Surface and length estimation based on Crofton´s formula - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Surface and length estimation based on Crofton´s formula

Résumé

We study the problem of estimating the surface area of the boundary of a sufficiently smooth set when the available information is only a set of points (random or not) that becomes dense (with respect to Hausdorff distance) in the set or the trajectory of a reflected diffusion. We obtain consistency results in this general setup, and we derive rates of convergence for the iid case or when the data corresponds to the trajectory of a reflected Brownian motion. We propose an algorithm based on Crofton's formula, which estimates the number of intersections of random lines with the boundary of the set by counting, in a suitable way (given by the proposed algorithm), the number of intersections with the boundary of two different estimators: the Devroye-Wise esti-mator and the α-convex hull of the data. As a by-product, our results also cover the convex case, for any dimension.
Fichier principal
Vignette du fichier
crofton.pdf (462.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02907297 , version 1 (27-07-2020)
hal-02907297 , version 2 (02-02-2021)
hal-02907297 , version 3 (13-07-2021)
hal-02907297 , version 4 (28-10-2021)
hal-02907297 , version 5 (24-03-2022)

Identifiants

  • HAL Id : hal-02907297 , version 2

Citer

Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman. Surface and length estimation based on Crofton´s formula. 2021. ⟨hal-02907297v2⟩
173 Consultations
748 Téléchargements

Partager

More