ { Q0 if1 € IO,

ap +aop ifi e I
Let ¢ denote also the unique additive embedding

¢ X;— X7, &= e, (2)
where

.0 . .
g ] iY ifi e Iy,
! { v ifiel. 3)

2.3 Special quivers

We will use the construction from the previous section only for two special types
of quivers.



First, consider the quiver I' = I, for e > 1. We have I = I, = Z/EZ.
Fix k € [0,e — 1] and set I; = {k}, Iop = I\{k}. In this case the quiver I is
isomorphic to I'ey1. The isomorphism I'. ~ T'.;1 at the level of vertices is

i = i ifi € [0;k — 1],
o=k,
k2 = k41,
i = i1 ifielk+1,e—1].

To avoid confusion, for i € I = I, we will write @; and Z; instead of a;
and ¢; respectively.

Let T:Z — 7Z be the map given for a € Z,b € [0,e — 1] by

[ ale+1)+b it b € [0, k],
T(a€+b)_{a(e+1)+b+1 ithelk+1e—1] (4)

Note that we have the following commutative diagram

7z Y, 7

l l

Ie E— ]e+17
where the bottom map is i — ¢/, see (3).

Now we describe the second quiver that we are interested in. Let I = (f , H )
be the disjoint union of I copies of I',,. B

Write ¢ and g; instead of «; and e; respectively for each i € I. We identify
an element of I with an element (a,b) € I, x [1,1] in the obvious way. Consider
the decomposition I = Iy L I; such that (a,b) € I1 if and only if a = k mod e.

In this case the quiver [is isomorphic to T. More precisely, in this case we have

(a,0)° = (Y(a),b),
(a,0)! = (Y(a),b),
(a,b)? = (Y(a) + 1,b).

To avoid confusion, we will always write 5 for any of the maps <Z: I® — foo,
Q7 — Q7, X7 — X7 in Section 2.2.

Consider the quiver homomorphism 7,: r— T'. such that
mo:l — 1, (a,b) — a mod e.

Similarly, we have a quiver homomorphism 7. 1: I — let1. They yield Z-linear
maps

Te:QF = Qey, T X7 — Xey Teq1: Q7 = Qey1, Ter1: X7 — Xeq,



where Q. and X, are defined at the end of Section 2.1.
The following diagrams are commutative for « € QF, a € Q;I such that
(@) =

Qf —>¢ QT X”f —>¢ Xf f& L) ﬁ(&)

ﬂeJ, WEJAJ« Trel WE+IJ, Wel TFEHl
« 0 «

Q. —2— Qe+1 X, —2 Ket1 g —— Iﬁl)

2.4 Deformation rings

In this section we introduce some general definitions from [15] for a later use.
Let us fix an integer e > 1.

We call deformation ring (R, K, 71, -, 7;) a regular commutative noetherian
C-algebra R with 1 equipped with a homomorphism C[x*!, 7y, -, 7] — R. Let
K,T1,- -+, T denote also the images of k, 7y, --,7 in R. A deformation ring is
in general position if any two elements of the set

{Tu —Tv+ak+bk—c; a,b€Z,ceQu+#v}

have no common non-trivial divisors. A local deformation ring is a deformation

ring which is a local ring and such that 71,---, 7, x — e belong to the maximal
ideal of R. Note that each C-algebra that is a field has a trivial local deformation
ring structure, i.e., such that m; = --- =7, = 0 and kx = e. We always consider

C as a local deformation ring with a trivial deformation ring structure. A
C-algebra R is called analytic if it is a localization of the ring of germs of
holomorphic functions on some compact polydisc D C C¢ for some d > 1.

We will write & = k(e +1)/e, 7 = 7-(e + 1)/e. We will abbreviate R for
(R,k, 11, -,7) and R for (R, R, 71, ++,71)-

For two deformation rings R; and Ry we say that a ring homomorphism
¢: R — Ry is a deformation ring homomorphism if it is a homomorphism of
Cls*, 11, - -, 7]-algebras.

Let us give names to two special assumptions on R that will be often used
in the paper.

Assumption 1. R is a local analytic deformation ring in general position
of dimension < 2.

We denote by k the residue field and by K the field of fractions of R. As-
sumption 1 is necessary to be able to study categorical representations in the
affine category O, see [15].

Now, we introduce a modified version of this assumption. This is necessary
to be able to state results that are true over R, over K and over k without
speaking about K and k separately, see for example Proposition 2.8.

Assumption 2. The ring R is either as in Assumption 1 or is the fraction
field or the residue field of a ring satisfying Assumption 1.

10



If R satisfies the second part of Assumption 2, we simply mean k = K = R.

Let R be as in Assumption 1. Consider the element q. = exp(2mv/—1/k)
in R. This element specializes to (. = exp(2my/—1/e) in k. If R satisfies
Assumption 2, then it has a deformation ring structure. The element g still
makes sense in R. If R is a resudue field of a ring satisfying Assumption 1, then
we mean that ¢, is (..

2.5 The Lie algebra g[N

Fix positive integers IV, [ and e such that e > 1. Let R be a deformation ring,
see Section 2.4. Set

o~

gr=0ly(R), 8r=9lx(R) =gly(R)t,t7']® R1® RO.

Fori,j € [1, N]let e; ; € gr denote the matrix with one at the position (7, j) and

zeros elsewhere. Let hr C gr be the Cartan subalgebra generated by the e; ;’s,

and €, -+, en be the basis of h}, dualto ey 1, --,en n. Let P =Ze ®---®Zen

be the weight lattice of gr. We identify P with ZV. Let II, I c h¥% be the

sets of simple roots of gr and gr. Let W = &x be the Weyl group of gr and

W =W x ZII, W = W x P be the affine and the extended affine Weyl groups.
Then we define the element wt.(\) € X, given by

N
wt.(A) = e,
r=1

where we write €y, for €(x, mod ¢)-
We will abbreviate

Plu) ={X € P; wte(X) = u}. (5)
Similarly, we consider the weight
N N
wtX(A) =Y ex, + O A)x € XX
r=1 r=1

Finally, let X.[N] C X, be the subset given by

e e
XE[N] :{H:ZMT'ET € X; Hor =0, ZMT:N}
r=1

r=1

We may identify p with the tuple (u1, -+, te) if no confusion is possible.

Now, consider the Cartan subalgebra ER = hr ® R1® RO of gr. Let
o, a1, -, any—1 C hy and &g, d1,---,ay—1 C hgr be the simple roots and
coroots of gr respectively. Let Ag and ¢ be the elements of }Al*j% defined by

5(0) =Ao(1) =1, d(hp @ R1) = Ag(hp & R) = 0.

11



Let (o, 0): ﬁE X ﬁ}} — R be the bilinear form such that
M) = (N ar),  AQ) = (X Ag), VA e ﬁ;‘i

Set Pr = P ®z R. Given an I-tuple of positive integers v = (vq,- -+, ;) such
that Zizl v, = N, we define

P = (07_177_N+1)7
Pv = (V17V1_1'"71ay27'"717"'7Vla"'a1)7
T = (7.{/1’_“’7_[’/1)’

where 77 means v, copies of 7. Set also
P=p+NAy, A=A+7+20—(N+r)A, (6)

where zy = (A, 2p + A)/2k. Denote by Pr,, the parabolic subalgebra of ggr of
parabolic type v. For a v-dominant weight A € P let A(\)g be the parabolic
Verma module with highest weight X and A) = A(XN — p)r. We will also skip
the subscript R when R = C.

2.6 Affine Weyl groups

Assume that R = C. In this section we discuss some combinatorial aspects of
the W-action on h*.
The group W is generated by {r,s;; i € Z/NZ} modulo the relations

2 —
83 = 1,
SiSj = S8 Vi 7é j + ].,
SiSi+18i =  Si+15iSi+1,
TSi4+1 = S;T.

Let W be the subgroup of 1% generated by {s;; i € Z/NZ}. The group W is an
extension of the group W by Z and 7 is a generator of Z. The element 7 acts
on W by the cyclic shift of the generators of W.

The group W acts on P in the following way:

e s, switches of the rth and (r + 1)th components of A if r # 0,
e so(A1, An) = (AN — €, A2, AN—1, A1 te),
L 7T()‘17”'7)‘N> = ()\Qa"'7)\Na)\1 +€)

We will call this action of /ﬁ/\\ on P the negative e-action. We will always consider
only negative actions of W on P up to Section 4.7. So we can skip the word
"negative". We may write P(¢) = P to stress that we consider the e-action of
W on P. The map

PO Sh*, A A—p+p

12



is W—invariant. This means that the weights A1, Ay € P are in the same W—orbit
if and only if the highest weights of the Verma modules A and A*2 are linked
with respect to the Weyl group W, see [18, Sec. 3.2] and [5, Sec. 2.3] for more
details about linkage. Note that P =[], x (v P[u] is the decomposition of P
into W-orbits with respect to the e-action. An element A € P is e-anti-dominant
ifA << <Ay <AL +e

Recall the map YT:Z — Z from (4). Applying Y coordinate by coordinate to
the elements of P we get a map Y: P(6) — pletl),

Lemma 2.1. The map Y: P — Pl g W -invariant and takes e-anti-
dominant weights to (e + 1)-anti-dominant weights. O

2.7 Hecke algebras
Let R be a commutative ring with 1. Fix an invertible element ¢ € R.

Definition 2.2. The affine Hecke algebra Hg r(q) is the R-algebra generated
by T1,---,T;4_1 and the invertible elements Xj,---, X; modulo the following
defining relations

X, X, = X.X,, T,X, = X, T, if |r —s| > 1,
TrTs = T’sTr if |T - 5‘ > 17 TT‘TT-‘,-lT'r‘ = Tr+1TrTr+17
TrXr+1 =X, T, + (q - 1)X'r’+1a T.X, = Xr+1Tr - (q - ]-)Xr+1a
(Tr —a)(T> +1) = 0.

Fix an I-tuple Q = (Q1,---,Q;) € R’

Definition 2.3. The cyclotomic Hecke algebra H;?R(q) is the quotient of Hy r(q)
by the two-sided ideal generated by (X1 — Q1) -+ (X1 — Q).

2.8 Categorical representations

Let R be a C-algebra. Fix an invertible element ¢ € R, g # 1. Let C be an exact
R-linear category.

Definition 2.4. A representation datum in C is a tuple (E, F, X, T) where (E, F')
is a pair of exact functors C — C and X € End(F)°P, T € End(F?)°P are
endomorphisms of functors such that for each d € N, there is an R-algebra
homomorphism 94: Hy r(q) — End(F4)°P given by

X, = F&rXFr=1 v e[l,d,
T, — F&r=1TF™=1 vVre[l,d—1].

Now, assume that R = k is a field. Assume that C is a Hom-finite abelian
category.

Remark 2.5. Assume that we have a representation datum in a k-linear category
C such that the functors F and F are biadjoint. Then by adjointness we have
an algebra isomorphism End(E?) ~ End(F%)°P. In particular we get an algebra
homomorphism Hy x(q) — End(E4).

13



Let .% be a subset of k*. We view .% as the vertex set of a quiver I" ¢ with
an arrow ¢ — j if and only if j = qi.

Definition 2.6. An gg-categorical representation in C is the datum of a rep-
resentation datum (E, F, X,T) and a decomposition C = P . x, Cp satisfying
the conditions (a) and (b) below. For i € .Z let E;, F; be endofunctors of C such
that for each M € C the objects E;(M), F;(M) are the generalized i-eigenspaces
of X (i.e., they are annihilated by a power of X — i -1d) acting on E(M) and
F(M) respectively, see also Remark 2.5. We assume that

(a) F = ®i€(? Fz and F = @iel? Ei;
(b) E’L(Cu) C CU""ai and Fz(cu) C Cu—ai-

For example, in the case when the quiver I'# is isomorphic to I';, then
we have gz = sl.. So we will say "an sl.-categorical representation" instead
of "a gg-categorical representation". However, we should remember that this
definition depends on the choice of the set ..

2.9 The category O

Let R be a deformation ring. Fix an I-tuple of positive integers v = (v1,---, 1)
such that 25:1 v, = N. First we define an R-deformed version of the parabolic
category O for E[N. Recall that we identify the weight lattice P with Z~. We
say that A € P is v-dominant if A\, > A1 for each r € [I, N — 1|\{v1,11 +
Vo, -+ 1 + -+ 1}. Let P” be the set of v-dominant weights of P. Set
also P¥[p] = P” N P[p], where P[y] is as in (5). Let O% be the R-linear abelian
category of finitely generated gg-modules M which are weight h r-modules, and
such that the pg, ,-action on M is locally finite over R, and the highest weight
of any subquotient of M is of the form X with \ € P”, where \ is defined in (6).
Let O} g be the Serre subcategory of Of generated by the modules A% for all

A € P”[u]. Let O:’JADL C Oy, i be the full subcategory of A-filtered modules.

We will omit the upper index v if v = (1,1,---,1). Assume A € P. In the
case if R = k is a field we denote by L(\)k the simple quotient of A(M)k. In
the case if R is local with residue fields k, the simple module L(A)x € Ok has a
simple lift L(A\)r € Og such that L(A\)x = k ®r L(\)gr (see [4, Sec. 2.2]). Set
also LY = L(A — p)r.

2.10 The choice of &

In this section we define some sets .% and .%,. We will see later that these sets

are related with the categorical representations in the categories O”, ;- and

1%
—ek*
We assume that R is as in Assumption 1. As above, we fix an [-tuple

v = (v1,--,v) of positive integers. Put

Q, = exp(2nV/—1(vy + 7.) /K), r € [1,1]. (7)

14



The canonical homomorphism R — k maps ¢. to (. and Q, to ¥, where g,
and (. are as in Section 2.4.
Now, consider the subset .# of R given by

F= U {aae}

rez,te1,l]

Denote by % the image of .% in k with respect to the surjection R — k. More
precisely, we have Z = {(7; r € Z} (i.e., the set Fy is the set of eth roots of
unity in k). Recall from Section 2.8 that we consider .# (and .Zy) as a vertex
set of a quiver. The set % is a vertex set of a quiver that is a disjoint union of [
infinite linear quivers. The set % is a vertex set of a cyclic quiver of length e.
We fix the following identifications
I, ~ ﬁk, 1> Cé,

I ~ Z, (a,b) — exp(2nv/—1(a + ) /K).

In particular, we identify the quivers I'. and [ with the quivers 'z, and 'z
respectively. We have gz, = 5~[e On the other hand, the Lie algebras gz is
isomorphic to (sl )"

Now we consider some special cyclotomic Hecke algebras. Set H d, rle) =
HgR(qe), where @ = (Q1,...,Q:) is the l-tuple defined by (7). Similarly, we
define the algebras Hy ;- (g.) and Hy, (Ce) (in the last case, we replace @Q by its
image in k).

It is useful to think of the algebras H} r-(qe) and Hj,(Cc) as cyclotomic
KLR algebras defined with respect to the quivers I'sz and I' #, respectively, see
[10, Cor. 2.18]. However, we don’t use this point of view explicitly in the present
paper.

2.11 The standard representation of ;[e

Let e;, fi, hi, be the generators of the complex Lie algebra sl, = sl. @ C[t,t~!] &
C1, here i € I.. Let V, be a C-vector spaces with canonical basis {vy, -, v}
and set U, = V., ® C[z, 271]. The vector space U, has a basis {u,; r € Z} where
Ugrep = Vg @ 270 for a € [1,¢], b € Z. Tt has a structure of an sl.-module such
that
fz(ur) = 5i5rur+1a ei(ur) = 5i£r—1ur—1-
Let {v},---,v. 1}, {ul;r € Z} denote the bases of V.11 and Ueq.
Fix an integer 0 < k < e. Consider the following inclusion of vector spaces
, .
v, ifr <k,
Ve C Verrs v { v ifr >k
It yields an inclusion sl, C sl.4; such that

e, ifre(lk—1],
er =< e epp1] fr=k,
er1 ifrefk+1e—1],
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fr ifrellk—1],
f?"'_> [fk+17fk] ifT:k,
fep1 frelk+1e—1],

h. ifrell,k—1],
h, — hy, + hk-',-l if r =k,
heyr ifreflk+1,e—1].

This inclusion lifts uniquely to an inclusion 5~[e C 5~[e+1 such that

eoH{ [ eo it k0,

eo,e1]  else,

fw{ [ fo ifk#0,

fl) fO] else)
ho ifk#0,
ho = { ho + hy  else.

Consider the inclusion U, C U.41 such that u, +— ugf(T).

Lemma 2.7. The embeddings V. C Vo1 and U, C Uey1 are compatible with
the actions of sl. C slo.41 and sl C sl.11 respectively. O

Set AU, = AU, @ -+ ® A""U,. For each A € PY define the following
element in AYU,:

A= (uay Ao A, ) @ @ (Ung a1 A AUy gy, )

The obvious ;[e-action on U, yields an ;[e—action on A"U.. We identify the
abelian group X./Z(e1 + - -+ + €.) with the weight lattice of sl.. In particular
each element p € X, yields a weight of sl.. For each p € X [N] let (AYU,), be
the weight space in A¥U, corresponding to p.

2.12 Categorical representation in the category O

Set O, p = ®ﬂ€X6[N] Oy, r and similarly for OZ’S’R. Now we define a rep-

resentation datum in the category OZ’?‘)R. See [15, Sec. 5.4] for more details.
In Sections 2.12-2.17 we assume that R is as in Assumption 2. For an exact
category C denote by [C] its complexified Grothendieck group. The following
proposition holds, see [15].

Proposition 2.8. There is a pair of exact endofunctors E, F of OZ’SR such
that the following properties hold.

(a) The functors E, F commute with the base changes K Qr o, k @ e.
(b) (Oi’ﬁR,E,F) admits a representation datum structure (with respect to

q= QE)~
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(¢) The pair of functors (E, F) is biadjoint. It extends to a pair of biadjoint
functors O” , p — O, p if R is a field.

(d) There are decompositions E = @,c; Ei, F' = @,;c;. Fi such that

E;(O%3) c ol Fi(00%) c o2

jtas, R i R*
(e) There is a vector space isomorphism [O:’JA%} ~ (A"Ue)y such that the func-
tors F;, E; act on [Oi’ﬁR] =®Dex. v [OZ?IA%] as the standard generators

ei, fi of sl..

(f) If R = k with the trivial deformation ring structure, then E;, F; yield a

categorical representation of sle in 0",y (with respect to the set F as in
Section 2.10). O

Fix k € [0,e — 1]. Recall the map T: P — P from Section 2.6 and the map
¢: Xo — Xeyq from (2). Set ' = p— oy, and 77 = é(u). Set, @’ = 71 — @, and
' =T — ay — agy1. Note that Y(P[u]) C P[u]. For k # 0 we have

o= (s Bk [k+15 e fe),
PJ, = (Mla"'aﬂkfla ,Uk+1+1, "';,Ufe),
EO - (Mlv Cy Mk 07 M1, "'aﬂe)v
ﬁ - (M17"'7Mk_17 17 Hk+1, "'7:“6)7
ﬁl = (/1/1""7/’“6_17 Oa Mk+l+1a "'a/J’e)-
For an e-tuple a = (ay, - - -, ae) of non-negative integers we set 1, = (1%, ---,e%).
Note that we have
T(1u) =1z,  YT(w)=1g (8)

Remark 2.9. The set Pla] is a W-orbit in P(®). It is a union of W-orbits
and each of them contains a unique e-anti-dominant weight. By definition,
the weight 1, € Pla] is e-anti-dominant. However, there is no canonical way
to choose an anti-dominant element in Pla]. In the case kK = 0 we need to
change our convention and to set 1, = (0%,1%,.-. (e — 1)*-1). This change
is necessary to have (8).

First, assume that [ = N and v = (1,1,---,1).

Lemma 2.10. There is an equivalence of categories 95: Our — Oﬁﬁ such that

HE(A)}‘%) o~ A%(/\). It restricts to an equivalence of categories 01 OﬁR — OEA,E'

Proof. For each n € Z the weight 7"(1,,) is e-anti-dominant. Let Oxn(1,),r C
O,.r be the Serre subcategory generated by the Verma modules of the form

A}gﬂn(l“) with w € . We have

Our= @Ow"(lu),R- (9)

neZ
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The weights 7"(1,) € P® and 7"(1;) € P*Y have the same stabilizers in
W. Thus by [5, Thm. 11] (see also [15, Prop. 5.24]) we have an equivalence of
categories

wr™(1,) wr™ (1) fs
071'"’(1“)71% ~ OTr"’(lg),E’ AR B AE oYw e W.
Taking the sum by all n € Z we get an equivalence of categories
07 0ur~Opge AR o Ay e W,
Recall that we have Y(1,) = 1z. Thus by W-invariance of T we get
01 (AY) ~ ATY YA€ Plu).
O

Remark 2.11. Notice that [5] yields an equivalence of categories over a field. It
is explained in [15] how to get from it an equivalence of categories O%. First,
comparing the endomorphisms of projective generators one gets an equivalence
of the abelian categories Or. Then, comparing the highest weight structure in
both sides, we deduce an equivalence of additive categories O%.

The equivalence F)E restricts to equivalences O} p =~ %ﬁ and OZ’JA% ~ ;’%
for each parabolic type v, see [15, Sec. 5.7.2]. We will also call this equivalence

! ’
i ; ; ; ooy~ OV B ovA
04,. We obtain equivalences of categories QE,.OF7 7~ O} g and eﬁ"OﬁO 5 =
v

OM’,)AR in a similar way.
Conjecture 2.12. There are the following commutative diagrams

v,A Fy, OV,A Fk+1 —v,A
- _— = —— 0 =
B,R %R R

o o,
v,A N v,A
OM,R Fr 0 'R
and B
v,A Eg v,A  Eria v,A
R O*‘)E D O*’ﬁ
M ) 23
" —
oL o -
v,A v,A
O/L,R h Ey, Ou’,R
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2.13 The commutativity in the Grothendieck groups

We have the following commutative diagram of vector spaces

v,A v
T

] I

[0"0p] —— AU,

where the horizontal maps are respectively the isomorphisms of ;[e—modules
and ;[eH modules from Proposition 2.8 (e), the right vertical map is given by
the injection U, — U,y in Section 2.11. Moreover, the right vertical map
is a morphlsm of 5[ -modules where A"U.;1 is viewed as an 5[ -module via
the inclusion sl, C sl introduced in Section 2.11. Thus S/ (O GAR] —
[ T(Aeﬂ),ﬁ

] is a morphism of sl,-modules which intertwines

o [E,] with [E,], [F.] with [F,]ifr € [1,k—1],

° [Ek] with [EkEk+l] — [EkJrlEk], [Fk] with [FkJrle] — [kak+1]7
o [E,] with [E,41], [F,] with [F,1]ifr € [k+1,e—1].

In particular, we see that the diagrams from Conjecture 2.12 commute
at the level of Grothendieck groups. Since there is no good notion of
projective functors in the affine category O, this is not enough to prove
our conjecture.

2.14 Partitions

A partition of an integer n > 0 is a tuple of positive integers (A1, -+, As) such
that Ay > X9 > --- > A and thl A+ = n. Denote by P,, the set of all partitions
of n and set P = HneNP For a partition A = (A1, -+, As) of n, we set |)\\ =n

and £()\) = s. An [-partition of an integer n > 0 is an I-tuple A = (A\!,--- \!) of
partitions of integers ni,---,n; > 0 such that Zt 1Mt =mn. Let Pl be the set
of all [-partitions of n and set P =1, cn Pl

A partition A can be represented by a Young diagram Y (\) and an [-partition
A= (AL -, Al by an [-tuple of Young diagrams Y () = (Y/(A1),---, Y (A})).

Let A € P! be an I-partition. For a box b € Y()) situated in the ith row,
jth column of the rth component we define its residue Res, (b) € I as v, +j —i
mod e and its deformed residue f’{ves,,(b) el as (v, +j—i,r). Set

RGSV Z ORes, (b) € Qe ) ReSV Z aRes (b) € Q+'

bEY'(A) bEY (N)

Now for o € QF and & € Q~ set

PL={AeP Res,(A\) =a},  PL={\eP Res,(\) =a}.
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This notation depends on v. We may write P(lw, and Pé ,, to specify v. We have
decompositions

Pi= P P, P.= e PL.

aeQd |al=d aeQt, | me(@)=a

2.15 The category A

Let P4 C P!, be the subset of the elements A = (AL, -+, A!) such that £(\") < v,
for each r € [1,1]. We can view each A € P} as the weight in P given by

(A, -, )\%(/\1)701/1—6(,\1)’)\?7 .. .,/\?(/\2)’0u2—€(/\2)7 s AL .7)\2(/\1)’0w—€()\l))_

We abbreviate A[N gz = AN

Definition 2.13. Let AR[d] C OY_ g be the Serre subcategory generated by

the modules A[A]r with A € PY, see Section 2.5. Denote by AEA[d] the full
subcategory of A-filtered modules in A% [d].

The restriction of the functor F' to the subcategory A%A[d] yields a functor
F: A%R[d] — A% [d+1]. However, it is not true that E(A%*[d+1]) ¢ A%%[d).
Nevertheless, we can define a functor E: A%%[d + 1] — A%%[d] that is left
adjoint to F:A%2[d] — A%®[d + 1], see [15, Sec. 5.9]. This can be done
in the following way. Let h be the inclusion functor from A%*[d] to OZ’SR.

Abusing the notation, we will use the same symbol for the inclusion functor
from A;A[d +1] to Oi’f‘R. Let h* be the left adjoint functor to h. We define

the functor E for the category AEA as h*FEh.

There is a decomposition A%[d] = @ ,cqt oj=a ARl0], Where A%[a] is the
Serre subcategory of A% [d] generated by the Verma modules A[X g such that
A € P.. The functors E, F admit decompositions

E=E, F=PF

iel, iel,

such that for each o € QF and i € I, we have
Ei(A%R[a)) c A%®la—ai],  Fi(A%%[a]) € A%%a + ail.

Note that the functor E; for the category AEA is the restriction of the functor
E; for the category Oi’ﬁR if i # 0. Thus for i # 0 the pair of functors (E;, F;)
for the category AII'%’A is biadjoint. But we have only a one-side adjunction
(Eo, Fo). Note also that if R is a field, then we can define the functors as above

(with the same adjunction properties) for the category A%, instead of AEA.
Let us write () for the empty I-partition. Note that A[f]p = A% is the

—~—

Verma module of highest weight p, — p. Since p, lies in P[wt.(p,)], we have
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Al0]r € Oy, (). More generally, fix an element a = 3-,.; dia; in Q. Put
p=wte(p,) —a € X.. See [15, Sec. 2.3| for the definition of a highest weight
category over a local ring. The following proposition holds, see [15, Sec. 5.5].

Proposition 2.14. The category A[a] is a full subcategory of O},  that is a
highest weight category. O

For A € P} let P[A|r, V[Algr and T[A]r be the projective, costandard and
the tilting objects in A% [d] with parameter A, see [15, Prop. 2.1].

2.16 The change of level for A

For A1, A2 € P we write Ay > Ag if (A1), = (A2), for each r € [1, N|. Here, ()\;),
is the rth entry of A; for each r. We identify ). with a sublattice of XX via the
map (X defined in Section 2.1.

Lemma 2.15. (a) For each A\, Ay € P we have wtX(A1) — wtX(A2) € Q..
(b) If we also have \; < Aa, then wtX(A\1) — wtX(\2) € Q.

Proof. Tt is enough to assume that we have A\; = Ag — ¢, for some r € [1, N]. In
this case we have wtX(\1) — wtX(\3) = ay, where i € I, is the residue of the
integer (A1), modulo e. O

Let ¢: Qe — Qes1 and ¢: X — Xy be as in Section 2.2 (see also Section
2.3) and T be as in (4). Set @ = ¢(a) € Qey1, B = ¢(1) € Xeq1 and 8 =
wtX  (py) — wtr,  (Y(py)). By Lemma 2.15, we have 8 € Q/, ;.

Proposition 2.16. The equivalence of categories 05 takes the subcategory A% (o]
of Oy, g to the subcategory AZ[B +a] of O;E' o

First, we prove the following lemma.
Lemma 2.17. If A1, Ay € P, then
wtdy (T(A) = w2 (T(A2)) = d(wt (A1) — wtX(A2)).

Proof of Lemma 2.17. 1t is enough to prove the statement in the case where
we have A\; = Ay — ¢, for some r € [1, N]. In this case we have wtX(\;) —
wtX(A2) = ay, where i is the residue of (A1), modulo e. If ¢ # k then we have

wt)  (T(A1)) —wt), (T (A2)) = @y = ¢(a;), where 7’ is as in (3). If i = k then
we have wt, | (T(A1)) — wtl, | (T(X2)) = @ + Qry1 = d(ou). O

Proof of Proposition 2.16. By definition, A%[a] C Oy, R is the Serre subcate-
gory of O}  generated by A% such that the weight A € P” satisfies A > p, and
wtX(p,) — wtX(\) = a. Here > is the order defined before Lemma 2.15.

As 0F(A%) is isomorphic to A%O‘), Lemmfl 2.17 implies that 6% (A%[a]) is
the Serre subcategory of O/KLE generated by A% for A € P¥ such that A > Y(p,)
and wtl,, (T(p,)) — wt,, (V) =@
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Moreover, for each module A% € Og = the weight A has no coordinates that

are congruent to k£ + 1 modulo e + 1. Then A satisfies X > p,, if and only if it
satisfies A > Y(p, ). We have wt, ;(p,) — wt}, ,(T(p,)) = B. Thus 0% (A% [a])

is the Serre subcategory of O;E generated by the modules A% where A runs
over the set of all A € P such that A > p, and wt, | (p,) —wtX,;(A) =a+f.

This implies 0 (A [a]) = AX[a + B]. O
2.17 The category A

From now on, to avoid cumbersome notation we will use the following abbrevi-
ations. First, for each a € QF we set

Arle] = A%ls+al,  Apld = @ Arlel, A% =P Axld).

|a|=d deN

Next, we define the endofunctors Ey, -+, F._1, Fy,+ -+, Fo_1 of AEA (or of A%,
is R is a field) by

Fy=TF, A;A,"',-F‘k:fl:kal AV Fp=Fp1Fy AV
Fr1 = Frgo| gva, - Feer = Fel yua, (10)
R R
E[):EO AE,A,"'7E]€—1:E]€—1 AEA’ Ek:EkEk-‘rl AE’A’
Ek+1:Ek+2|Al§A7"'?E6—1:E€|AL§A'

We precise that here we use the functor E for the category ADE‘ This functor

is not just the naive restriction of the functor Fy for the category O” (e41) T
see Section 2.15.

By definition, we have E;(A%%[a]) € A%% o — ai] and Fi(A%%[o]) C
A?—t,’A[a + ;). Consider the endofunctors B = @, E; and F' = P, Fi
of A%®. We have E(A%2[d]) € A%%[d — 1] and F(A%2[d]) € A%2[d + 1].

Let 0q: A% o] — A%[a] be the equivalence of categories in Proposition 2.16.
Taking the sum over o’s, we get an equivalence 6: A%, — A% and an equivalence
0q: A [d] — A%[d]. Moreover, we have the following commutative diagrams of
Grothendieck groups

AGS) —— (AR [ARY) T (AR
9l 0l 9J 0l (11)
MES) —= (AR AT T AR,

see Section 2.13. B
For A € Py we set A[Ng = A%(p”Jr)‘) € A%[d]. By construction we have

04(A[NR) ~ A[NR. Let Pr[\], Vg[A] and Tg[A] be the projective, the costan-
dard and the tilting object with parameter X in A% [d].
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2.18 The categorical representation in the category O over
the field K

Assume that R is as in Assumption 1. In this section we compare the categori-
cal representation in O” , - with the representation datum in oY R introduced
above. Recall that the categorlcal representation in 0% j Is deﬁned with re-
spect to the set .# in Section 2.10.

First, for each A € P we define the following weight in X If

l Vit

wto()) = Z Z Ene,r)

r=1 \t=vi+~4v,_1+1

For p € Xlir let Og & be the Serre subcategory of O”, |- generated by the

Verma modules A} such that wte(A) = fi. This decomposition is a refinement
of the decomposition O”, ; = @ ,cx, O} x introduced in Section 2.9. More

precisely, we have
hk= D ik
pext me(i)=p
Similarly, there are decompositions
E=@E, F=@F
Jjel jeI
such that F; and F; map Op k to Opia; x and Op_g, i respectively. For

1 € 1,, we set
E’L' = @ E], FIL' = @ F
jel,me(j)=i jelme(j)=i

We have commutative diagrams

v,A v,A
O—e,R O—P R O—e,R O—e ,R
K®R-l K@R.l K®Rol K@R'l
v,A E; v,A v,A F; v,A
Ofe7K Ofe,K’ Ofe,K Ofe,K'

For each element a € Q;I let A% [a] be the Serre subcategory of A% gen-

erated by the Verma modules A[\]x such that A € ’Pé,y. Similarly to Section
2.15, we have

Ej(Aklal) € Akla—ajl,  Fj(Ak[a]) € Akla + a;].

See [15, Sec. 7.4 for details.
Similarly, for j € I ~ I we can define the endofunctor Ej, Fj of the cate-

gories O and A%

—(e+1),K
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The decomposition A% [a] = D, 5)—, A%k[a] yields a decomposition A [o] =
D (a)=a Ak[a]. We also consider the endofunctors Ej, F of A% such that for
j = (a,b) € I we have the following analogue of (10):

B ?(T(a),b);% if me(j) # k,
’ E(T(a),b)E(T(a)+1,b)|ALI/( if me(j) =k,

if m.(j5) = k.

_ E(T(a),b)uk if me(j) # K,
! Fr(a)+1,0F (1 (a),b)

A%k
We have E;(A%[a]) € A%[a — &;] and Fj(A%[a]) € A%[a + &,).

2.19 The modules Td,Ra Td,R

Assume that R is as in Assumption 2.

Consider the module Ty r = F4(A[D]g) in A%[d] and the module Ty p =
FA(A[0]R) in A%[d]. The commutativity of the diagram (11) implies that we
have the following equality of classes [04(Tu.r)] = [Ta,r] in [A%[d]]. The mod-
ules Ty r € A%[d] and Ty r € A%[d] are tilting because A[f]r € A%[0] and
A[0]r € A%[0] are tilting and the functor F preserves tilting modules, see [15,
Lem. 8.33, Lem. 5.16 (b)]. Since a tilting module is characterized by its class in

the Grothendieck group, we deduce that there is an isomorphism of modules
Gd(Td,R) ~ Td,R- (12)

The representation datum in OZ’QR given in Proposition 2.8 yields a ho-
momorphism Hy r(ge) — End(Ty z)°P. Similarly, we have homomorphisms
Hix(C) = End(Tyx)° and Hy x(ge) — End(Ty x)°". The given homomor-
phisms commute with the base changes k ®rp ¢ and K Qg e, see [15, Prop. 8.30].

Now we are going to construct a similar homomorphism

Hd,R(Qe) — End(TdJ{)Op (].3)

A
(e+1),R’
that we are not going to use (12) to define (13). We are going to construct (13)

T(AE_H) & and not the representation datum

using the representation datum in O To avoid confusion, we stress

using the representation datum in O
in OZ’eA’R.

Now, assume that R is as in Assumption 1. A notion of a categorical repre-
sentation of (s, sI2) is given in [9, Def. B.17]. The triple (Oi’éR, 0" 01,0 k)
matchs this definition. (The only difference is that the categories that we con-
sider here do not satisfy the Hom-finiteness condition that is assumed in [9].
However, it is possible to truncate the categories to make them Hom-finite.)

. . v,A v v
Similarly, the triple (O—(e+1),§’ Of(e+1),K’ Of(e+1)7f)

tation of (;[eﬂ,s[g;l). Apply [9, Thm. B.18|, we get a categorical representation

is a categorical represen-
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of (;[675[%) on some triple of subcategories. In particular this yields a homo-
morphism (13).

Similarly, we have homomorphisms Hy x (¢.) — End(T4x)°? and Hy i (ge) —
End(T g, )°P. The given homomorphisms commute with the base changes k@ e
and K Qg e.

Lemma 2.18. The homomorphism Hgx(C.) — End(T4x) factors through a
homomorphism v g3 HY \ (Ce) — End(T'q k).

Proof. The statement follows from the lemma below. O

Only in the lemma below, we assume that k is an arbitrary field and % C k*
is an arbitrary subset.

Lemma 2.19. Let C = @HEXK;«* C, be a categorical representation of g over
k, see Definition 2.6. Let M € C be an object such that there are non-negative
integers t; for i € F such that t; is non-zero only for finitely many i and

e End(M) ~ k,
.EiFi(M)EMGBti, Vie 7.

Then the polynomial [],c5(X1 — i)% is in the kernel of the homomorphism
Hgx(q) = End(F4(M))°P for each d € N.

Proof. Tt is enough to prove the statement for d = 1. By adjointness we have
the following isomorphisms of vector spaces

Hom(F;(M), F;(M)) ~ Hom(E; F;(M), M) ~ Hom(M, M)®" ~ Kk'i.
Each F;(M) is killed by (X; —@)". Then F(M) is killed by [, (X1 —
Now, we get statements similar to Lemma 2.18 for R and K.

Lemma 2.20. The homomorphism Hg i (qe) — End(Tq k) factors through a
homomorphism g g+ HY 1 (qe) — End(T'q,rc).

Proof. This statement also follows from Lemma 2.19. U

Lemma 2.21. The homomorphism Har(qe) — End(Tar) factors through a
homomorphism ¥ p: Hj p(ge) — End(Ta,r).

Proof. This statement follows from Lemma 2.20 and from the commutativity of
the following diagram

Hyr(ge) — End(Tq,r)

! |

Hak(ge) — End(Tqx)°P.
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2.20 The proof of invertibility

We still assume that R is as in Assumption 1. From now on, we assume v, > d
for each r € [1,1]. The goal of this section is to prove that under this assumption
the homomorphism Ed, g in Lemma 2.21 is an isomorphism.

Consider the functors

l}/% V,R(qe))? M HOIn(zd,Rv M)a
U, ALLd] — mod(HiR(qe)), M — Hom(T g4 r, M),

where Hom (T} g, M) and Hom(T 4 g, M) are considered as H} p(ge)-modules
with respect to the homomorphisms 4 r and Ed, R

Let us abbreviate ¥ = ¥}, U = @Z, Tr = Tyq,r and Tr = Td,R. We may
write Wg, U to specify the ring R. For A € P} denote by S[A|g the Specht
module of Hj p(qe). We will use similar notation for k or K instead of R. See
also [15, Sec. 2.4.3].

Let us identify ] ~ .% C K as in Section 2.10. For each j = (j1,- -, jn) € 1%,
the Hecke algebra HJ r-(ge) contains an idempotent e(j) such that for each fi-
nite dimensional H(‘LK(qe)—module M the subspace 1M C M is the general-
ized eigenspace of the commuting operators X7, Xo,---, X,, with eigenvalues
41,72, ,jn respectively. The idempotent e(j) acts on Tx = FY(A[]x) by
projection onto Fj, Fj, , -+ Fj, (All] k).

Now, for each & € Q}f, set e(a) = > ;. 7a €(j) and

Fz = @ F; Fj, -+ Fj,.

J=(1,.da) €TE

= @ Fa

acQf lal=d

We obviously have

The idempotent e(&) acts on T = FA(A[]x) by projection onto F5(A[f)] ).

Lemma 2.22. (a) The homomorphism Ed,K:Hé”K(qe) — End(Tk)°P is an
isomorphism. -
(b) For each \ € P} we have V(AN ) ~ S[\ k.

Proof. First, we prove that the homomorphism @d’ x 1s injective. The algebra
Hy x(ge) is finite dimensional and semisimple. Its center is spanned by the
idempotents e(a) such that & € Qlf and |a] = d.

Since the idempotent e(@) acts on Tk by projection onto Fg(A[l)] ), to prove
the injectivity of ¢, i we need to check that Fz(A[)]x) is nonzero whenever e(a)
is nonzero. Similarly to the argument in Section 2.13, we see that the equivalence
0: A ~ A% yields an isomorphism of Grothendieck groups [A%] =~ [A%] that
commutes with functors F;. Thus the module F5(A[l]x) € A% is nonzero if
and only if the module F5(A[0]x) € AY is nonzero. By [15, Prop. 5.22 (d)],
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the module F5(A[0]x) € A% is nonzero whenever e(a) is nonzero. Thus 1y x
is injective.
Thus it is also surjective because
dimg HY ;¢ (qe) = dimg End(Tx ) = dimg End(T'x )P,

where the first equality holds by [15, Prop. 5.22 (d)] and the second holds by
(12). This implies part (a).

The category A%[d] is semisimple. The discussion above implies that T i
contains each A[N g, A € Pcll as a direct factor. In particular T g is a projective
generator of A% [d]. Thus VU is an equivalence of categories. It must take A[]
to S[A]k because S[A| is the unique simple module in the block mod(Hg r (ge))
of mod(H} r(ge))- O

Lemma 2.23. (a) The homomorphism g x: Hf p(qe) — End(Tgr)°P is an
isomorphism. L
(b) For each X € P} we have W(A[NR) ~ S[\&.

Proof. Consider the endomorphism u of Hy p(g.) obtained from the following
chain of homomorphisms

-1

_ B - .
w: HYf p(ge) Yot phd v (TR)® % Endar(Tr)® " HY p(ge).

The invertibility of @(L r Is equivalent to the invertibility of u. By [15, Prop. 2.23]
to prove that w is an isomorphism it is enough to show that its localization
Ku:HY 3(ge) — HJ g(qe) is an isomorphism and that Ku induces the iden-
tity map on Grothendieck groups [mod(HJ g (qe))] — [mod(Hy x(ge))]. The
bijectivity of Ku follows from Lemma 2.22 (a).

Now we check the condition on the Grothendieck group. We already know
from [15, Prop. 5.22 (c)] and the proof of Lemma 2.22 that Wy and Vg are
equivalences of categories. Thus, by semisimplicity of the categories A% [d],

Al [d] and mod(H x(ge)), we have an isomorphism of functors Vi ~ Wi o 04

because W (M) ~ Wk o 04(M) for each M € A% [d]. This implies that Ku is
the identity on the Grothendieck group. This proves part (a).

Part (b) follows from Lemma 2.22 and the characterization of Specht mod-
ules, see [15, Sec. 2.4.3]. O

Remark 2.24. There is no reason why the automorphism u: H z(ge) — Hj p(qe)
in the proof of Lemma 2.23 should be the identity. Because of this, the functor ¥
has no reason to coincide with ¥o6,. However the automorphism u of H, dr(ge)
induces an autoequivalence u* of mod(Hy z(ge)) such that we have

U=u*oWolb,. (14)
Now, specializing to k, we obtain the following.

Corollary 2.25. (a) The homomorphism Ed,k:H57k(Ce) — End(Ty)°P is an
isomorphism. o
(b) For each A € P} we have Wi (A[Nk) ~ S[Nk. O
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2.21 Rational Cherednik algebras

Let R be a local commutative C-algebra with residue field C. Let W be a
complex reflection group. Denote by S = S(W) and A the set of pseudo-
reflections in W and the set of reflection hyperplanes respectively. Let h be the
reflection representation of W over R. Let ¢:.S — R be a map which is constant
on the W-conjugacy classes.

Denote by (e, e) the canonical pairing between h* and h. For each s € S fix
a generator a, € h* of Im(s _— 1) and a generator & € b of Im(s|h — 1) such
that {(as, ds) = 2.

Definition 2.26. The rational Cherednik algebra H.(W,H)g is the quotient of
the smash product RW x T'(h @ h*) by the relations

[Z‘,ZE/] =0, [yvy/] =0, [yw%'] = (x,y) - ZCS<asay><m7dS>Sﬂ
seS

for each z, 2’ € h*, y,y’ € h. Here T'(e) denotes the tensor algebra.

Denote by O.(W, h) g the category O of H.(W, h)r, see [7, Sec. 3.2] and [15,
Sec. 6.1.1]. Let E be an irreducible representation of CW.

Definition 2.27. A Verma module associated with F is the following module in
Oc(W,b)r

H (W,
AR(E) = Indpi "2 (RE).

Here h C R[h*] acts on RE by zero.

The category O.(W,h) g is a highest weight category over R with standard
modules Agr(E).

We call a subgroup W’ of W parabolic if it is a stabilizer of some point of
b € h. In this case W’ is a complex reflection group with reflection represen-
tation h/f)W,, where h' is the set of W'-stable points in h. Moreover, the
map ¢: S(W) — R restricts to a map ¢: S(W') — R. There are induction and
restriction functors

Olndjy,: Oc(W',5/6" Vg = Oc(W,h)r,  CResit: Oc(W,h) g — Oc(W',5/6" )R,

see [2]. The definitions of these functors depend on b but their isomorphism
classes are independent of the choice of b.
The following lemma holds.

Lemma 2.28. Assume that W' and W' are conjugated parabolic subgroups in
W. Let P € O.(W,b)r be a projective module. Then the following conditions
are equivalent

e the module P is isomorphic to a direct factor of the module OInd}y, (P
for some projective module P' € O.(W',b/6" )R,

e the module P is isomorphic to a direct factor of a module ©Indyy, (P")
for some projective module P" € O.(W", /6" )g.
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Proof. Let w be an element of W such that wWW/w™! = W”. The conjugation
by w yields an isomorphism W’ ~ W”. Hence, the element w takes h"" to hV".
Thus we get an algebra isomorphism H, (W', 5/ Vg ~ H.(W",5/6"" )k and
an equivalence of categories O, (W', 5/6W Vg ~ O(W”,5/h"" ). Moreover,
the conjugation by w yields an automorphism ¢ of H.(W, )z such that for each
xeh*, yeh ueW we have

t(x) =w(z), ty)=w(y), tu) = wuw L
The following diagram of functors is commutative up to equivalence of functors

OW,h)r  ———  O.W,b)g

OInd%,T OInd%,,T
O.W' /8" Vg —— O (W, 5/6" )

To conclude, we need only to prove that the pull-back ¢* induces the identity
map on the Grothendieck group of O.(W, h)r (and thus it maps each projective
module to an isomorphic one). This is true because t* maps each Verma module
A(E) g to an isomorphic one because the representation E of W does not change

the isomorphism class when we twist the W-action by an inner automorphism.
O

2.22 Cyclotomic rational Cherednik algebras

From now on, we assume that R = C or that R is as in Assumption 1 with
residue field k = C.

Let I' ~ Z/IZ be the group of complex [th roots of unity and set I'y =
&y x I'". For v € T, r € [1,1] denote by ~, the element of T'? having v at
the position » and 1 at other positions. Let s,; be the transposition in &4
exchanging r and t. For v € T, r,t € [1,1] set slt = s,,«,t’y,.’yt_l € I'y. From
now on we suppose that the group W is I'y and h = R? is the obvious reflection
representation of I'y. Assume also that h, hq,---, h;_1 are some elements of R
and set h_y; = h;_1. Let us chose the parameter c in the following way

c(s)y) = —h for each r,t € [1,¢], r £ ¢, v €T,

-1
1
c(yr) = ~5 v P(hy — hp_1) for each r € [1,1], y €T, v # 1.
p=0
Let v1,---, 1 be as above. We set

h=—1/k, hy=—pt1+7p41)/6—p/l, pelll-1]

Let us abbreviate 0%[d] = O.(Tq, R?) g. Consider the KZ-functor KZ%: O%[d] —
mod(H p(ge)) introduced in [15, Sec. 6]. Denote by *O%[d] the category defined
in the same way as O%[d] with replacement of (v1,---,v;) by (=, -+, —11) and
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(T1,+++,7m) by (=7,+++,—71). Similarly, denote by *H} r(g.) the affine Hecke
algebra defined in the same way as Hy r(ge) with the replacement of parameters
as above. There is also a KZ-functor *KZy: *Ogld] — mod(*Hj p(qe)).

The simple CI'y-modules are labeled by the set P}. We write E()) for the
simple module corresponding to A. Set A[Ar = A(E(N))g. Similarly, write
P[Ar and T[A]g for the projective and tilting object in O%[d] with index A.

The category *O%[d] is the Ringel dual of the category O%[d], see [15,
Sec. 6.2.4]. In particular we have an equivalence between the categories of stan-
dardly filtered objects Z:*O%[d]> — (O%[d]*)°P. Let proj(R) be the category
of projective finitely generated R-modules. There is an algebra isomorphism

e Hy p(ge) = CHg p(ge)™,  Tr— =T Xomr X7
see [15, Sec. 6.2.4]. Tt induces an equivalence

Ry = 1" (¢"):mod("H p(ge)) Nproj(R) — (mod(Hy r(ge)) N proj(R))°,
where oY is the dual as an R-module. By [15, (6.3)], the following diagram of
functors is commutative

O[> 2 (O%[d)™)or

*KZ’;l Kzél (15)
mod(*HY z(q.)) N proj(R) —2 (mod(HY 4(qe)) N proj(R))°".

Lemma 2.29. Assume that d = 1. For each l-partition A\ of 1 we have an
isomorphism of HY r(gc)-modules KZY(P[Ar) ~ U (T[NR).

Proof. The proof is similar to the proof of [15, Prop. 6.7]. The commutativity
of the diagram (15) implies

KZ{ (PN r) = KZ{(Z(T[Nr)) = Zu ("KZ (T[N r))-

To conclude, we just need to compare the highest weight covers Zp o *KZY
and ‘lflf of HY (qge) using Lemma 2.22 (b) and [15, Prop. 2.21].
O

Let O:; r be the affine parabolic category O associated with the parabolic
type consisting of the single block of size v1 + - - - + 1. We define the categories
Atld], AL[d] and Of[d] similarly. In this case we will also write the upper
index + in the notation of modules and functors (for example A*[)|g, T(;f R

KZ7T, ete.) Let also H;:R(qe) be the cyclotomic Hecke algebra with [ = 1. It is
isomorphic to the Hecke algebra of &,.

We can prove the following result.
+ (T

Lemma 2.30. For each A\ € P} we have KZ3 (PT[\g) ~ VU, +[

AlR)- O

30



Proof. Similarly to the proof of Lemma 2.29 we compare the highest weight
covers Zpo*KZ3 and @; of Hf 1(ge) using Lemma 2.22 (b) and [15, Prop. 2.21].
/ O

Denote by Indg’i the induction functor with respect to the inclusion H}} »(ge) C
H} r(ge). We will also need the following lemma.

Lemma 2.31. Assume v, > 2 for each r € [1,1]. Assume also that e > 2. For
each X € Py there exists a tilting module T\ p € A%[2] such that V5 (T r) ~

md2" (Ty (T [\ g)).

Proof. Set AT = (2), A~ = (1,1). We have (. # —1 because e > 2. In this case
the algebra H; «(Ce) is semisimple. The category A;f[2] is also semisimple. This
implies

=~ iy = =y —

Tor= AN r @ AN |r =T\ g @ T\ g

By definition, we have Uy (T z) ~ Hy p(q.) and Uy(T,r) ~ HY p(g.). This
implies

—v = v =t =t
Vs (T2,R) ~ Ind§:+(\112 (T3 R))-

By the proof of [15, Prop. 6.8], the functor ¥4 takes indecomposable factors
of Ty r to indecomposable modules. Thus, by (14), the functor @; takes in-
decomposable factors of TQ, gr to indecomposable modules. Thus there is a de-
composition T's g = T,\+7R @TA_)R such that T)\+7R, TA_)R satisfy the required
properties.

O

2.23 Proof of Theorem 1.2

In this section we finally give a proof of our main result.
A priori there is no reason to have the following isomorphism of functors
U ~ V. o6,. However, we can modify the equivalence 6, to make this true.
For dy < dy we have an inclusion Hy p(qe) C Hy, p(ge). Let Indgf rmod(Hy, g(ge)) —
mod(H}j, r(ge)) be the induction with respect to this inclusion. The following
lemma can be proved similarly to [15, Lem. 5.41].

Lemma 2.32. Assume that v, > d for each r € [1,1]. Then the following
diagram of functors is commutative.

A [d] s Ad+1]

a;l agﬂl

Ind4t!
mod(H}j p(ge)) —— mod(Hj, | r(qe))
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For a partition A\ denote by A\* the transposed partition. For an [-partition
A= (A1, -, A) set A* = ((A)*, -+, (A1)*). There is an algebra isomorphism

IM: HY p(qe) = *Hy p(qe), Tr— —qT7 ", X, = X7,

see [15, Sec. 6.2.4]. Let IM":mod(*Hy g(ge)) — mod(H} (ge)) be the induced
equivalence of categories. We have

IM*(S[X\*|r) = S[A&r- (16)
The following proposition is proved in [15, Thm. 6.9].

Proposition 2.33. Assume that v, > d for each r € [1,1]. Then there is an
equivalence of categories yq: *Og[d] ~ A% [d] taking A[N*|g to A[NRr. Moreover,
we have the following isomorphism of functors WY o vq ~ IM* o *KZj.

Now, we prove a similar statement for A% [d]. For each reflection hyperplane
H of the complex reflection group I'y let Wy C I'y be the pointwise stabilizer
of H.

Proposition 2.34. Assume that v, > d for each r € [1,1] and e > 2. There
is an equivalence of categories Y, *OFpld] ~ A%[d], taking AN |r to A[NR.
Moreover, we have the following isomorphism of functors EZ o7y, ~ IM* o *KZy.

Proof. The proof is similar to the proof of [15, Thm. 6.9]. We set C = *O%][d],
C' = A%[d]. Consider the following functors

Y:C — mod(HY g(ge)), Y = IM* o *KZY,
Y':C' = mod(HY p(qr), Y'=1T,.

By [15, Prop. 2.20] it is enough to check the following four conditions.

(1) We have Y(A[N|r) ~ Y/'(A[Ar) and the bijection A[N]g — A[A]r be-
tween the sets of standard objects in C and C’ respects the highest weight
orders.

(2) The functor Y is fully faithful on C» and CV.
(3) The functor Y is fully faithful on C'* and C'V.

(4) For each reflection hyperplane H of T'y and each projective module P €
O(Wg )R we have .
KZ5(°Indyg P) € F'(C"™).

It is explained in the proof of [15, Thm. 6.9] that condition (4) announced
here implies the fourth condition in [15, Prop. 2.20].

We have Y (A[N]g) ~ Y'(A[NRg) by Lemma 2.23 (b), [15, Lem. 6.6] and (16).
The composition of the equivalence 64: A%[d] — A%[d] with the equivalence
va: *O%[d] ~ A%[d] yields an equivalence of highest weight categories C ~ C’
that takes A[A*]r to A[A]g. This implies (1).
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Condition (2) is already checked in [15, Sec. 6.3.2].

The functor ¥ is fully faithful on AEA[d] and A3V [d] by [15, Thm. 5.37 (c)].
Thus the functor W is fully faithful on A% [d] and A% " [d] by (14). This implies
(3)-

Let us check condition (4). There are two possibilities for the hyperplane H.

e The hyperplane is Ker(y, — 1) for r € [1,d]. By Lemma 2.28, we can
assume that H = Ker(y; — 1). By Lemma 2.29 there exists a tilting

module T € A%[1] such that KZ¥(P) ~ ¥, (T). We get

KZ}(®Indy, P) ~ Ind{(KZ{(P)) ~ Ind{ (¥} (T)) ~ U (F*(T)).

Here the first isomorphism follows from [15, (6.1)], the third isomorphism
follows from Lemma 2.32.

e The hyperplane is Ker(s], — 1) for r,t € [1,d], v € . By Lemma 2.28, we
can assume that H = Ker(s; 2). By Lemma 2.30 there is a tilting module

T" € AL[2] such that Kz (P) ~ Ty (T")
tilting module T' € A%[2] such that Indgji(@; (T+)) ~ Uy (T). Thus we
get IndgziKZ;(P) ~ W (T).

. By Lemma 2.31 there is a

We obtain
v d,v d,v 5V v —2 /7
KZ(®Indy¢, P) ~ Indy'’; (KZ3 (P)) ~ Indy, (U5 (T)) ~ U4(F*(T)).

Here the first isomorphism follows from [15, (6.1)], the third isomorphism follows
from Lemma 2.32. O

Now, composing the equivalences of categories in Propositions 2.33, 2.34 we
obtain the following result.

Corollary 2.35. Assume that v, > d for each r € [1,1] and e > 2. There is
an equivalence of categories 0/: A¥,[d] ~ A% [d] such that we have the following
isomorphism of functors @Z 0, ~Wy. O
For each a € Q7 such that |a] = d let 0/,: A% [a] ~ A%[a] be the restriction
of 0.
From now on we work over the field C. The following lemma can be proved
by the method used in [15, Sec. 5.9].

Lemma 2.36. Assume that v, > d for each r € [1,1]. The following diagrams
are commutative modulo an isomorphism of functors.

Avld —E  AY[d+1]

\I/Zl \IJL’;_Hl

d+1
Indj

mod(Hj((e)) —— mod(Hy,,((e))
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Al —E Avd+1]

;| T |

d+1

mod(H4(C.)) —— mod(HY,,((.))

Now, Theorem 1.2 follows from the following one.

Theorem 2.37. Assume that v, > d for each r € [1,1] and e > 2. Then the
following diagram is commutative

Avld) —2 AY[d+ 1]

al i |
AV[d) —2s AV[d+1].

In particular, for each o € QF such that |a| = d, the following diagram is
commutative

A¥[a] SN A o + ]

G;T 9</1+akT
A’la] —2 5 Ao+ ay).

Proof. The result follows from Corollary 2.35, Lemma 2.36 and an argument
similar to [17, Lem. 2.4]. O

3 Graded lifts of the functors

3.1 Graded categories

For any noetherian ring A, let mod(A) be the category of finitely generated left
A-modules. For any noetherian Z-graded ring A = @,,.;, An, let grmod(A) be
the category of Z-graded finitely generated left A-modules. The morphisms in
grmod(A) are the morphisms which are homogeneous of degree zero. For each
M € grmod(A) and each r € Z denote by M, the homogeneous component of
degree r in M. For n € Z let M (n) be the nth shift of grading on M, i.e., we
have (M {(n)), = M,_,. For each Z-graded finite dimensional C-vector space V,
let dim, V € NJq, ¢ '] be its graded dimension, i.e., dim, V = > orez(dimVi)g"
The following lemma is proved in [3, Lem. 2.5.3].

Lemma 3.1. Assume that M is an indecomposable A-module of finite length.

Then, if M admits a graded lift, this lift is unique up to grading shift and
isomorphism. ]
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Definition 3.2. A Z-category (or a graded category) is an additive category c
with a fixed auto-equivalence 7" C — C. We call T the shift functor. For each
X €C and n € Z, we set X(n) =T"(X). A functor of Z-categories is a functor
commuting with the shift functor.

For a graded noetherian ring A the category grmod(A) is a Z-category where
T is the shift of grading, i.e., for M = ®,ezM,, € grmod(A4), k € Z, we have
T(M)y = My_1.

Definition 3.3. Let C be an abelian category. We say that an abelian Z-category
C is a graded version of C if there exists a functor F¢:C — C and a graded
noetherian ring A such that we have the following commutative diagram, where
the horizontal arrows are equivalences of categories and the top horizontal arrow
is a functor of Z-categories

C —— grmod(A)
Fe l forgetl
C

—— mod(A4).

In the setup of Definition 3.3, we say that an object XeCisa graded
lift of an object X € C if we have F¢(X) ~ X. For objects X,Y € C with
fixed graded lifts X,Y the Z-module Hom¢ (X,Y) admits a Z-grading given by

Home (X,Y), = Homz(X(n),Y). In the sequel we will often denote the object

X and its graded lift X by the same symbol.

Definition 3.4. For two abelian categories C1, Cy with graded versions C~1, Cs
we say that the functor of Z-categories ®:C; — C is a graded lift of a functor
<I>:C1 —>CQ ifFCz od = (I)OFCI.

3.2 The truncated category O

We can extend the Bruhgt\ order < on W to an order < on W in the following
way. For each wy,ws € W _we have wy < wy if and only if there exists n € Z
such that/g)lwn,wgﬂ'” € W and we have win™ < wam™ in W. Note that the
order on W is defined in such a way that for w;,ws € W we can have w; < wy
only if Ww; = Wws.

Fix p = (p1,--,pte) € Xc[N]. Let W, be the stabilizer of the weight
1, € Pin W (or equivalently in W) Let J, (resp. J, +) be the set of shortest

(resp. longest) representatives of the cosets W/ W, in W. For cach v € W put
vJ, ={w € J,; w <v}and "J, 4 = {w € J,4; w < v}. They are finite
posets.

Assume that R is a local deformation ring. Let YO, r be the Serre sub-

category of O, r generated by the modules Az(l") with w € “J,. This is a
highest weight category, see [18, Lem. 3.7]. Note that the definition of the cat-
egory YO, g does not change if we replace v by the minimal length element in
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vW, (i.e., by an element of .J,). However, in some situations it will be more
convenient to assume that v is maximal in vW,, (and not minimal).
Recall the decomposition

Our = @ Orn(1,),R

neZ

in (9). Note that the definition of the order on 1% implies that the category
YOy,r lies in Ogn(1,) g, Where n € Z is such that v € Wr".

3.3 Linkage

We still consider the non-parabolic category O. In particular we have [ = N.
__ Let k be a deformation ring that is a field. Recall that the affine Weyl group
W is generated by reflections s, where « is a real affine root. Now we consider
the following equivalence relation ~yx on P. We define it as the equivalence
relation generated by A1 ~k A2 when A; + p = so (A2 + p) for some real affine
root a. The definition of ~y depends on k because the definitions of X and 0
depend on the elements 7., k € k.

Now, let R be a deformation ring that is a local ring with residue field k.
Then for A\, Ay € P we write Ay ~r Ao if and only if we have A\; ~y As.
Note that the definition of the equivalence relation above is motivated by [4,
Thm. 3.2].

In the particular case when R is a local deformation ring, the equivalence
relation ~ g coincides with the equivalence relation ~¢ because we have 7. = 0
and k = e in the residue field of R. The relation ~¢ can be easily described in
terms of the e-action of W on P, introduced in Section 2.6. We have A\; ~¢ A2
if and only the elements A\; 4+ p and Xy + p of P(¢) are in the same W-orbit.

Remark 3.5. Let k be as above.

(a) Assume that for each r,t € [1,1] such that r # ¢ we have 7, — 7+ € Z. In
this case the equivalence relation ~y is the equality.

(b) Assume that we have 7. — 7o € Z for a unique couple (r,t) as above.
In this case each equivalence class with respect to ~y contains at most two
elements.

(c) Let R be as local deformation ring in general position with the field of
fractions K. By (a), the equivalence relation ~ is just the equality. Now, let p
be a prime ideal of height 1 in R. In this case, each equivalence class with respect
to ~pg, contains at most two elements (this follows from [15, Prop. 5.22 (a)],
(a) and (b)).

The relation ~ yields a decomposition of the category O_. g in a direct sum
of subcategories, see [4, Prop. 2.8]. More precisely, let A be an ~ g-equivalence
class in P. Let Oy gr be the Serre subcategory of O_. r generated by A(\) for
A € A. Then we have

Our= EP Ounr (17)

ACPlul—p
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For example, if R is a local deformation ring, then this decomposition coincides
with (9). The following lemma explains what happens after the base change,
see [4, Lem. 2.9, Cor. 2.10].

Lemma 3.6. Let R and T be deformation rings that are local and let R — T
be a deformation ring homomorphism.

(a) The equivalence relation ~r is finer than the relation ~pg.

(b) Let A be an equivalence class with respect to ~r. Then T @r Op R is

equal to @A, Oar.1, where the sum is taken by all ~p-equivalence classes A in
A. ]

Definition 3.7. We say that the category Op g is generic if A contains a unique
element and subgeneric if it contains exactly two elements.

More details about the structure of generic and subgeneric categories can be
found in [5, Sec. 3.1].

3.4 Centers

We assume that R is a deformation ring that is a local ring with the residue field
k and the field of fractions K. Recall that we have | = N because we consider
the non-parabolic category O.

Let A be an equivalence class in P with respect to ~r. Consider the category
O r asin (17). There is a partial order < on A such that A; < A2 when Ao — g
is a sum of simple roots. There exists an element A € A such that A is minimal
in A with respect to this order. Assume that A is finite.

Definition 3.8. The antidominant projective module in Oa r is the projective
cover in Oy g of the simple module Lr(A), where A is the minimal element in
A. (The existence of the protective cover as above is explained in [4, Thm. 2.7].)

This notion has no sense if A is infinite. However we can consider the trun-
cated version. Fix v € W. We have a truncation of the decomposition (17):

"Oun =P Ox g, (18)
A

where we put "Oa g = OA,r N O, R-

By [4, Thm. 2.7] each simple module in YO, r has a projective cover. As
above, we denote by A the element of A that is minimal in A with respect to
the order <.

Definition 3.9. The antidominant projective module in "Op g is the projective
cover in YOy g of the simple module L ().

From now on we assume that R is a local deformation ring in general position,
see Section 2.4. Let k and K be the residue field and the field of fractions of R
respectively. We set hg =7 — 7 —k+e and h, = 7,41 — 7, for r € [1,1—1]. We
have h, # 0 for each r € [0,] — 1] because the ring is assumed to be in general
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position. Under the assumption on R, the decomposition (18) contains only one
term. Let “PJ be the antidominant projective module in YOy, g, i.e., " Pj is the
projective cover of L}; (1“), where n is such that we have 7" < v.
Lemma 3.10. (a) The module "Pl has a A-filtration such that each Verma
module in the category "O, r appears exactly ones as a subquotient in this A-
filtration.

(b) For each base change R' ®p o, where R’ is a deformation ring that is
local, the module R' @ g " PY, splits into a direct sum of anti-dominant projective
modules in the blocks of the category O R

Proof. The first part in (a) holds by [5, Thm. 2 (2)] and the second part in (a)
holds by the proof of [5, Lem. 4]. Finally, (b) follows from [5, Rem. 5]. O

Recall that for an abelian category A, the center Z(A) of the category A is
the ring of endomorphisms of the identity functor Id: A — A.

We will need the following lemma.

Lemma 3.11. Let A be a ring. Then the center Z(mod(A)) of the category
mod(A) is isomorphic to the center Z(A) of the ring A.

Proof. There is an obvious injective homomorphism Z(A4) — Z(mod(A)). We
need only to check that it is also surjective.

Let z be an element of the center of mod(A). By definition, z consists of an
endomorphism zys of M for each M € mod(A) such that these endomorphisms
commute with all morphisms between the modules in mod(A). Then z4 is an
endomorphism of the A-module A that commutes with each other endomor-
phism of the A-module A. Thus z4 is a multiplication by an element a in the
center of A.

Now we claim that for each module M € mod(A) the endomorphism z,
is the multiplication by a. Fix m € M. Let ¢: A — M be the morphism of
A-modules sending 1 to m. We have ¢ o z4 = zp; 0 ¢. Then

zu(m) =z 0 ¢(1) = ¢ 0 24(1) = ¢(a) = am.
This completes the proof. O
Let Z, r (resp. “Z, r) be the center of the category O, r (resp. O, Rr).

Proposition 3.12. The evaluation homomorphism *Z, r — End("Pk) is an
isomorphism. [

Proof. The statement is proved in [5, Lem. 5|. There are however some subtle
points that we explain.

Firstly, the statement of [5, Lem. 5] announces the result for the non-
truncated category @. But in fact, the main point of the proof of [5, Lem. 5] is
to show the statement first in the truncated case.
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Secondly, [5, Lem. 5] assumes that the deformation ring R is the localization
of the symmetric algebra S (E) at the maximal ideal generated by i)\ Let us sketch
the argument of [5, Lem. 5] to show that it works well for our assumption on R.

Denote by evg:"Z, r — End("Pj) the homomorphism in the statement.
Let I(R) be the set of prime ideals of height 1 in R. We claim that we have

vZ;L,R: ﬂ vZ,u,Rpa (19)
pel(R)

where the intersection is taken inside of *Z, k. Really, let YA, r be the en-
domorphism algebra of the minimal projective generator of O, r. We have
an equivalence of categories YO, r ~ mod("A4,, r). By Lemma 3.11 we have an
algebra isomorphism *Z, r ~ Z(" A, r). The same is true if we replace R by R,
or K. By [4, Prop. 2.4] we have YA, r, ~ Ry, ®r "A, R, "Aux ~ K Qr Ay R.
The algebra VA, g is free over R as an endomorphism algebra of a projective
module in YO, r. Thus we have YA, r = ﬂpeI(R) YA, R,, Where the intersec-
tion is taken in YA, k. If we intersect each term in the previous formula with
VZuk =Z("Au k), we get (19).
Similarly, we have

End("Pf) = () End(R, ®r"Pl)
pel(R)

inside of End(K ®pg "P').
To conclude, we only need to show that the evaluation homomorphisms

evr,: ' Zyur, — End(R, ®r vPY), evi: ' Zy k — End(K @g " Pl,)

are isomorphisms for each p € I(R) and that the following diagram is commu-

tative
End(R, ®r ”P’;%) —— End(K ®g ”P’I‘?)

evaT E’UKT

" 2R, — YK

The commutativity of the diagram is obvious. Since R is in general position,
the category YO, i is semisimple, see Remark 3.5. Moreover, for each p € I(R),
the category “O,, r, is a direct sum of blocks with at most two Verma modules in
each, see Remark 3.5. Similarly, by Lemma 3.10 (b) the localisation R, ® " Pl
of the antidominant projective module splits into a direct sum of antidominant
projective modules. Now, the invertibility of evg, and evg follows from [5,
Lem. 2].

O

We will need the following lemma.
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Lemma 3.13. Assume that C1 is an abelian category and Co is an abelian
subcategory of C1. Let i:Co — C1 be the inclusion functor. For each object
M € Cy we assume that M has a maximal quotient that is in Co and we denote
this quotient by 7(M). Then we have the following.

(a) The functor T:Cy — Cy is left adjoint to i.

(b) Let L be a simple object in Co. Assume that L has a projective cover P
in Cy. Then T(P) is a projective cover of L in Cs.

Proof. Take M € C; and N € Cy. For each homomorphism f: M — N we have
M/Kerf ~TImf € Cy. Thus Kerf must contain the kernel of M — 7(M). This
implies that each homomorphism f: M — N factors through 7(M). This proves
(a).

Now, we prove (b). We have a projective cover p: P — L in C;. First, we
clam that the object 7(P) is projective in Cy. Really, by (a) the functors from Cy
to the category of Z-modules Home, (7(P), ¢) and Homg, (P, e) are isomorphic.
Thus the first of them should be exact because the second one is exact by
the projectivity of P. This shows that 7(P) is projective in Co. Denote by
P the surjection p: 7(P) — L induced by p: P — L. Let t be the surjection
t: P — 7(P). We have p = pot. Now we must prove that each proper submodule
K C 7(P) is in kerp. Really, if this is not true for some K, then p(t~!(K))
is nonzero. Then we have p(t~1(K)) = L because the module L is simple.
Then by the definition of a projective cover we must have t~!(K) = P. This is
impossible because t is surjective and K is a proper submodule of 7(P). O

Remark 3.14. Let A be a graded noetherian ring. Let I C A be a homogeneous
ideal. Put C; = mod(A), C; = mod(A/I), C; = grmod(A), C2 = grmod(A/I).
There is an_obvious_inclusion of categories i:C; — C; and it has an obvious
graded lift i:Cs — C;. The left adjoint functor 7 to i is defined by (M) =
M/IM and the left adjoint functor 7 to i is also defined by 7(M) = M/IM.
This implies that the functor 7 is a graded lift of 7.

Recall that we denote by sg, -+, sy—_1 the simple reflections in W.

Proposition 3.15. We have an isomorphism

Zyr > (z0) € H R; zy = 25,4 mod h, Yr € [0,N —1J,w € J, N spJ,

weJ,

which maps an element z € Z,, r to the tuple (Zw)weju such that z acts on the

Verma module A%(l“) by 2y -

Proof. The statement is proved in [4, Thm. 3.6] in the case where R is the

localization of the symmetric algebra S(h) at the maximal ideal generated by

E. Similarly to Proposition 3.12, the same proof works under our assumption
on the ring R. O
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Proposition 3.15 has the following truncated version that can be proved in
the same way using the approach of localizations at the prime ideals of height
1. (See, for example, the proof of Proposition 3.12). For each such localization
the result becomes clear by [4, Cor. 3.5] and Remark 3.5.

Proposition 3.16. We have an isomorphism

YZur >~ (2w) € H R; zy = 25, mod h, Vr € [0, N — 1], w € *J, N s,."J,

wevJ,
(20)
which maps an element z € YZ,, r to the tuple (Zw)wevju such that z acts on
the Verma module Az(l“) by 2y - O

For each v € W, set UJ:{wEW; w < v} and

VZp~ {(zw)e H R; zy = 25,4 mod h, Vr € [O,N—leevJﬂser}.

wevJ

If v is in J,, 4, then the group W, acts on "Zg by w(z) = 2z’ where 2/, = 2,1
for each x € YJ. Note that the algebra v JI%V“ of W,-invariant elements in "Zg
is obviously isomorphic to the right hand side in (20). Thus Proposition 3.16
identifies the center *Z, g of YO, r with ”Z;V“.

3.5 The action on standard and projetive modules

As above, we fix k € [0,e — 1] and set p/ = p — ag. From now on, we assume
that R is as in Assumption 1 with residue field k = C.

From now on we also always assume that we have W, C W,,. This happens
if and only if we have pp = 1. In this case we have J,, C J, and J, 4y C
Jyu,+. From now on we always assume that the element v is in J,/ 4 (thus v
is also in J, +). We have an inclusion of algebras "Z,, p C YZ, r because
CZy o~ Zn and Z, p ~ ZN". Let Res:mod(*Z, r) — mod(*Z, r) and
Ind: mod(*Z,/ r) = mod(YZ, r) be the restriction and the induction functors.
We may write Resfj/ and Indﬁ, to specify the parameters.

It is easy to see on Verma modules using two lemmas below that the functors
Ej and Fj, restrict to functors of truncated categories

LvN)A v A v A v A
Fk. O;L,R—> OH/7R’ Ek. OH/7R_> O;L,R'

Lemma 3.17. For each w € W, we have Fk(Alfé(l"')) ~ A;(l“l).

Proof. Since pj, =1, the weight w(1,) € P has a unique coordinate containing
an element congruent to k modulo e. Let r € [1, N] be the position number of

this coordinate. By Proposition 2.8 (¢), we have [F,(A%(#))] = [antter,

41



The equality of classes in the Grothendieck group implies that we have an iso-

morphism of modules Fk(A%(l“)) o~ Aﬁ(l“)—’_er. Finally, since w(1,) + ¢, =

w(ly), we get F (ALY ~ AU -

Lemma 3.18. For cachw € W, we have [Ek(A;;(l‘“))] = ew.w [A%z(l“)].
I3 K

Proof. By Proposition 2.8 (e), we have

[BL(AR )] = 3oIAR" ), (21)

T

where the sum in taken by all indices r € [1, N] such that the rth coordinate of
w(1,) is congruent to k + 1 modulo e. For each such r we have w(l,/) — € =
wz(1,,) for a unique element z € W,/ /W,. Moreover, the obtained map r — z
is a bijection from the set of possible indices r to W,,/W,. Thus (21) can be

rewritten as (1.) )
w ’ wz(l,
[Ek(AR " )] = E [AR ]
ZGWH//W“

Lemma 3.19. We have By ("PL ) ~ v Pl

Proof. By Lemma 3.10 (a), the class ["Pg] of "Pf in the Grothendieck group
of ”OﬁR is the sum of all classes of Verma modules of the category ”Oﬁ’R
and similarly for [”Pg]. Taking the sum in the equality in Lemma 3.18 over
all w € "J,, we get [Ek(”Pgl)] = ["Pg]. Finally, this yields an isomorphism
Ek(“P’}{) ~ VP, because the modules Ek(”Pg) and v P} are projective. O

Fix an isomorphism Ek(”P’}”{/) ~ YP% as above. Then by functoriality it
yields an algebra homomorphism End(”Pf ) — End("PF).
Lemma 3.20. The following diagram of algebra homomorphisms is commuta-

tive ,
End(*P!) —— End("P!)

I I

UZ;L’,R —_— UZ;L,R7

where the top horizontal map is as above, the bottom horizontal map is the
inclusion and the vertical maps are the isomorphisms from Proposition 3.12.
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Proof. Note that each element in End("Pjg) is induced by the center “Z, g.
In partilucar, each endomorphism of ”Pp preserves each submodule of “Pj.
Moreover, by Lemma 3.10 (a), each Verma module in YO, r is isomorphic to a
subquotient of Y Ph. Thus, by Proposition 3.12 and Proposition 3.16, an element
of End("Py) is determined by its action on the subquotients of a A-filtration of
VP,

Fix an element z = (2,) in “Z,/ r, see Proposition 3.16. Fix also a A-
filtration of UPI’%/. The element z acts on “Pgl in such a way that it preserves
each component of the A-filtration and the induced action on the subquotient
Aq};(l“/) of "Pg/ is the multiplication by z,.

For each w € W, the module Ek(A};(l“l)) is A-filtered. The subquotients
in this A-filtration can be described by Lemma 3.18. Since the functor Ej is
exact, the A-filtration of ”Pg/ induces a A-filtration of " P, ~ E, (’”Pg/). Thus
the image of z by

Zyr — End("PY) = End("PL)
acts on the subquotients of the A-filtration of VPj in the following way: it acts
on the subquotient A%(l“) of YP{ by the multiplication by z,. On the other
hand, the image of z by

’UZ#/’R — ’UZH,R — El’ld(vpg)

acts on the subquotients in the same way. This proves the statement because
an element of End(Pj) is determined by its action on the subquotients of a
A-filtration of ¥ Pj.

O

3.6 The functor V
Now, we assume that v is an arbitrary elements of W. We have a functor
Vur:"Opr — mod(*Z, r), M — Hom("Pg,M).

Set "Z, = C®g "Zyr and Z = C ®g "Zgr. By [4, Prop. 2.6] we have
C ®g "Ply = "P". Next, [4, Prop. 2.7| yields an algebra isomorphism "Z,, =~
End(YP,). Now, consider the functor

Vu:"Oy = mod("Z,), M — Hom("P*, M).

A Koszul grading on the category O, is constructed in [18]. Let us denote

by Uéu the graded version of this category.
The functor V above has following properties.

Proposition 3.21. (a) The functor V, g is fully faithful on UO;ﬁR'

(b) The functor V,, is fully faithful on projective objects in O,,.

(¢) The functor V,, admits a graded lift V,,:*O,, — grmod("Z,,).
Proof. Part (a) is [5, Prop. 2] (1). Part (b) is [18, Prop. 4.50] (b). Part (c) is
given in the proof of [18, Lem. 5.10]. O
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3.7 The cohomology of Schubert varieties

All cohomology groups in this section have coefficients in C.

Set G = GLy. Let B C G(C((t))) be the standard Borel subgroup. Let
P, C G(C((¢))) be the parabolic subgroup with Lie algebra p,. Let X, be the
partial affine flag ind-scheme G(C((t)))/P,. The affine Bruhat cells in X, are
indexed by J,. For w € J, we denote by X, ,, (resp. YWU) the corresponding
finite dimensional affine Bruhat cell (resp. Schubert variety). Note that we have
X, =~ CHU®). The following statement is proved in [18, Prop. 4.43 (a)].

Lemma 3.22. Assumewv € JHHWN/. There is an isomorphism of graded algebras

between *Z,, and the cohomology H*(X ,, ). O

Now we are going to extend the notions X, ,, and YWU to an arbitrary
w € J, in order to get an extended version of the previous lemma.

Let w be the cyclic shift the of Dynkin diagram of type AS\})_ ; that takes the
root «; to the root a;_q for i € Z/NZ. It yields an automorphism m: G — G.
Then for each n € Z we have a parabolic subgroup 7"(P,) C G(C((t))). Recall
that the symbol 7 also denotes an element of W\, see Section 2.6. Let X be
the partial affine flag ind-scheme defined in the same way as X, with respect
to the parabolic subgroup n™(P,) C G(C((t))) instead of P,. In particular, we
have X, = X). Let us use the abbreviation =" (W) for the subgroup 7" W, x~"

of W. Note that the group 7n"(W,) is the Weyl group of the Levi of 7" (FP,).
The Bruhat cells and the Schubert varieties in X} are indexes by the shortest

representatives of the cosets in W/WH(W#) For such a representative w let
X} (resp. Yzw) be the Bruhat cell (resp. Schubert variety) in X};.

Assume that v € J,. Then v has a unique decomposition of the form v =
wr", such that w is minimal in wa™(W,). Then we set X, , = X, and

Xy = Y;w. Note that for v € J,, we have X, , ~ C*). We get the following
generalization of the lemma above.

Lemma 3.23. Assume v € J,. There is an isomorphism of graded algebras

between *Z,, and the cohomology H*(X ,, »).

Proof. Consider the decomposition v = wn™ as above. By definition, the trun-
cated category O, is a Serre subcategory of Orn(q ). It is generated by modules

L”n(lﬂ), where € W is such that x < w. Note also that the stabilizer of the
weight 7 (1,) in W is 7™(W,,). Then, by [18, Prop. 4.43 (a)|, we have an iso-

morphism of graded algebras 7, = H*(X Zw) On the other hand the variety
X0 is defined as X, ,,. O

As above, we fix k € [0,e — 1] and set y’ = p — ag. Now, assume that v €
Jur +. Recall that in this case we have an inclusion of algebras *Z,/ r C"Z, r
because of the assumption W,, C W,,. We want to show that after the base
change we get an inclusion of algebras *Z,, C ¥Z,,. However, this is not obvious
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because the functor C ®g e is not left exact. But this fact can be justified using
geometry. The injectivity of the homomorphism *Z,, — YZ, is a consequence
of Lemma 3.24 below.

Denote by w,, the longest elements in W,. The shortest elements in vW,
and vW,, are respectively vw, and vw, . By Lemma 3.23, we have algebra

isomorphisms "7, ~ H*(X ; vw,) and *Z/ ~ H*(X#/’ku, ).

_The group W is a Coxeter group. In particular we have a length function
£:W — N. We can extend it to W be setting ¢(wn™) = ¢(w) for each n € Z and
w € W. Now we are ready to prove the following result.

Lemma 3.24. There is the following isomorphism of graded *Z, -modules

HE+41

"Zy o~ 2z (2r).
r=0

Proof. Let J ﬁ, be the set of shortest representatives of classes in W, /W,. We
have the following decomposition into affine cells

jgp,ku = ];I )(#,w = I;[ ];I ){#,wz~

wevJ wE”Ju/erb

This yields
v

ézﬂ

H*(X 1 ow,,)
Duevs, H (Xpuw) (2l (vw,) — 26(w))
Duers,, Bocrr, H (X wa) (20(vw,) = 26(w) — 26(x)).

We also have X, , = HwevJu X, w- This implies

R

12

Gy = B Rp,)

Do, H* (X ) (20(0w,0) — 26(w))

Note that we have ¢(w,) — £(w,) = pr+1. Moreover, for each w € *J,, and
T e J;:, the variety X, ., is an affine fibration over X,/ ,,. This implies

R

Mk+41

"Zy~ €D Y Zu(2(vw,) — 2(vw,) - 20(x)) = @D U Z, (2r).
r=0

xEJm

We will write Ind and Res for the induction and restriction functors
Ind: mod(“Z,/) = mod("Z,), Res:mod("Z,) — mod("Z,).

We fix the graded lifts of Res and Ind of the functors Res and Ind in the following
way

Res(M) = M(—pip41),  Ind(M) ="Z, vz, M.

Now, Lemma 3.24 implies the following.
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Corollary 3.25. (a) The pair of functors (Res,Ind) is biadjoint.
(b) The pairs of functors (Ind, Res{ugr1)) and (Res,Ind(—pr+1)) are ad-
joint.

(©)

HEk41
Res o Ind = Iq®Hs+1t+1la . — @ 1d(2r — pg11),
r=0
where 1d is the identity endofunctor of the category grmod(Z,,). O

3.8 Graded lifts of the functors
As above we assume W, C W, and that v € J,» 4.
Lemma 3.26. The following diagram of functors is commutative

v A Fi. v A
OIMR 5 Ou’,R

VM'Rl V}L/,Rl
mod(YZ,, r) Res mod(VZ, r).

Proof. Let M be an object in “Oﬁ r- We have the following chain of isomor-
phisms of *Z,/ r-modules.

Vy.goFp(M) ~ Hom(°PY Fy(M))
~ Hom(E(*PL), M)
~ Hom("Ph, M)
~ V/L,R(M)

Here, the YZ,, p-modules in the last two lines are considered as VZ,/ p-modules
with respect to the inclusion *Z,, g C “Z, r. The third isomorphism in the
chain is an isomorphism of *Z,/ r-modules by Lemma 3.20. O

Lemma 3.27. The following diagram of functors is commutative

v A ¢ Ey v
O/"‘vR Ou’,R

V#,Rl V;L/‘RJV
mod(*Z, r) ol mod(*Z r)-

Proof. Let M be an object in ”Oﬁ‘,’ r- We have the following chain of isomor-
phisms of ¥Z,, r-modules.

V#)R o Ek(M)

R R
o
[}
8
=
&
3
<
=
=
5
T
<
t\
s
s

Ind o V[J,/,R(M)
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Here the first Hom is in ”Oﬁm the second Hom is in ”Oﬁ,ﬂ and other Hom’s
are in mod("Z,s r).

The third isomorphism holds by Proposition 3.21 (a), the fourth isomorphism
holds by Lemma 3.26. The last isomorphism holds because, by Corollary 3.25
(a), the functor Hom.z , , ("Z,, r,e), which is obviously right adjoint to Res, is
isomorphic to Ind. O

Now, Lemmas 3.26-3.27 imply the following.

Corollary 3.28. The following diagrams of functors are commutative

UOM ° UO/,L’

UOM — UOM/

mod(“Z,) Jd mod(VZ,).

Proof. Passage to the residue field in Lemma 3.27 implies that the diagrams
in the statement are commutative on A-filtered objects. A standard argument
(see for example the proof of Lemma 3.29) shows that the commutativity on
A-filtered objects implies the commutativity. O

Let ”OE’Oj and ’”65“” be the full subcategories of projective modules in *O,,
and véu respectively. The fully faithfulness of the functor V,, on projective mod-
ules implies the fully faithfulness of the functor glu on projective modules. These
functors identify ”ng"j and ”65“’]' with some full subcategories in mod(*Z,)
and grmod(VZ,,) that we denote mod(”Z,,)P™ and grmod(*Z,, )P respectively.
Since the functor Fj takes projective modules to projective modules, the com-
mutativity of the diagram in Corollary 3.28 implies that the functor Res takes
the category mod(?Z,)P™ to mod(”Z,,)P™). This implies that its graded lift
Res takes grmod(VZ,)P* to grmod(YZ,/)P™. Similar statements hold for Ind
and Ind.

Lemma 3.29. (a) The functors Ey, and Fy, admit graded lifts Ep: ”5#/ — véu
and ﬁk: ”6M — “6u/. They can be chosen in such a way that the condition below
holds.

(b) The following pairs of functors are adjoint

(Fie, Bi(—pe41)s (Eny B (psn))-
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Proof. Let us prove (a). We give the proof only for the functor Fj. The proof
for Ej, is similar. The proof below is similar to the proof of [18, Lem. 5.10].

As explained above, the functor Res restricts to a functor grmod (¥ Z,, )P —
grmodN(” Z W )Prel. Together with the equivalences of categories “O~Er0j ~ grmod(* Z,, )P I
and ”Oﬁfoj ~ grmod(”Z,/)P™ obtained by restricting V,, and V. this yields a

functor F: ”éirm — UGZTOJ. Next, we obtain a functor of homotopy categories

Fy: Kb(véfjroj) — Kb(”(jzfoj). Since the categories YO, and “O, have finite
global dimensions, we have equivalences of categories K b(”ég’mj) ~ Db(véu)
and K b(”éﬂfoj) ~ D*(*O,,). Thus we get a functor of triangulated categories
F,:D*(*O,) — D®(*O,/). If we repeat the same construction for non-graded
categories, we obtain a functor Fj;: D*(VO,,) — Db(O,/) that is the same as the
functor between the bounded derived categories induced by the exact functor

F:?0Oy — Oy, see Corollary 3.28. This implies that the following diagram is
commutative

D'(0,) — D(*0,)

forget l forget J{

DYv0,) —2— Db(v0,)
Since the bottom functor takes *O,, to *O,, the top functor takes ”5# to ”5#/.
This completes the proof of (a).

Now we prove (b). The functors Ej, and Fy, are constructed as unique functors
such that we have the following commutative diagrams

'O, s YO, "0, 2 Y0,
ml m,l ‘V“l m,l (22)
mod("Z,) _Bes mod (" Z,), mod("Z,) Ll mod("Z,).

By Corollary 3.25 (b) and Proposition 3.21 (b), the restrictions of the pairs
(Fg, Ex{—pr+1)) and (Eg, Fi(ur+1)) to the subcategories of projective objects
are biadjoint. We can conclude using the lemma below. O

Lemma 3.30. Let Cy, Cy be abelian categories of finite global dimension and let
Ci, Ch be the full subcategories of projective objects. Assume that E:C; — Ca,
F:Cy — Cq are exact functors. Assume that E and F send projective objects to
projective objects and denote E':C; — Ch, F':Cl, — C} the restrictions of E and
F. Assume that the pair (E', F') is adjoint. Then the pair (E, F) is adjoint.

Proof. Let
e:E'F' —1d, n':1d - F'E’

be the counit and the unit of the adjoint pair (E’, F”).
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We can extend the functors E’ and F' to functors E’: K*(C}) — K°(Ch)
and F': K®(C) — K"(C}) of the homotopy categories of bounded complexes.
The counit ¢ and the unit 1’ extend to natural transformations of functors of
homotopy categories. These extended natural transformations still satisfy the
properties of the counit and the unit of an adjunction. Thus the extended pair
(E', F') is adjoint.

Since the categories C; and Cy have finite global dimensions, we have equiv-
alences of categories

Kb(C}) ~ D¥(Cy),  K°(Ch) ~ D°(Co). (23)
By construction, the functors
E:D"(Cy) — D%(Cs), F:D(C2) — D"(Cy) (24)

obtained from functors E’ and F’ via the equivalences (23) coincide with the
functors induced from E:C; — C3 and F:Co — C;. The pair of functors (E, F) in
(24) is adjoint with a counit € and a unit 7, obtained from £’ and n’. These counit
and unit restrict to natural transformations of functors of abelian categories
E:Cy — Cy and F:Cy — Cq1. This proves the statement. O

We need the following lemma later.

Lemma 3.31. We have the following isomorphism of functors

Hk+1
FLE), ~ 1q®Heatlle .= @ Id(2r — pgy1),
r=0

where 1d is the identity endofunctor of the category véul.

Proof. By Corollary 3.25 (¢) we have Res o Ind ~ Id®##+171a Then the dia-
grams (22) and Proposition 3.21 (b) yield an isomorphism Fj, Ej, ~ Id®ke+2+1la
on projective modules in ”6MI. This isomorphism can be extended to the cate-
gory ”6ul in the same way as in the proof of Lemma 3.30. O

3.9 The case W, C W,

In the sections above we assumed W, C W, (or equivalently i = 1). In
this section we announce similar results in the case W, C W, (or equivalently
pr+1 = 0). All the proofs are the same as in the previous case but the roles of
Ej and Fj, should be exchanged.

Here we always assume that v is in J, 4 (thus also in J,/ ). In contrast
with the situation above, we have *Z,, C *Z,. Consider the induction and
the restriction functors Ind:mod(*Z,,) — mod("Z,) and Res:mod(*Z,) —
mod(*Z,).

Similarly to Corollary 3.28 we can prove the following statement.
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Lemma 3.32. The following diagrams of functors are commutative

Fi

’UOM ’UON/
V"l V“/l
mod(“Z,) fnd mod(VZ,),
UOH B vO#/

Next, similarly to Lemmas 3.29, 3.31 we can deduce the following result.

O

Lemma 3.33. (a) The functors Ey, and F}, admit graded lifts E,: Uéu' — véu.

They can be chosen in such a way that the conditions below hold.
(b) The following pairs of functors are adjoint

(B, Br (i = 1)), (B, Fe(—pe +1)).
(c) We have the following isomorphism of functors

pr—1
BBy, ~ 1d%e = (5 1d(2r — i + 1),
r=0

where 1d is the identity endofunctor of the category *O,,.

4 Koszul duality

4.1 Bimodules over a basic semisimple algebra

For a ring A

Let B be a C-algebra isomorphic to a finite direct sum of copies of C. We

have B = ®AeA Ce, for some idempotents ey.

Definition 4.1. Let bmod(B) be the category of finite dimensional (B, B)-

bimodules.

A bimodule M € bmod(B) can be viewed just as a collection of finite

dimensional C-vector spaces exMe, for A\,;x € A. To each bimodule M €

bmod(B) we can associate a bimodule M* € bmod(M) as follows M*
Hompmoa(p)(M, B ®c B). The bimodule structure on M™* is defined in the

following way. For f € M*, m € M, by,bs € B we have by fbo(m) = f(bamby).
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Lemma 4.2. Assume that M, N € bmod(B), X,Y € mod(B), Z € mod(B)°P
Then we have the following isomorphisms:

(a) Hompmod(s) (M, N) = D, ,cp Home(exMey,, exMe,,),

(b) HOIHB(X Y) @AeAHOmc(G,\M,e,\M),

() X®p Z =@, cp Xex®cers,

(d) exM*e, ~ (e Mey)*, where o is the usual duality for C-vector spaces,

( ) HOIDB(M* ®BX Y) HOIDB(X,M®B Y),

()(M®B )*EN*(@BM*.

Proof. Parts (a), (b), (c) are obvious. Part (d) follows from (a). Part (e) follows
from (b), (c), (d). Part (f) follows from (c), (d). O

4.2 Quadratic dualities

Let A = ®,enA, be a finite dimensional N-graded algebra over C. Assume that
Ay is basic semisimple (i.e., we assume that Ay is isomorphic to a sum of copies
of C). Let T, (A1) = @,,c 5 AY" be the tensor algebra of Ay over Ag, here AP"
means A; ®4, A1 ®a4, - ®a, A1 with n components A;. The algebra A is said
to be quadratic if it is generated by elements of degree 0 and 1 with relations
in degree 2, i.e., the kernel of the obvious map Ty4,(A1) — A is generated by
elements in A; ®4, A;.

Definition 4.3. Consider the (Ag,Ap)-bimodule morphism ¢: A; ® 4, A1 — Az
given by the product in A. Let ¢*: A5 = A} ®4, A7 be the dual morphism to
¢, see Lemma 4.2, here o* is as in Section 4.1 with respect to B = Ap. The
quadratic dual algebra to A is the quadratic algebra A' = T4, (A%)/(Im ¢*).

Remark 4.4. In the previous definition we do not assume that the algebra A is
quadratic itself. However, if it is true, we have a graded C-algebra isomorphism
(A" ~ A.

Let C be an abelian category such that its objects are graded modules.
Denote by Com* (C) the category of complexes X*® in C such that the jth graded
component of X is zero when ¢ >> 0 or i + j << 0. Similarly, let Com'(C)
the category of complexes X*® in C such that the jth graded component of X? is
zero when i << 0 or i+ 5 >> 0. Denote by D¥(C) and D'(C) the corresponding
derived categories of such complexes. We will use the following abbreviations

DY(A) = D¥(grmod(A)), D'(A) = D'(grmod(A)), D’(A) = D°(grmod(A)).

In the situation above we have the following functors KC: D¥(A) — DT(A")
and K': DT(A") — DY(A) called quadratic duality functors. See [13, Sec. 5| for
more details.

4.3 Koszul algebras

Let A =@, oy An be a finite dimensional N-graded C-algebra such that Ay is
semisimple. We identify Ay with the left graded A-module Ay ~ A/®p~0A,.
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Definition 4.5. The graded algebra A is Koszul if the left graded A-module A,
admits a projective resolution --- — P? — P! — P9 — Aj such that P" is
generated by its degree r component.

If A is Koszul, we consider the graded C-algebra A' = Ext’ (Ag, Ag)°P and
we call it the Koszul dual algebra to A. The following is well-known, see [3].

Proposition 4.6. Let A be a Koszul C-algebra. Assume that A and A' are
finite dimensional. Then, the following holds.

(a) The algebra A is quadratic. The Koszul dual algebra A' coincides with
the quadratic dual algebra.

(b) The algebra A' is also Koszul and there is a graded algebra isomorphism
(A ~ A.

(¢) There is an equivalence of categories
K: DP(A) — Db(AY, M + RHoma(Ag, M).
O

If A is Koszul, then the functors K and K’ from the previous section are
mutually inverse. Moreover, the equivalence K of bounded derived categories in
Proposition 4.6 (c) is the restriction of the functor IC from the previous section.

Definition 4.7. Let A and B be Koszul algebras. We say that the functor
®: DY(A) — DP(B) is Koszul dual to the functor W: D®(A') — D!(B') if the
following diagram of functor is commutative

(
| |

P

Db(A) —Y— D¥(B)
Db(A'Y)y —2 5 Db(BY).

4.4 Categories of linear complexes

In this section we recall some results from [13] about linear complexes. Let A
be as in Section 4.2.

Definition 4.8. Let LC(A) be the category of complexes --- — X*~1 — Xk —
Xk+1 5 ... of projective modules in grmod(A) such that for each k € Z each
indecomposable direct factor P of X'* is a direct factor of A(k).

Proposition 4.9. There is an equivalence of categories € 4: LC(A) ~ grmod(A").

Let us describe the construction of e;ll. Let M = ®,ezM,, be in grmod(A!).
The graded A'-module structure yields morphisms of Ag-modules f/: A} @M,, —
My, 41 for each n € Z. We have

Hoon (A‘l @A M, Mn+1) - Hoon (Mm (A'l)* ®Ag Mﬂ+1)
HOHlA0 (Mn, A1 XA, Mn+1).
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Let fn:Homu,(M,, A1 ® 4, M,+1) be the image of f! by the chain of iso-
morphisms above.

We have €5 (M) = --- %57 k=1 %50 pk % ph1 P0G kb =
A(k) ®4, My, and

Op: Alk) @4y My — Ak +1) @4y M1, a@m = (a®Id)(fr(m)).

The quadratic duality functor discussed in the previous section can be char-
acterized as follows, see [13, Prop. 21].

Lemma 4.10. Up to isomorphism of functors, the following diagram is com-
mutative:

DY (Le(A)
Tot V&;}
DHA) ~——— Di(A')
where Tot is the functor taking the total complez. [

4.5 The main lemma about Koszul dual functors

Let {ex; A € A} be the set of indecomposable idempotents of Ay, i.e., we have
Ap = @, Cex. Denote by € the corresponding idempotent of Aj via the
identification Ay ~ Aj. For each subset A’ C A set ey = Y xear €x. Consider
the graded algebras

AA/ zeA/AeA/, A/AZA/(GA\A/).

Similarly, we can define A!A, and A"

We have a functor F: grmod(Ax/) — grmod(A), M — Aenr ®4,, M. Note
also that the category grmod (s A') can be viewed as a subcategory of grmod(A')
containing modules that are killed by ex\as. Let ¢ grmod(y/A') — grmod(A')
be the inclusion. The following proposition is proved in [13, Thm. 28].

!

Proposition 4.11. (a) The quadratic dual algebra to Ay is isomorphic to pr A’
(b) The following diagram commutes up to isomorphism of functors.

DHA) DAY

dl 3
DHAy) <& DAY
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Idea of proof of (b). By Lemma 4.10 it is enough to proof the commutativity of
the following diagram.

LC(A) A grmod(A')

T

LC(An7) <6A—A/ grmod (s A')

We can generalize this result as follows.

Lemma 4.12. Let A’ be a finite dimensional N-graded C-algebra. Assume that
for some subset A" C A there is a graded (unitary) homomorphism : A" — Ap/
such that

(a) 9 is an isomorphism in degrees 0 and 1,

(b) ¥ induces an isomorphism between the kernel of A ® 4y Ay — A5 and the
kernel of (Aar)1 @(a,,)o (Aar)1 — (Aar)2.
Then the quadratic dual of A’ is isomorphic to p/A.

Consider the graded (A, A")-bimodule Aeps, where the right A’-module struc-
ture is obtained from the right Ap-module structure using 1. Consider the func-
tor T: grmod(A’) — grmod(A), M — Aexs @ 4+ M. Then the following diagram
commutes up to an isomorphism of functors.

DH(A) +=— DN(A)

dl d
DHAY) <X iy AY
Proof. By definition, the quadratic dual of A" depends only on the algebra Ay,
the (A, Ap)-bimodule A} and the kernel of A} ®4; A7 — Aj. Thus the quadratic
dual algebras of A" and A,/ are isomorphic. Finally, Proposition 4.11 (a) implies
that the quadratic dual of A’ is isomorphic to s A.

Now, by Lemma 4.10 is enough to prove the commutativity of the following
diagram up to an isomorphism of functors.

LC(A) +A grmod(A)

dl 1
1
LC(A) 22— grmod(y A"
By analogy with the definition of the functor 7', consider the functor ®: grmod(A’) —
grmod(Ana+), M — Ax ®a M. For each A € A’ let €} be the idempotent in
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Aj{ such that ¢(e}) = ex. We have ®(A’e}) = Apey for each A € A’. In
particular ® induces a bijection between the indecomposable direct factors of
A’ and Ap/. Thus @ induces a functor ®: LC(A’) — LC(Aa/). Note that by
definition the boundary maps in the complexes of the category £C(e) are of de-
gree 1. Thus, by (a) and (b) the functor ® induces an equivalence of categories
O: LC(A') — LC(An)).

Consider the following diagram, where the functor F' is as before Proposition
4.11.

£e(4) M re(4) +A—  grmod(A)

T

LOAY) <2 £0(Ap) 22 grmod(w AY)

The right square commutes by the proof of Proposition 4.11 and the commu-
tativity of the left square is obvious. To conclude we need only to check that
62/1 =dlo e;‘/lv.

Let us check that ® o e;,l = ezi/. This is clear on objects because

_ O ! 3,

GAII\,(M) = k—>1 AA/<I€> ®(AA/)0 Mk 4 AA/<]€+1> ®(AA/)0 Mk+1 Sl
6// 7 6//

M) = B AR ea My B Akl @ My, 8

The boundary maps are defined as follows

Nt An(k) @y My = An{k +1) @(a, )0 Mit1,  a@m = (a@1d)(f,(m)),
ol Ak) @y My — A'(k+1) @4y Myy1, a®@m > (a®]Id)(f2(m)),

where fl: M, — (Ax); ®(A,,)o Mny1 and f2:M, — A} ®ay, My 11 are defined
in the same way as f, in the definition of €e~!. Thus it is also clear that ®

commutes with the boundary maps. O

Remark 4.13. Condition (b) is necessary only to deduce that (A’)" =~ (Ax/)".
Without this condition we know only that the algebra (A’)' is isomorphic to
a quotient of (A/)'. Thus condition (b) can be replaced by the requirement
dim(A’)" = dim /A"

We can reformulate Lemma 4.12 in the following way.

Corollary 4.14. Let A’ be an N-graded finite dimensional C-algebra with basic
semisimple A{y such that the indecomposable idempotents of A{, are parameterized
by a subset A’ of A, i.e., we have Ay = @ ., Ceh. Assume that dim(A’)' =
dim o/ A'. Assume also that there is an evact functor T: grmod(A’) — grmod(A)
such that

(a) T(A'€)) = Aex VA e N,
(b) the functor T yields an isomorphism Hom 4/ (A'e\ (1), A’e),) ~ Hom 4 (Aex(1), Ae,).
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Then the quadratic dual for A’ is yrA' and the following diagram commutes up
to isomorphism of functors.

DH(A) +— DN(A)

d d
DHAYY <& pr(y A
Proof. Condition (a) implies that the functor T yields a homomorphism of
graded algebras ¢: A’ — Aj,. Moreover, condition (b) implies that ¢ satis-
fies condition (a) of Lemma 4.12. Finally, the assumption dim(A’)" = dim /A
implies that ¢ satisfies condition (b) of Lemma 4.12, see Remark 4.13. The func-
tor T hare can be identified with the functor T' = Aep ® 4/ @ in the statement
of Lemma 4.12, see [19, Lem. 3.4]. Thus the statement follows from Lemma
4.12. U

4.6 Zuckerman functors

Fix v € W. Let v1 and v, be two different parabolic types such that W,, C W,,.
By definition of the parabolic category O, there is an inclusion of categories
Y02 CY0O;r. We denote by inc the inclusion functor. We may write inc = inc;)
to specify the parameters. The functor inc admits a left adjoint functor tr. For
M € vOyz, the object tr(M) is the maximal quotient of M that is in YO}?, see
Lemma 3.13 (a). We call the functor tr the parabolic truncation functor. We
may write tr;? to specify the parameters.

Now, we assume that 17 and vy are two arbitrary parabolic types. Then there
is a parabolic type v3 such that we have W,, = W,, N W,,. The Zuckerman
functor Zuc,? (or simply Zuc) is the composition Zuc;? = tr};2 o inc,?.

The parabolic inclusion functor is exact. The parabolic truncation functor
is only right exact. This implies that the Zuckerman functor is right exact.

Now, we are going to grade Zuckerman functors. Let A} be the endomor-
phism algebra of the minimal projective generator of "Oy; (or simply YA, in the
non-parabolic case). We have O}, ~ mod("A},). The Koszul grading on " A}, is

constructed in [18]. The graded version véz of "0y, is the category grmod(”A}).
Moreover, the algebra ” A7, is the quotient of YA, by a homogeneous ideal I,,. By
construction, the grading on ”Aj, is induced from the grading on A,. Assume
that v; and v are such that W,, C W,,. Then we have I,, C I,,. This implies
that the graded algebra ”AJ? is isomorphic to the quotient of the graded alge-
bra YAl by the homogeneous ideal 1, /I,,,. This yields an inclusion of graded
categories ”5,”} C ”5:11. Let us denote by mNcZ; (or simply inc) the inclusion
functor. It is a graded lift of the functor inc. Similarly, its left adjoint functor
trisa graded lift of the functor tr, see Remark 3.14. Thus we get graded lifts

Vi
Zchi of the Zuckerman functor Zuc,? for arbitrary parabolic types v and vsy.
Similarly, we can define the parabolic inclusion functor, the parabolic trun-

cation functor, the Zuckerman functor and their graded versions for the affine
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category O at a positive level.

4.7 The Koszul dual functors in the category O

As above, we fix k € [0,e — 1] and set p/ = p — ay. Let us assume W, C W.
Set J;; = {w € Jy; w(1,) € P"}. Note that the inclusion J,, C .J,, induces an
inclusion Ji, C J;. For v € W we set vy ={we Jy; w < vl

As in Section 3 we assume that we have W, C W,,. Fix a parabolic type
v= (v, -,y € X|[N].

Assume v € J;w,,. The functors

Fp:"O, = "0, Ep:"Op =70,

restrict to functors of parabolic categories
a4 vV vV NaYZ
Fy: OM — OHI, Ey: OH’ — OM'

The restricted functors still satisfy the properties announced in Lemmas 3.29,
3.31.

Assume that w € ”JZ. Let *P*() be the projective cover of L¥(x) in
YOy, (Note that we do not indicate the parabolic type v in our notations for
modules to simplify the notations.) We fix the grading on L) such that it
is concentrated in degree zero when we consider L*(*+) as an YA} -module (see
Section 4.6 for the definition of "A}). A standard argument shows that the
modules Y P*(1x) and A(1e) admit graded lifts. (The graded lift of " P*(1#) can
be constructed as the projective cover of the graded lift of L*(1#) in UQZ The
existence of graded lifts of projective modules implies the existence of graded
lifts of Verma modules, see [12, Cor. 4].) We fix the graded lifts of * P*('+) and
A»() guch that the surjections *P*(w) — [wlu) and A*(w) — [wi) are
homogeneous of degree zero, see also Lemma 3.1.

The following lemma is stated in the parabolic category O.

Lemma 4.15. (a) For each w € *J},, we have Ep(v PPy = v priu),
(b) For each w € ¥J,,, we have
L) ifw ey,

Fk(Lw(lu)) - { 0 else.

Proof. First, we prove (a) in the non-parabolic situation (i.e., for v = (1,1,---,1)).
The modules Ej, (“P“’(l#’)) and P*(1+) are both projective. Thus it is enough
to show that their classes in the Grothendieck group are the same. To show
this, we compare the multiplicities of Verma modules in the A-filtrations of
Ep(v P10y and v prte),

We need to show that for each z € *J,» we have

[Ek(UPw(l“/)),Ar(l“,)] _ [”Pw(lu),Af(lu)].
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By Lemma 3.18, for each z € “J,, the multiplicity [Ey("P*(w)) A7) is
equal to the multiplicity [?P¥+"), A*(1:)]. So, we need to prove the equality

[va(l“/)7A$(1”/)} _ [va(lu)7Az(1u)].

The last equality is obvious because both of these multiplicities are given by the
same parabolic Kazhdan-Lusztig polynomial. See, for example, [11, App. A] for
more details about multiplicities in the parabolic category O for é\[ N

Now, we prove (b). Since the set of simple modules in the parabolic category
O is a subset of the set of simple modules of the non-parabolic category O, it is
enough to prove (b) in the non-parabolic case.

For each w € V.J,, and = € "J s, we have

Hom (Y P*(1a!) | F (LW (1e))) Hom(Ej, (" P*(0w)), Lw(n)

Hom(? P*(w) | [0(e)),

R

This implies that we have dim Hom(? P*1) | Fy (L)) = §,, ,,. Since dim Hom(? P*(1e) | M)
counts the multiplicity of the simple module L*(%) in the module M (this fact
can be proved in the same way as [8, Thm. 3.9 (c)]), this proves (b).
Finally, we prove (a) in the parabolic situation. For each w € *.J};, and each
z € v.J, we have

Hom(Ey,(*P*1)), L2(w))  ~ Hom(vP*Mw) | F(L7(1))
N Hom(vP¥ 1) =)y if o e v
o 0 else,

where the second isomorphism follows from (b). This implies that we have
dlm HOm(Ek(va(ll‘/))’ Lw(lﬂ)) — 5w’x. Thus we have Ek(va(lu’)) ~ 'UPw(lu).
O

The definitions of the graded lifts Ey and Fy, in Lemma 3.29 depend on the
choice of the graded lift V,, of V,,. Note that we have the following isomorphism
of Z,-modules V,("P*) ~ *Z, for all p € X.[N]. By Lemma 3.1, for each
choice of the graded lift %7#, we have %NIM(”P”) ~vZ,(r) for some r € Z. From
now on, we always assume that the graded lift @# is chosen in such a way that

we have an isomorphism of graded ¥Z,-modules g’,‘ ("PH*) ~vZ, (without any
shift r).
In the following statement we consider the non-parabolic situation.

Lemma 4.16. For each w € *J,s, the graded module Ep(A*0u)) has a graded
A-filtration with constituents A=) (0(2)) for z € I

Proof. First, we prove that Ek takes the graded anti-dominant projective mod-

ule to the graded anti-dominant projective module, i.e., that we have Fj, (”P”/) o~
vpH,
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By Lemma 3.1, the graded lift of YP* is unique up to graded shift. Thus,
by Lemma 4.15, we have E‘k(”P”/) = YP#{r) for some r € Z. We need to prove
that r = 0. _

Recall that the graded lift Fy of Ej is constructed in the proof of Lemma
3.29 in such a way that the following diagram is commutative

Ex v
O,
o

ml x@,l
mod("Z,) & mod("Z,).
Moreover, by definition, we have the following isomorphisms of graded modules
gfu(va(l“)) ~"Zy, iv}'u’(va(l‘“)) ~Zy, Ea(UZ;L’) ="Z,.

This implies that we have » = 0. _

Now we prove the statement of the lemma. The module Ej(A*"«)) has a
graded A-filtartion because it has a A-filtration as an ungraded module, see [11,
Rem. 2.13]. The constituents (up to graded shifts) are A¥*() 2z € W,/ /W,
by Lemma 3.18. We need only to identify the shifts. The graded multiplicities
of Verma modules in projective modules are given in terms of Kazhdan-Lusztig
polynomials in [11, App. A]. In particular, [11, Lem. A.4 (d)] implies that,
for each w € ?J,, the module A»(1) appears as a constituent in a graded
A-filtration of YP# once with the graded shift by ¢(w). Similarly, for each
w € YJ,, the module A1) appears as a constituent in a graded A-filtration
of P once with the graded shift by £(w). Now, since Ej, (”P“/) ~ VP! we see
that, for each w € “J,, and each z € JL‘,, the module A¥*(1+) appears in the

A-filtration of Ej(A®(1w)) with the graded shift by £(z). O
In the following lemma we consider the general (i.e., parabolic) situation.
Lemma 4.17. For each w € *.J},,, we have Ep(v Py = vpwii),

Proof. By Lemmas 3.1 and 4.15, we have Ej,(*P*(1«)) = vpU(u)[r] for some
integer r. We must show that the shift r is zero.

First, we prove this in the non-parabolic case. The module Av1) (resp.
A»(14)) is contained in each A-filtration of *PY(w) (resp. vP*(1i)) only once
and without a graded shift. Moreover, by Lemma 4.16 the module Av(e) g
contained in each A-filtration of Ey(A“(4)) only once and without a graded
shift. This implies that the graded shift r is zero.

The parabolic case follows from the non-parabolic case. Really, the pro-
jective covers of simple modules in the parabolic category O are quotients of
protective covers in the non-parabolic category O (see Lemma 3.13 (b)). Thus
the shift r should be zero in the parabolic case because it is zero in the non-
parabolic case. O
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Let us check that the functor Ekzvéz — ”5: satisfies the hypotheses of
Corollary 4.14. Condition (a) follows from Lemma 4.17.

Let P and @ be projective covers of simple modules in ”5H graded as above.
To check (b), we have to show that we have an isomorphism

Hom(Ey(P)(1), E4(Q)) ~ Hom(P(1), Q).
We have

Hom(Ej,(P)(1), Ex(Q)) Hom(P, Fy 1 Ey1(Q) (kg1 — 1))
Hom(P, [pr+1 + 1g(Q) (pa41 — 1))
HomE Q{-1)D EB‘ZSIHOHI(P, Q(2r —1))

Hom(P(1), Q).

Here the first isomorphism follows from Lemma 3.29 (b), the second isomorphism
follows from Lemma 3.31. The last isomorphism holds because Hom (P, Q(r)) is
zero for r > 0 because the Z-graded algebra

End( @ vP*U))

wevJy

1 1R

has zero negative homogeneous components (as it is Koszul).

For each p = (u1,- -, pte) we set p? = (pe, -+, 1). We can define the
positive level version O}, | of the category O}, in the following way. For each
A € P weset AT = XA+ 218 + (e — N)Ag, where z) = (\,2p+ A)/2e. For each
A € P” denote by TA()) the Verma module with highest weight AT and denote
by T L()\) its simple quotient. We will also abbreviate *A* = TA(\ — p) and
LA = TL(X = p). Let OF | be the Serre subcategory of O generated by the

simple modules *L* for A € P¥[u°P]. Similarly to the negative e-action of W
on P described in Section 2.6 we can consider the positive e-action on P. We
define the positive e-action in the following way: the element w € W sends A
to —w(—A) (where w(—M\) corresponds to the negative e-action). The notion of

the positive e-action of W on P is motivated by the fact that the map
~ —~
P—h*, A=sX—p +p
is ﬁ/\—invariant. We say that an element A € P is e-dominant if we have \; >
Ay = -+ > Ay > A\ —e. Fix an e-dominant element 1:[ € P[u°P]. (We can
take for example 1,7 = (e, ---,1#<)). Note that the stabilizer of 1} in W with
respect to the positive e-action is W,. From now on, each time when we write
w(L}) we mean the positive e-action on P and each time when we write w(1,,)

we mean the negative e-action.

Recall that J,, 1 is the subset of W containing all w such that w is maximal
in wW,. Set Jy, . ={w € Jy, y; w(1}) € P"}. Note that the inclusion .J,» C J,
induces an inclusion J;, C J;. For v € W we set vy ={w e J; w< v} and
VI ={w e J;  w< vl

We have the following lemma.
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Lemma 4.18. (a) There is a bijection J}, — J}; . given by w w™ L.

(b) For each v € J}, there is a bijection VJ; — ”71J57+ given by w — w1,

Proof. Part (a) follows from [18, Cor. 3.3|. Part (b) follows from part (a). O

Similarly to the truncated version "0} of O}, we can define the truncated

version "0y, | of O . We define "Oy;  as the Serre quotient of Oy ,, where
we kill the simple module + 1) for each w € Jog— UJZHr'

By [18, Thm. 3.12|, for v € J;/, the category ”6: is Koszul dual to the
category ”_1557 4. The bijection between the simple modules in “6: and the
indecomposable projective modules in ”7155’ . given by the Koszul functor K
is such that for each w € V.J ; the module L*(1#) corresponds to the projective

1t
cover of TLw (1)),

We should make a remark about our notation. Usually, we denote by e the
number of components in p and we denote by [ the number of components in v.
So, when we exchange the roles of 4 and v and we consider the category O,’j} T
we mean that this category is defined with respect to the level I — N (and not
e— N).

Now, assume again that v is in JZ'U’/L’- Then we have vw,, € J, and vw,, €
J}7,. In this case the Koszul dual categories to “O}; and "0y, are “’“”71057+ and

wl‘/,v_lO";‘/‘i"
Lemma 4.19. (a) We have
(b) We have
w“/qu‘]z’:+ :wuv’l Jl}j;‘r
Proof. Let us prove (a). By Lemma 4.18 the statement is equivalent to
vw,,r TV __ vw v v
Wl ="

Moreover, by definition, we have “*»’ =" J and "« J7 = "J;. Thus, the
statement is equivalent to *.J);, ="J7 N J, e The last equality is obvious.
Part (b) follows from part (a).
O

Now, put u = wﬂvfl. The discussion above together with Lemma 4.19

shows that the Koszul dual categories to “Oy, and O}, are “Oy, , and “Oﬁ;u
We get the following result.

Theorem 4.20. Assume that we have W, C W.
(a) The functor Fy:DP(*O}) — Db(“OZ,) is Koszul dual to the shifted

parabolic truncation functor tr{juy41): Db("é,’,‘,Jr) — Db(“’OV{f:_F).
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b) The functor Ek:Db vOv,) — DY(*0Y) is Koszul dual to the parabolic
It I

inclusion functor inc: Db(uély{_'r) — Db(uéﬁﬂ_),

Proof. We have checked above that the functor E‘k:"é: — ”6:, satisfies the
hypotheses of Corollary 4.14. Thus Corollary 4.14 implies part (b). Part (a)
follows from part (b) by adjointness. O

Similarly to the situation W, C W/, we can do the same in the situation
W, C W, (see also Section 3.9). In this case we should take v € J;w, and put
u = wwv_l. We get the following theorem.

Theorem 4.21. Assume that we have W, C W,,.

(a) The functor Fy: D*("OY) — Db(”OZ/) is Koszul dual to the parabolic
inclusion functor inc:~Db(“O’;7_t) — Db(“Oﬁyt),

(b) The functor Ey:D*("OL,) — D(YO}) is Koszul dual to the shifted
parabolic truncation functor tr{uy, — 1): Db(“657+) — Db(uéffﬁr). O

4.8 The restriction to the category A

The goal of this section is to restrict the results of the previous section to
category A.

We have seen that we can grade the functor Ej and Fj for category O
when we have W, € W, or W, C W,. Let us show that in this cases we
can also grade similar functors for the category A. We have A”[a] C Y0}, and
AV[a + ax] C Oy,. Denote by h the inclusion functor from A¥[a] to “Oj;.
Abusing the notation, we will use the same symbol for the inclusion functor
from A”[a+ay] to "O},. Let h* and h' be the left and right adjoint functors to
h. The functor F}, for the category A is defined as the restriction of the functor
Fy for the category O. This restriction can be written as h'Fih. The functor
E), for the category O does not preserve the category A in general. The functor
Ej, for the category A is defined in [15, Sec. 5.9] as h*Eph. It is easy to see
that we can grade the functor h and its adjoint functors in the same way as
we graded Zuckerman functors. Thus we obtain graded lifts Ey and F} of the
functors Ey and Fy for the category A. Moreover, we still have the adjunctions
(Ek, Fr(pr+1)) (when W, € W) and (Ey, Fi(1 — p)) (when W, C W,) in
the category A.

We do not have adjunctions in other direction in general. However, if addi-
tionally we have v, > |a| for each r € [1,1], then the functors Ej, and Fj, for the
category A are biadjoint by [15, Lem. 7.6]. This means that there is no difference
between h*Eh and h'Eih. Thus we also get the adjunctions (F‘k, Ek<7uk+1>)
(when W, C W,/) and (Fg, Ex(p, — 1)) (when W, € W,) in the category A.
(In fact, we always have the adjunctions in both directions if & # 0 because in
this case the functor Ej, for the category A is just the restriction of the functor
E;, for the category O and similarly for E}.)
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We start from a general lemma. Let A be a finite dimensional Koszul algebra
over C. Let {ex; A € A} be the set of indecomposable idempotents in A. Fix a
subset A’ C A. Assume that the algebra 5/ A (see Section 4.5 for the notations) is
also Koszul. Then we have an algebra isomorphism (5 A)' ~ (A")5/. The graded
algebra oA is a quotient of the graded algebra A by a homogeneous ideal.
In particular we have an inclusion of categories ¢: grmod(aA) — grmod(A).
Moreover, there is a functor

7:grmod(A') — grmod((A')a+), M s ey, M.

The functors ¢ and 7 are both exact. They yield functors between derived
categories 1: D?(5/A) — DP(A) and 7: D?(A"') — Db((A")ar).

Since the algebra A is Koszul, there is a functor K: D¥(A) — D?(A") defined
by K = RHom(Ay, e), see Section 4.3. We will sometimes write 4 to specify
the algebra A.

In the following lemma we identify (4, A)' = (A')/.

Lemma 4.22. We have the following isomorphism of functors D’(;/A) —
D*((A)ar)
Koa=10Kpo0u

Proof. For a complex M € D®(5/A), we have

ToK4o0i(M) T(RHom 4 (Ao, M))
RHom 4 (ep Ag, M)
I%HOII’IA,A((A/A)o7 M)
K, a(M).

R1R1RR

O

Fix a € QF. Consider the category A¥[a] as in Section 2.15. Let u be such
that A”[a] is a subcategory of O,. (Then A”[a + «y] is a subcategory of O},.)
Assume that we have W, C W),,. Assume that v € J,w,, is such that A”[a] is
a subcategory of "Oy; and AV[a+ ag] is a subcategory of Y0y, Put u= wyv L
The category A”[a] is also Koszul. Denote by A”[o] its graded version. The
Koszul dual category to A”[a] is a Serre quotient of the category “Oj , (see
[11, Rem. 3.15]). Let us denote this quotient and its graded version by A’ [a]

and Ki[a] respectively. (We will also use similar notations for A¥[a + ay].)
First, we prove the following lemma.

Lemma 4.23. Assume that we have W,, C W,y and k # 0.
a) The inclusion of categories “O", C “O" ., wyields an inclusion of cate-
v+ v,+
gories AY [o + o] € Al [a]. /
b) The inclusion of categories w0l cuO, yields an inclusion of cate-
v,+ v,+
gories Al [a+ ay] € Al [a].
Assume that we have W, D W and k # 0.
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(¢) The inclusion of categories “Ol , C "05:+ yields an inclusion of cate-
gories At [a] C A [o 4 o). ,
(d) The inclusion of categories “65+ - “65+ yields an inclusion of cate-

gories 11’1/ [a] C K’i [ + a].
Proof. Denote by p; and ps respectively the quotient functors
p1:"0h L = Al [a 4 ayl, p2: "0l — Allal.

To prove (a) and (b), it is enough to prove that each simple module in “05:+
is killed by the functor p; if and only if it is killed by the functor ps. We can
get the combinatorial description of the simple modules killed by p; and ps
respectively using [11, Rem. 2.18].

For each w € *J}, (resp. w € V.J},), the simple module +rw ' (1) is killed by
p1 (resp. po) if and only if the simple module L*(w) € YOy, is not in A¥ e+ o]
(resp. the simple module L*(x) ¢ Y0}, is not in A”[a]). So, we need to show
that for each w € *.J}, the module L) e YOy, is in A”[a + o] if and only
if the module L¥(x) ¢ YO}, is in A”[a]. Finally, we have to show that for each
w € vJ},, we have w(l,/) > p, if and only if we have w(1,) > p,. (Here the
order is as in Section 2.16.)

It is obvious that w(1,) > p, implies w(1l,/) > p, because we have w(1,/) >
w(1l,). Now, let us show the inverse statement. Note that we have w(1l,) =
w(1,) + €, where r € [1, N] is the unique index such that w(1,), = k mod
e. Assume that we have w(1,/) > p, but not w(1,) > p,. Then we have
w(1,)r = (pv)r. Assume first that (p, ), # 1. In particular this implies r < N.
Since the weight w(1,) is in P¥, we have

w(lu’)r-&-l = w(lu)T-H < w(lu)r = (pl/)r —1= (pu)r+1-

This contradicts to w(1,/) > p,. Now, assume that we have (p,), = 1. Since
we have (p,)r = w(1l,y), = k+ 1 mod e, this implies £ = 0. This contradicts
with the assumption k % 0. This proves the statement.

The proof of (¢), (d) is similar to the proof of (a) and (b). O

In the case W, C W/, k # 0, the lemma above allows us to define the
parabolic inclusion functor inc: AY [a 4+ ai] — A/l [a] and the parabolic trun-

cation functor tr: A% [a] — Ai/ [ + ay] and their graded versions inc and tr.
Similarly, in the case W, D W/, k # 0, the lemma above allows us to define

the parabolic inclusion functor inc: AX [a] — Ail [a + a] and the parabolic

truncation functor tr: A‘frl [ + )] = A/ [a] and their graded versions inc and

tr.

Theorem 4.24. Assume that we have W, C W .
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(a) The functor Fy: D'(A¥[a]) — DY(A¥[a + o)) is Koszul dual to the
shifted parabolic truncation functor tr(ug+1): D*(AK [a]) — Db(A“ [a+ ag)).

(b) The functor Ei: D*(AY[a + ai]) — DP(A¥[a]) is Koszul dual to the
parabolic inclusion functor inc: D*(AY [a + oy]) — Db(A’ [a]).

Now, assume that we have W,, C W,.

(c) The functor Fy: D*(A¥[a]) — DP(A¥[a + ay]) is Koszul dual to the
parabolic inclusion functor inc: Db(A% o) — Db(éi [a + ag)).

(d) The functor Ey: D*(A¥[a + ay]) — DP(A¥[a]) is Koszul dual to the
shifted parabolic truncation functor tr(uy — 1): D*(A' [a + ay]) — D*(Al{[a]).

Proof. Let us prove (b).

Let v € J7,w, be such that A”[a] is a subcategory of "0}, and A”[a + ay]
is a subcategory of YO,,. Then the same is true for graded versions. Denote
by i the inclusion functor from A”[a] to ”5Z Let 7:* 65+ — Ai [a] be the
natural quotient functor.

Consider the following diagram

D*(Af[a]) «—— D*(Af [+ ax)

DY(OL,) < DO
dl dl

Db(v6Z) L Db(vév/)

DY(A”[a]) «Z— DY(A’[a + o).

The commutativity of the top and bottom rectangles is obvious. The commuta-
tivity of the middle rectangle follows from Theorem 4.20 (b). Now, by Lemma
4.22, the big rectangle in the diagram above yields the following commutative
diagram

DY(A¥[a]) 2 DP(AY [+ ay))

g d
D'(A”[a]) +"— DP(A¥[a+ ay)).
This proves (b).
Part (a) follows from (b) by adjointness. We can prove (c) in the same way

as (b), using Theorem 4.21 (a). Part (d) follows from (¢) by adjointness.
O
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4.9 Zuckerman functors for the category A,

Fix u € W. The Zuckerman functor Zuc: “oy L — “Oﬁ:+ (see Section 4.6) is a
composition of a parabolic inclusion functor and a parabolic truncation functor
“oy | g “Oﬁ:; 5 “Oﬁ;, where the parabolic type p” is chosen such that
W, = W, N W, (in fact, we can take u” = 1’). Now we are going to give
an analogue of the Zuckerman functor for the category A, i.e., we want to
define a functor Zucy : Ak [a] — A’_f_, [a+ ag]. (Recall th/at the categories A’} [a]
and A [a 4 ay] are Serre quotients of “Oj; . and “Oj, | respectively for u big
enough.) The main difficulty to give such a definition is that we have no obvious
candidate to replace the category uOff:;.

Let us write A instead of A to indicate that the category is defined with
respect to e+1 instead of e. Let us identify A/ [a] ~ Xi [f+a] and Ai/ [atay] ~
Kil [+ @+ @i + a@x11] (see Proposition 2.16). Assume that we have k # 0.
Then by Lemma 4.23 we have the following inclusion of categories

7 __0 R
AB+alc A Bra+a] DAL [B+T+ak + sl

Now, we define the Zuckerman functor Zucy: A% [a] — Ai/ [a + ag] as the
composition of the parabolic inclusion functor with the parabolic truncation
functor

inc

—70 r ’
ALl AN [B+a+an] B A [a+ .

We define the Zuckerman functor Zucy : Ai/ [+ o] = A [a] in a similar way.

We can also define the graded version Z&i of the Zuckerman functors by replac-
ing the functors inc and tr by their graded versions inc and fr. Unfortunately
this approach does not allow to define the Zuckerman functors for £ = 0 be-
cause of the assumption k£ # 0 in Lemma 4.23. The definition of the Zuckerman
functors for kK = 0 will be given in Section 4.11.

4.10 The Koszul dual functors in the category A

As above, we fix k € [0,e — 1] and set i/ = p — . In the following theorem,
we have to assume additionally & # 0.

Theorem 4.25. Assume that we have v, > |a| for each r € [1,1], e > 2 and

k # 0.
(a) The functor Fy: A¥[a] — AY[a+ ai] has a graded lift Fy, such that the

functor Fy: DP(A¥[a]) — D(A”[a + ay)]) is Koszul dual to the shifted Zucker-
man functor ZE:Z@HQ: Db(;&i [a]) — Db(g‘i/ [a+ ag)).

(b) The functor Ey: A¥[a+ax] — AY[a] has a graded lift such that the func-
tor Ex: D*(AY[a + o)) — DY(A¥[a]) is Koszul dual to the shifted Zuckerman

functor Zucy (k. — 1): DY(A% [a + ax]) — D(AY [a]).
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Proof. By Theorem 2.37 we have the following commutative diagram

Fy Fk+1

—— A[B+a+ag + Appd]

A" +a] A'[B+a+a]

A”[q] A% o+ oy

F

Here the vertical maps are some equivalences of categories. By unicity of
Koszul grading (see [3, Cor. 2.5.2]) there exist unique graded lifts of vertical
maps such that they are equivalences of graded categories and they respect the
chosen grading of simple modules (i.e., concentrated in degree 0). Moreover,
the top horizontal maps have graded lifts because for a suitable v we have

A'[p+al c 'Oy,  A'[B+a+ar] C 'O,  A'[B+a+agtagi] C 'Oy

and Wz O Wpo C Wy This implies that there is a graded version ﬁk of
the functor Fj such that it makes the graded version of the diagram above
commutative.

Since the categories A”[a] and A”[8 + @] are equivalent, their Koszul dual
categories are also equivalent. We can chose the equivalences (A”[a])' ~ A% [
and (A”[8 +a))' ~ A'l[a] in such a way that the vertical map in the diagram
is Koszul dual to the identity functor. We can do the same with the categories
in the right part of the diagram above.

By Theorem 4.24, the left top functor in the graded version of the dia-
gram above is Koszul dual to the parabolic inclusion functor inc and the top
right functor in the diagram is Koszul dual to the graded shift tr{ug1) of the
parabolic truncation functor. By definition (see Section 4.6), the Zuckerman
functor is the composition of the parabolic inclusion and the parabolic trunca-
tion functors. This implies that the functor Fj: D*(A¥[a]) — DP(AY[a + ayg])

is Koszul dual to the shifted Zuckerman functor Zvuck (tg+1). This proves (a).
We can prove (b) in the same way. By adjointness, the diagram above yields
a similar diagram for the functor E. This diagram allows to grade the functor
FEj;. Then we deduce the Koszul dual functor to Fj in the same way as in
(a). O

4.11 The case k=0

Now, we are going to get an analogue of Theorem 4.25 in the case k = 0. The
main difficulty in this case is that we cannot define Zuckerman functors for the
category A in the same was as in Section 4.9 because Lemma 4.23 fails. To
fix this problem we replace the category A by a smaller category B.

Assume that we have k¥ = 0 and W, D W,,. In particular this implies
w1 = 0.
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Let B”[a + ap] be the Serre subcategory of A” [+ a) generated by simple
modules L* such that the weight A € P has no coordinates equal to 1. It is a
highest weight subcategory.

Remark 4.26. (a) The category B”[a + o] inherits the Koszul grading from
the category A¥[a + ag] in the following way. We know that there is a Koszul
algebra A such that AY[a + ag] ~ mod(A). Let {ex;A € A} be the set of
indecomposable idempotents of Ayg. Then by [11, Lem. 2.17| there is a subset
A’ C A such that we have A¥[a 4+ ag] ~ mod(a/A) (see Section 4.5 for the
notations). Moreover, the Koszul dual algebra to /A is A',,.

Since, we have mod(A') ~ A’j_/ [+ ap], the Koszul dual category B’j_/ [+ ]

to B¥[a + ap] is a Serre quotient of A’_f_’ [ + ap]. The quotient functor
a Ai/ [ + ag] — B’i, [ + ]
can be seen as the functor
a:mod(A') — mod(AY,), M — ey, M.
(b) The left adjoint functor b: B’i, [+ ap] — A’i’ [+ ap] to a can be seen as
bimod(4},) — mod(4'), M Aley, @y, M.
The functors a and b have obvious graded lifts
a: jii/ [a+ ap] = ﬁi/ [ + o], b: ﬁi/ [ + ap] — K’i’ [ + o).

By Proposition 4.11, the functor b is Koszul dual to the inclusion functor
B¥[a + ag] = A¥[a + ag]. Then, by adjointness, the functor a is Koszul dual
to the right adjoint functor to the inclusion functor above.

It is easy to see from the action of Fj on Verma modules (see Proposition
2.8 (e)) that the image of the functor Fy: A¥[a] — A¥ [+ ] is in BY[ar + ag].
Moreover, recall from Section 2.15 that the functor Eo: O}, — Oy, does not take
A¥[a + o] to A”[a]. (The reader should pay attention to the fact that the
functor Ey for the category A is not defined as the restriction of the functor
Ey for the category O.) However, it is easy to see from the action of Fy on
Verma modules (see Proposition 2.8 (e)) that the functor Ey for the category O
takes BY [+ ] to A¥[«]. Thus we get a functor Ey: BY[a+ag] — A”[a]. This
functor also coincides with the restriction of the functor Fy: A”[a+ag] — A”[q]
to the category B¥[a + ay].

The following statement can be proved in the same way as Lemma 4.23.

Lemma 4.27. Assume that we have W, D W,.

/

a) The inclusion of categories “O! , C “OY . yields an inclusion of cate-
v,+ v,+

gories At [a] C B’j_/ [a + o).

(b) The inclusion of categories “65+ C “65,+ yields an inclusion of cate-
gories Kfﬁ/ [a+ ag] C ﬁi[a]
O
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The lemma above allows us to define the inclusion and the truncation func-
tors inc: Al [a] = BY [a+ag], tr: BY [a+ag] = A/ [a] and their graded versions
inc, tr.

We still assume k = 0 but we do not assume W, D W, any more. We define
the Zuckerman functclrls Zucg for this case. Let us identify Allla] ~ Xi B+ a]
and AY [o+ ay] ~ Xi [ +a+ar + @kt1]- By Lemmas 4.23, 4.27 we have the
following inclusions of categories

xH =n° __50 i
ALp+alcB, [B+a+a), Ay [B+a+a) dAL (B +ata+aml
We define the Zuckerman functor Zucar: A‘fr [a] — A‘frl [a+ap] as the composition

. -0 — . ,
Al B [B+a+a] > AL [B+a+a] 3 A [a+ ag).

Similarly, we define the Zuckerman functor Zuc : A’i’ [ + ap] = Al [a] as the
composition

! inc ——7i° . a =7’ . r n
A la+ao] A [B+a+ao) 5 B [8+a+ao] 5 A%fa).

Replacing the functors inc, tr, a, b by their graded versions i/I\IE, tr, @, b yields
N+ ——
graded versions Zuc, and Zuc, of the Zuckerman functors.
Now, similarly to Theorem 4.24 we can prove the following.

Theorem 4.28. Assume that we have k =0 and W, D W,.

(a) The functor Fy: D*(A¥[a]) — D*(BY[a + ag)) is Koszul dual to the
parabolic inclusion functor inc: D*(A* [a]) — D*(BY [a + ).

(b) The functor Ey: D*(BY [a+aqg]) — Db(A¥[a]) is Koszul dual to the shifted
parabolic truncation functor tr(uy — 1): D*(BY [ + ag]) — D (AK [a]). O

Finally, we get an analogue of Theorem 4.25 in the case k = 0.

Theorem 4.29. Assume that we have v, > |af for each r € [1,1] and e > 2.
(a) The functor Fy: A¥[a] — A¥[a + aq] has a graded lift Fy such that the
functor Fy: D*(A¥[a]) — DY(A”[a + o)) is Koszul dual to the shifted Zucker-
man functor Z;:OJF (p1): Db(gi [a]) — Db(gi/ [a+ ag)).
(b) The functor Ey: A¥[a + ag] — A¥[a] has a graded lift Ey such that the
functor Ey: DY(A”[a 4 ag]) — DY(A¥[a]) is Koszul dual to the shifted Zucker-

man functor Zucy (o — 1): Db(xi [a]) — Db(ji‘fr/ [a+ apl).

Proof. The proof is similar to the proof of Theorem 4.25. To prove (a) we should
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consider the diagram as in the proof of Theorem 4.25 with an additional term.

F —v Fy

A'B+a+a) — A'[f+a+ap+ay

A" +al B3+ @+ @)

AY[a]

o - Ao+ )

We prove (b) in the same way by considering the diagram obtained from the
diagram above by adjointness. Note that in this case we have the adjunction
(Fo, Ep) (and not only (Fy, Fy)) because of the assumption on v. O
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