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Catherine Aaron, Alejandro Cholaquidis and Ricardo Fraiman
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Abstract

We study the problem of estimating the surface area of the boundary of a sufficiently
smooth set when the available information is only a set of points (random or not) that be-
comes dense (with respect to Hausdorff distance) in the set or the trajectory of a reflected
diffusion. We obtain consistency results in this general setup, and we derive rates of conver-
gence for the iid case or when the data corresponds to the trajectory of a reflected Brownian
motion. We propose an algorithm based on Crofton’s formula, which estimates the number
of intersections of random lines with the boundary of the set by counting, in a suitable way
(given by the proposed algorithm), the number of intersections with the boundary of two
different estimators: the Devroye–Wise estimator and the α-convex hull of the data.

Key Words : Crofton’s formula; Surface estimation; α-convex hull; Devroye-Wise
estimator

1 Introduction

Let S ⊂ R
d be a compact set, we aim to estimate its surface area, i.e. the (d − 1)- Haussdorf

measure of its boundary ∂S. Surface area estimation has been extensively considered in stere-
ology (see Baddeley, Gundersen and Cruz-Orive (1986); Baddeley and Jensen (2005), Gokhale
(1990)). It has also been studied as a further step in the theory of nonparametric set estimation
(see Pateiro-López and Rodŕıguez-Casal (2008)), and has practical applications in medical imag-
ing (see Cuevas, Fraiman, and Rodŕıguez-Casal (2007)). Although the 2–dimensional case has
many significant applications, this is also the case where d = 3, since surface area is an important
biological parameter, in organs such as the lungs. Also surface area estimation is widely used in
magnetic resonance imagining (MRI) techniques. From a theoretically point of view, in Penrose
(2021), the surface area of the boundary plays a significant role as a parameter of a probability
distribution, being able to estimate it allows to apply plug-in methods.

When, as in image analysis, one can observe data points from two distinguishable sets of
random data-points (one from inside S and the other one from outside S), the problem of
the estimation of the surface area of the boundary has been considered, for any d ≥ 2 in
Cuevas, Fraiman, and Rodŕıguez-Casal (2007), Pateiro-López and Rodŕıguez-Casal (2008), Jiménez and Yukich
(2011), Cuevas, Fraiman and Györfi (2013) and Thäle and Yukich (2016).

The three- and two-dimensional cases are addressed in Berrendero et al. (2014), where the
authors propose parametric estimators when the available data are the distances to S, from a
sample outside the set, but at a distance smaller than a given R > 0.

We aim to propose surface area estimators, in any dimension, when the available data is only
a sample in the set S. With such data points only the two dimensional case has been yet studied.
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In dimension 2, under an iid setting, length estimation problem (under convexity assumptions)
has been previously addressed in Bräker and Hsing (1998) using Crofton’s formula. Later on,
still in dimension 2, under the r-convexity assumption, Arias-Castro And Rodŕıguez-Casal (2017)
obtained the convergence of the α-shape’s perimeter to the perimeter of the support. Still in
dimension 2 but when the data comes from reflected Brownian motion, (with and without drift)
a consistency result is obtained in Theorem 4 in Cholaquidis et al. (2016). To estimate surface
area in any dimension, we propose two consistent estimators that are based on Crofton´s formula.

This well-known formula, proved by Crofton in 1868 for dimension two, and extended to
arbitrary dimensions (see Santaló (2004)), states that the surface of ∂S equals the integral of the
number of intersections with ∂S of lines in R

d (see Equations (2) and (3) for explicit Crofton
formulas for d = 2 and d ≥ 2, respectively).

We propose to ‘estimate’ the number of intersections with ∂S of lines, by using two differ-
ent support estimators. First we consider the Devroye–Wise estimator (see Devroye and Wise
(1980)), and next the α-convex hull estimator (see Rodŕıguez-Casal (2007)).

Considering first the Devroye–Wise based estimator, notice that the proposed estimator is
not just a plug-in, because in general the number of intersections of a line with ∂S is different
from the number of intersections of that line with the boundary of the Devroye–Wise estimator.
When we observe X ⊂ S our Crofton-based surface estimator attains a rate proportional to
dH(X, S)1/2 (where dH denotes the Hausdorff distance), this rates being possibly improved to
dH(X, S) when adding a reasonable assumption. This result can be applied to many deterministic
or random situations, to obtain explicit convergence rates. We focus on two random situations:
the case X = Xn = {X1, . . . , Xn} of iid drawn on S (with a density bounded from below by a
positive constant), and the case of random trajectories of reflected diffusions on S. In particular,
we provide convergence rates when the trajectory is the result of a reflected Brownian motion
(see Cholaquidis et al. (2016, 2021)). This last setting has several applications in ethology ,
such as home-range estimation, where the trajectory is obtained by recording the location of
an animal (or several animals) living in an area S that is called the home range (the territorial
range of the animal), and Xt represent the position at time t transmitted by the instrument (see
for instance Cholaquidis et al. (2016, 2021), Báıllo and Chacón (2018) and references therein).
Using tracking and telemetry technology, such GPS, have allowed to collect location data for
animals at an ever-increasing rate and accuracy. The most commonly cited definition of an
animal’s home range goes back to Burt (1943), p. 351: “that area traversed by the individual in
its normal activities of food gathering, mating and caring for young”.

To use Crofton’s formula when the support estimator is the α-convex hull of a sample Xn

(denoted by Cα(Xn)), we first extend the result in Cuevas, Fraiman and Pateiro-López (2012)
and prove that in any dimension the surface area of the hull’s boundary, i.e. |∂Cα(Xn)|d−1,
converges to |∂S|d−1. This result is interesting in itself, but in practice to compute |∂Cα(Xn)|d−1

is difficult, especially for dimension d > 2. However, by means of the Crofton formula, it can
easily be estimated via Monte-Carlo method.

The rest of this paper is organized as follows. In Section 2, we introduce the notation and
some well-known geometric restrictions. Section 3 aims to present Crofton’s formula, first for
dimension two and then for the general case. After that, we introduce the main geometric
restrictions required in one of the main theorems. Section 4 introduces the algorithms from a
mathematical standpoint, and explains the heuristics behind them. The computational aspects
of the algorithms are given in Section 5 and the main results are stated in Section 6, their proofs
are given in the Appendix.
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2 Some preliminaries

The following notation will be used throughout the paper.

Given a set S ⊂ R
d, we denote by S̊, S and ∂S the interior, closure and boundary of S,

respectively, with respect to the usual topology of Rd. We also write diam(S) = sup(x,y)∈S×S ||x−
y||. The parallel set of S of radius ε is be denoted by B(S, ε), that is, B(S, ε) = {y ∈ R

d :
infx∈S ‖y − x‖ ≤ ε}.

If A ⊂ R
d is a Borel set, then |A|d denotes its d-dimensional Lebesgue measure (when within

an integral we will use µd−1). When A ⊂ R
d is a (d − 1)-dimensional manifold then |A|d−1

denotes its (d− 1)-Haussdorf measure.
We denote by B(x, ε) the closed ball in R

d, of radius ε, centred at x, and ωd = |Bd(x, 1)|d.
Given two compact non-empty sets A,C ⊂ R

d, the Hausdorff distance or Hausdorff–Pompei
distance between A and C is defined by

dH(A,C) = inf{ε > 0 : such that A ⊂ B(C, ε) and C ⊂ B(A, ε)}.

The (d−1)-dimensional sphere in R
d is denoted by Sd−1, while the half-sphere in R

d is denoted
by (S+)d−1, i.e, (S+)d−1 = (Rd−1 ×R

+)∩ Sd−1. Given M a sufficiently smooth (d− 1)-manifold
and x ∈ M , we denote by ηx the unit outward normal vector at x. The affine tangent space of
M at x is denoted by TxM .

Given a vector θ ∈ (S+)d−1 and a point y, rθ,y denotes the line {y+ λθ, λ ∈ R}. If y1 and y2
are two points in rθ,y, then yi = y + λiθ; with a slight abuse of notation, we write y1 < y2 when
λ1 < λ2.

We will now recall some well-known shape restrictions in set estimation.

Definition 1. A set S ⊂ R
d is said to be α-convex, for α > 0, if S = Cα(S), where

Cα(S) =
⋂

{

B̊(x,α): B̊(x,α)∩S=∅
}

(

B̊(x, α)
)c

, (1)

is the α-convex hull of S. When S is α-convex, a natural estimator of S from a random sample
Xn of points (drawn from a distribution with support S), is Cα(Xn).

Definition 2. A set S ⊂ R
d is said to satisfy the outside α-rolling condition if for each boundary

point s ∈ ∂S there exists an x ∈ Sc such that B(x, α) ∩ ∂S = {s}. A compact set S is said to
satisfy the inside α-rolling condition if Sc satisfies the outside α-rolling condition at all boundary
points.

3 Crofton’s formula

Crofton in 1868 proved the following result (see Crofton (1868)): given γ a regular plane curve
(i.e. there exists a differentiable parametrization c : [0, 1] → γ ⊂ R

2 such that ||c′(t)|| > 0 for all
t), then its length |γ|1 can be computed by

|γ|1 =
1

2

∫ π

θ=0

∫ +∞

p=−∞

nγ(θ, p)dpdθ, (2)

nγ(θ, p) being the number of intersections of γ with the line rθ∗,θp, where θ∗ ∈ (S+)d−1 is
orthogonal to θ, and dpdθ is 2-dimensional Lebesgue measure, see Figure 1. This result has been
generalized to R

d for any d > 2, and also to Lie groups, see Santaló (2004).

3



Figure 1: The function nγ counts the number of intersections of γ with the line rθ∗,θp determined
by θ and p with the curve.

To introduce the general Crofton’s formula in R
d for a compact (d− 1)-dimensional manifold

M , let us define first the constant

β(d) = Γ(d/2)Γ((d+ 1)/2)−1π−1/2,

where Γ stands for the well known Gamma function. Let θ ∈ (S+)d−1, θ determine a (d − 1)-
dimensional linear space θ⊥ = {v : 〈v, θ〉 = 0}. Given y ∈ θ⊥, let us write nM (θ, y) = #(rθ,y∩M),
where # is the cardinality of the set. see Figure 2.

Figure 2: The line rθ,y = y + λθ is shown, where y ∈ θ⊥ and θ ∈ (S+)d−1.

It is proved in Federer (1969) (see Theorem 3.2.26) that if M is an (d − 1)-dimensional
rectifiable set, then the integralgeometric measure of M (which will be denote by Id−1(M), and
is defined by the right-hand side of 3) equals its (d− 1)-dimensional Hausdorff measure, i.e.,

|M |d−1 = Id−1(M) =
1

β(d)

∫

θ∈(S+)d−1

∫

y∈θ⊥

nM (θ, y)dµd−1(y)dθ. (3)

4



The measure dθ is the uniform measure on (S+)d−1 (with total mass 1).

Remark 1. Throughout this paper we will assume that ∂S is the boundary of a compact set
S ⊂ R

d such that S = int(S). We will also assume that S fulfills the outside and inside α-rolling
condition and then ∂S is rectifiable (see Theorem 1 in Walther, G. (1999)). From this it follows
that Id−1(∂S) = |∂S|d−1 <∞, which implies (by (3)) that, except for a set of measure zero with
respect to dµd−1(y)× dθ, any line rθ,y meets ∂S a finite number of times: n∂S(θ, y) <∞. From
Theorem 1 in Walther, G. (1999), it also follows that ∂S is a C1 manifold, which allows us to
consider for all x ∈ ∂S, ηx, the unit outward normal vector.

For a given θ we will separate the integral with respect to µd−1 in (3), as a sum of two
integrals. In the first one, we will consider the lines (defined by y ∈ θ⊥) that are far (properly
defined later as condition L(ε) in Definition 4) from all of the tangent spaces to ∂S, while in the
second integral we will consider those lines that are close to some tangent space. To control the
measure of these last lines, we need to introduce the following shape restriction.

Definition 3. Let us define Eθ(∂S) = {x ∈ ∂S, 〈ηx, θ〉 = 0} and Fθ its normal projection onto
θ⊥. Let us define, for ε > 0,

ϕθ(ε) =
∣

∣θ⊥ ∩B(Fθ, ε)
∣

∣

d−1
.

We will say that ∂S is (C, ε0)-regular if for all θ and all ε ∈ (0, ε0), ϕ
′
θ(ε) exists and ϕ

′
θ(ε) ≤ C.

When we use the Devroye–Wise estimator we will assume the (C, ε0)-regular boundary con-
dition. Once the rolling balls condition is imposed, we will show through some examples that
the (C, ε0)-regularity of the boundary is not a too restrictive hypothesis.

For instance, a polyhedron with ‘rounded corners’, such as in Figure 3, satisfies the (C, ε0)-
regularity of the boundary. Under regularity and geometric conditions on ∂S, the (C, ε0)-
regularity is related to the conjecture proposed in Alesker (2018).

To find sets that satisfy the inside and outside α rolling ball properties but without a (C, ε0)-
regular boundary, the only case that we were able to construct is a set with some Eθ having
infinitely many connected components, such as the one shown in Figure 6, whose boundary is
locally around some boundary point, the hypograph of the function x5 sin(1/x).

(a) The first set, presented in Figure 3, is a square with ‘round angles’, it has a 2-regular
boundary.

(b) The second set, presented in Figure 4, is a 2-dimensional ‘peanut’ made of 4 arcs of circle.
It has a 6-regular boundary.

(c) The third set, presented in Figure 5, is the surface of revolution generated by (b). The
number of connected components of Eθ is bounded by 3 and the maximal length of a
component is bounded by L, the length of the maximal perimeter (shown in blue in the
figure). Thus, it is C-regular with C ≤ 3L.

(d) The rolling ball condition is not sufficient to guarantee the (C, ε0) regularity of the bound-
ary: this happens if, for instance, we replace in the smooth square shown in (a) a flat piece
of the boundary by the graph of the function x5 sin(1/x). To illustrate this behaviour, Fig-
ure 6 shows a set such that the number of connected components of Eθ (with a horizontal
θ) is infinite.

For the Devroye-Wise type estimator we will also show that the convergence rate is better
when we additionally assume that the number of intersections between any line and ∂S is bounded
from above (that exclude the case of a linear part in ∂S).

Definition 4. Given S ⊂ R
d, we say that ∂S has a bounded number of linear intersections if

there exists NS such that , for all θ ∈ (S+)d−1 and y ∈ θ⊥, n∂S(θ, y) ≤ NS.
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Figure 3: (a) smooth square Figure 4: (b) 2D peanut

Figure 5: (c) 3D peanut Figure 6: (d) an ‘infinite wave’ shape

4 Definitions of the estimators

4.1 Devroye–Wise based approach

To estimate n∂S(θ, y), note that when rθ,y is not included in a (d− 1)-dimensional affine tangent
space (tangent to ∂S), then n∂S(θ, y) = 2kS(θ, y) where kS(θ, y) is the number of connected
components of rθ,y ∩ S.

Given that in general the set S is unknown, the natural idea is to plug into kS an estimator of
S. There are different kinds of set estimators, depending on the geometric restrictions imposed
on S and the structure of the data (see Devroye and Wise (1980), Cholaquidis et al. (2016) and
references therein). One of the most studied in the literature, which is also universally consistent,
is the Devroye–Wise estimator (see Devroye and Wise (1980)), given by

Ŝn(εn) =

n
⋃

i=1

B(Xi, εn),

where εn → 0 is a sequence of positive real numbers. This all-purpose estimator has the advantage
that it is quite easy to compute the intersection of a line with its boundary (i.e. the points in
the line at a distance of exactly εn from the sample). Unfortunately, a direct plug–in estimator
does not provide consistency (i.e. 2kŜn(εn)

(θ, y) does not converges in general to n∂S(θ, y)). It
needs a small adjustment, as we will explain in the following definition.

Definition 5. Consider a line rθ,y. If Ŝn(εn) ∩ rθ,y = ∅, define n̂εn(θ, y) = 0, otherwise:

• denote by I1, . . . , Im the connected components of Ŝn(εn) ∩ rθ,y. Order this sequence in
such a way that Ii = (ai, bi), with a1 < b1 < a2 < b2 < · · · < am < bm.
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• If for some consecutive intervals Ii, Ii+1, . . . , Ii+l−1, for all ai < t < bi+l and t ∈ rθ,y,
d(t,Xn) < 4εn, define Ai = (ai, bi+l−1).

• Let j be the number of disjoint open intervals A1, . . . , Aj that this process ended with. Then
define n̂εn(θ, y) = 2j.

Our first proposed estimator is

Îd−1(∂S) =
1

β(d)

∫

θ∈(S+)d−1

∫

y∈θ⊥

n̂εn(θ, y)dµd−1(y)dθ.

Under the assumption that ∂S has a bounded number of linear intersections (see Definition
4) we will consider, for a given N0 ≥ NS ,

ÎN0

d−1(∂S) =
1

β(d)

∫

θ∈(S+)d−1

∫

y∈θ⊥

min(n̂εn(θ, y), N0)dµd−1(y)dθ.

4.2 α-convex hull based approach

The α-convex hull of a finite set of points Xn (defined by (1) with S = Xn), which is also a consis-
tent estimator of S under some regularity conditions (see for instance Rodŕıguez-Casal (2007)),
has the advantage that the (d − 1)-dimensional Lebesgue measure of its boundary converges to
the (d − 1)-dimensional Lebesgue measure of ∂S (see Theorem 3 below). This, together with
the fact that ∂Cα(Xn) is a rectifiable set (see the comment before Remark 1), suggests using
Crofton’s formula to estimate |∂Cα(Xn)|d−1. Then our second proposed estimator is

ňα(θ, y) = n∂Cα(Xn)(θ, y)

Ǐd−1(∂S) =
1

β(d)

∫

θ∈(S+)d−1

∫

y∈θ⊥

ňα(θ, y)dµd−1(y)dθ.

In this case, the computation of the intersection of a line with ∂Cα(Xn) is not as direct as
in the Devroye–Wise estimator. However, weaker regularity restrictions on ∂S will be required
(see Theorem 2) to get the consistency of Ǐd−1(∂S) with a better convergence rate.

5 Computational and practical aspects of the algorithms

The algorithms to compute n̂εn(θ, y) and ňα(θ, y) work for any finite set Xn (not necessarily
random). The general case for stochastic processes indexed by T ∈ R

+ is obtained by replacing
the set Xn in the algorithm by a discretization of a trajectory of the process observed in [0, T ]
(which is not restrictive since, the trajectories are always stocked as a finite number of points in
a computer).

Let us first describe the algorithms that allows to compute the estimations of n∂S(θ, y) for a
given (θ, y).

5.1 Devroye–Wise based approach

To compute n̂εn(θ, y) for a given (θ, y) we proceed as follows.
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1. Identify the centres Yn′ = {Y1, . . . , Yn′} of the boundary balls of Ŝn(εn) (see Aaron, Cholaquidis and Cuevas
(2017)), i.e., the points Xi ∈ Xn such that

max{||x−Xi|| : x ∈ Vor(Xi)} ≥ εn,

where Vor(Xi) = {x ∈ R
d s.t. for all j : ||x −Xi|| ≤ ||x − Xj||} denotes the Voronoi cell

of Xi.

2. Compute di = d(rθ,y, Yi).

3. Compute the connected components Ii, of rθ,y ∩ Ŝn(Xn),according to the following steps:
Initialize the list of the extremes of these intervals by list= ∅, and then, for i = 1 to n′:

• If di ≤ εn then compute {z1, z2} = B(Yi, εn) ∩ rθ,y.
– For j = 1 to 2: if d(zj ,Xn) ≥ εn do list=list∪{zj}.

The ai and bi (and so the Ii) introduced in Definition 5 are obtained by a sorting procedure
applied to the points zj .

4 Obtain the a′i and b
′
i such that I ′i = (a′i, b

′
i) are the connected components of Ŝ(4εn) ∩ rθ,y

by using the same procedure.

5. Lastly, compute n̂εn(θ, y), as follows:

initialization n̂εn(θ, y) = m. For i = 1 to m− 1

• If there exists k such that (bi, ai+1) ⊂ I ′k then: n̂εn(θ, y) = n̂εn(θ, y)− 1

5.2 α-convex hull based approach

It is much more involved to compute ňα(θ, y): it requires the computation of the α-convex hull,
as well as the convex hull, of the set Xn. Recall that the convex hull of a sample is equal to
the intersection of a finite number of half-spaces. In Edelsbrunner et al. (1983) it is proved, for
dimension 2, but mentioned that the generalization is not difficult, that Cα(Xn)

c is the union
of a finite number of balls and the aforementioned half-spaces. The centres Oi of these balls,
and their radii ri, are obtained by computing the Delaunay complex of the points. Let us write
Cα(Xn)

c =
⋃

iEi, where Ei is either a half-space or a ball. Observe that if the line rθ,y is chosen
at random (w.r.t. dµd−1 × dθ), rθ,y ∩ Ei contains fewer than 3 points.

Initialize list=∅. Then:
for all i,

• compute rθ,y ∩ ∂Ei

• For all z ∈ rθ,y ∩ ∂Ei

1. If for all j z /∈ E̊j do list=list∪{z}

then ň = #list.
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5.3 Integralgeometric estimations via a Monte Carlo method

Once we have estimated n∂S(θ, y) by n̂εn(θ, y) for any given (y, θ), Îd−1(∂S) can be calculated via
the Monte-Carlo method, as follows. Generate a random sample θ1, . . . , θk uniformly distributed
on (S+)d−1. For each i = 1, . . . , k, build a random sample ℵi = {yi1, . . . , yiℓ} uniformly distributed
on the (d − 1)-dimensional hyper-cube [−L,L]d−1 ⊂ θ⊥i , where L = maxj=1,...,n ||Xj||, and
independent of θ1, . . . , θk. Then, the estimators are given by

ˆ̂
I
(ℓ,k)
d−1 (∂S) =

(2L)d−1

β(d)

ℓ

lk

k
∑

i=1

ℓ
∑

j=1

n̂εn(θi, y
i
j) (4)

ˆ̂
I
(ℓ,k,N0)
d−1 (∂S) =

(2L)d−1

β(d)

ℓ

lk

k
∑

i=1

ℓ
∑

j=1

min(n̂εn(θi, y
i
j), N0) (5)

ˇ̌I
(ℓ,k)
d−1 (∂S) =

(2L)d−1

β(d)

ℓ

lk

k
∑

i=1

ℓ
∑

j=1

ňr(θi, y
i
j). (6)

5.4 Parameter Selection

When considering the Devroye-Wise approach we need to choose the parameter εn (and possibly
also the parameter N0) while when considering the α-hull approach it is the parameter α that
has to be chosen. With regard to εn, as mentioned in Cuevas and Rodriguez-Casal (2004), the
choice of 2maximinj ||Xi − Xj || provides a fully data-driven selection method. An automatic
selection method of α is proposed in Rodŕıguez-Casal and Saavedra-Nieves (2019).

6 Main results

In this section we will state our main results. All proofs are given in the Appendix.

6.1 Convergence rates for the Devroye-Wise based estimator under

α-rolling condition and (C, ε0)-regularity.

Theorem 1. Let S ⊂ R
d be a compact set fulfilling the outside and inside α-rolling con-

ditions. Assume also that S is (C, ε0)-regular for some positive constants C and ε0. Let
Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 such that dH(Xn, S) ≤ εn. Then

Îd−1(∂S) = |∂S|d−1 + O(
√
εn).

Moreover, for n large enough,

|O(√εn)| ≤
5Cdiam(S)

6
√
α

√
εn,

C being the constant of the (C, ε0)-regularity of S.

Remark 2. Theorem 4 in Cuevas and Rodriguez-Casal (2004) gives some insight into how to
choose the parameter εn for the the case in which {X1, . . . , Xn} is an iid sample of a ran-
dom vector X supported on S. It states that if εn = C′(log(n)/n)1/d, where C′ is a large
enough positive constant, then with probability one, for n large enough, S ⊂ Ŝn. In addition,
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dH(∂S, ∂Ŝn(εn)) → 0, and dH(S, Ŝn(εn)) → 0. Although this does not imply that |∂Ŝn|d−1

converges to |∂S|d−1, Theorem 1 states that we can consistently estimate the integralgeometric
measure of ∂S by means of Crofton’s formula.

From Remark 2 and the previous theorem, we can obtain the rate of convergence for the iid
case:

Corollary 1. Let S ⊂ R
d be a compact set fulfilling the inside and outside α-rolling conditions.

Assume also that S is (C, ε0)-regular for some positive constants C and ε0. Let X1, . . . , Xn be
an iid sample of X with distribution PX supported on S. Assume that PX has density f (w.r.t.
µd) bounded from below by some c > 0. Let εn = C′(ln(n)/n)1/d and C′ > (6/(cωd))

1/d. Then
with probability one, for n large enough,

Îd−1(∂S) = |∂S|d−1 + O

(( ln(n)

n

)
1
2d
)

.

In a more general setting, the conclusion of Theorem 1 holds when the set of points Xn is
replaced by the trajectory of any stochastic process {Xt}t>0 included in S, observed in [0, T ], such
that dH(XT , S) → 0 as T → ∞. This is the case (for example) of some reflected diffusions and in
particular the reflected Brownian motion (RBM). This has been recently proven in Corollary 1
in Cholaquidis et al. (2016), for RBM without drift (see also Cholaquidis et al. (2021) for RBM
with drift). RBM with drift is defined as follows: let D be a bounded domain in R

d (i.e., a
bounded, connected open set), such that ∂D is C2. Given a d-dimensional Brownian motion
{Bt}t≥0, departing from B0 = 0 and defined on a filtered probability space (Ω,F, {Ft}t≥0,Px),
the RBM with drift is the (unique) solution to the following stochastic differential equation on
D:

Xt = X0 +Bt +

∫ t

0

g(Xs)ds−
∫ t

0

ηXs
ξ(ds), where Xt ∈ D, ∀t ≥ 0,

where the drift, g(x), is assumed to be Lipschitz, and {ξt}t≥0 is the corresponding local time: i.e.,

a one-dimensional continuous non-decreasing process with ξ0 = 0 that satisfies ξt =
∫ t

0 I{Xs∈∂D}dξs.

From Corollary 1 together with Proposition 3 of Cholaquidis et al. (2016), we have the fol-
lowing result for the RBM without drift:

Corollary 2. Let S ⊂ R
d be a non-empty compact set with connected interior such that S =

int(S), and suppose that S fulfills the outside and inside α-rolling conditions. Assume also that
S is (C, ε0)-regular for some positive constants C and ε0. Let {Bt}t>0 ⊂ S be an RBM (without
drift). Then, with probability one, for T large enough,

Îd−1(∂S) = |∂S|d−1 + o
(( ln(T )2

T

)
1
2d
)

.

6.2 Convergence rates for the Devroye-Wise based estimator under α-

rolling condition, (C, ε0)-regularity hypotheses and bounded num-

ber of linear intersections.

If the number of linear intersection of ∂S is assumed to be bounded by a constant NS , the use
of min(n̂εn , N0) (for any N0 ≥ NS) allows us to obtain better convergence rates.
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Theorem 2. Let S ⊂ R
d be a compact set fulfilling the outside and inside α-rolling conditions.

Assume also that S is (C, ε0)-regular for some positive constants C and ε0 and that ∂S has a
number of linear intersection bounded by NS. Let Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 such
that dH(Xn, S) ≤ εn and N0 ≥ NS. Then

ÎN0

d−1(∂S) = |∂S|d−1 + O(εn).

Moreover, for n large enough,
|O(εn)| ≤ 2CN0εn,

C being the constant of the (C, ε0)-regularity of S.

Corollary 3. Let S ⊂ R
d be a compact set fulfilling the inside and outside α-rolling conditions.

Assume also that S is (C, ε0)-regular for some positive constants C and ε0 and that ∂S has a
bounded number of linear intersections. Let X1, . . . , Xn be iid random vectors with distribution
PX , supported on S. Assume that PX has density f (w.r.t. µd) bounded from below by some
c > 0. Let εn = C′(ln(n)/n)1/d and C′ > (6/(cωd))

1/d. Then with probability one, for n large
enough,

ÎN0

d−1(∂S) = |∂S|d−1 + O

(( ln(n)

n

)
1
d
)

.

Corollary 4. Let S ⊂ R
d be a non-empty compact set with connected interior such that S =

int(S), and suppose that S fulfills the outside and inside α-rolling conditions Assume also that
S is (C, ε0)-regular for some positive constants C and ε0 and that ∂S has a number of linear
intersection bounded by NS. Let {Bt}t>0 ⊂ S be an RBM (without drift). Then, with probability
one, for T large enough,

ÎN0

d−1(∂S) = |∂S|d−1 + o
(( ln(T )2

T

)
1
d
)

.

6.3 α′-hull based estimator under α-rolling ball condition

In Arias-Castro And Rodŕıguez-Casal (2017) it has been proved that, in dimension two, under
some regularity assumptions, the length of the boundary of the α-shape of an iid sample converges
to the length of the boundary of the set. The α-shape has the very good property that its
boundary is very easy to compute, and so its surface measure. Unfortunately we are not sure
that the results can be extend to higher dimension. Nevertheless considering the α-convex hull
(which is quite close to the α-shape) allows to extend the results on the surface measure for any
dimension. The price to pay is the difficulty to obtain an explicit formula for the surface measure
of the α-convex hull. We so propose to skip this problem by a Monte-Carlo estimation based on
Crofton’s formula. The following theorem states that the surface measure of the boundary of the
α-convex hull of an iid sample converges to the surface of the boundary of the set. Observe that
in this case, with no need for the additional hypothesis of (C, ε0)-regularity, the convergence rate
is far better than the one obtained with the Devroye–Wise estimator, the price to pay being the
computational cost.

Theorem 3. Let S ⊂ R
d be a compact set fulfilling the inside and outside α-rolling conditions.

Assume also that ∂S is of class C3 Let X1, . . . , Xn be an iid sample of X with distribution PX

supported on S. Assume that PX has density f (w.r.t. µd) bounded from below by some c > 0.
Suppose α′ ≤ α. Then with probability one, for n large enough,

1. ||∂S|d−1 − |∂Cα′(Xn)|d−1| = O((ln(n)/n)2/(d+1)),

2. as a consequence

Ǐd−1(∂S) = |∂S|d−1 + O

(( ln(n)

n

)
2

d+1
)

.
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6.4 On the rates of convergence

• Observe that we obtain the same convergence rate as the one provided in Arias-Castro And Rodŕıguez-Casal
(2017) for d = 2, where is also conjectured as suboptimal with regard to the result
obtained in Korostelëv and Tsybakov (1993) (see Chapter 8). Indeed, as mentioned in
Arias-Castro And Rodŕıguez-Casal (2017), if the measure of the symmetric difference be-
tween S and an estimator Ŝn is bounded by εn, we can only expect that plug–in methods
allow to estimate |∂S|d−1 with a convergence rate εn.

• Thus, in the iid setting, the estimator defined by (6) (respectively (7) to (9)) can be seen
as “optimal” relatively to the use of the Devroye–Wise support estimator (respectively the
α-convex hull support estimator), since they achieve the best possible convergence rate for
those estimators.

• This is nevertheless far from being optimal from a minimax rate. Indeed the minimax rate

can be conjecture to be n− d+3
2d+2 , because it is the minimax rate for the volume estimation

(see Arias-Castro, et al. (2017)) and, in Kim and Korostelëv (2000) it is proved that the
minimax rate is the same for the volume estimation and the surface area estimation (in
the image setting that usually extend to the iid inside setting). Unfortunately finding a
nice bias correction as in Arias-Castro, et al. (2017) for the surface area estimation is much
more involved.

7 Appendix

7.1 Proof of Theorems 1 and 2

Sketch of the proof of Theorems 1 and 2

The idea is to consider separately the set of lines that intersect ∂Sn(εn):

1. If a line rθ,y = y+λθ is ‘far enough’ (fulfilling condition L(ε) for some ε > 0, see Definition
6) from the tangent spaces, then our algorithm allows a perfect estimation of n∂S(y, θ), see
Lemma 4.

2. Considering the set of lines that are not ‘far enough’ from the tangent spaces (denoted by
Aεn(θ)), see Definition 6), Corollary 5 states that, under (C, ǫ0)-regularity, the integral of

n̂ǫn(θ, y) on Aεn(θ) is bounded from above by C′ε
1/2
n , with C′ a positive constant. Theorem

2 states that the previous bound can be improved to C′εn, under (C, ǫ0)-regularity, if ∂S
has a bounded number of linear intersections.

7.1.1 Condition L(ε)

Now we define the two sets of lines to be treated separately: The lines that are ‘far’ from an
affine tangent space, and the lines that are ‘close to being tangent’ to ∂S. More precisely, assume
that ∂S is smooth enough so that for all x ∈ ∂S, the unit outer normal vector ηx at x is well
defined. Now we define

TS = {x+ (ηx)
⊥ : x ∈ ∂S},

the collection of all the affine (d− 1)-dimensional tangent spaces.
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Definition 6. Let ε ≥ 0. A line rθ,y = y+λθ fulfills condition L(ε) if y is at a distance larger
than 4ε from all the affine hyper-planes w + η⊥ ∈ TS satisfying 〈η, θ〉 = 0.

For a given θ, we define

Aε(θ) =
{

y ∈ θ⊥ : ||y|| ≤ diam(S) and rθ,y does not satisfy L(ε)
}

.

7.1.2 Some useful lemmas

Lemma 1. Let S be a compact set fulfilling the outside and inside α-rolling conditions. Let rθ,y
be a line that fulfills condition L(0) and rθ,y∩∂S 6= ∅. Then rθ,y intersects ∂S in a finite number
of points.

Proof. Because S fulfills the outside and inside α-rolling conditions, Theorem 1 in Walther, G.
(1999) implies that for any x ∈ ∂S, the affine (d − 1)-dimensional tangent space Tx∂S exists.
If rθ,y fulfills L(0), then rθ,y is not included in any hyper-plane tangent to S. Suppose that
∂S ∩ rθ,y is not finite. Then, by compactness, one can extract a subsequence t′n that converges
to y′ ∈ ∂S. Note that for all (n, p) ∈ N

2 (t′n − t′n+p)/||t′n − t′n+p|| = ±θ, which implies that
(t′n − y′)/||t′n − y′|| = ±θ. Lastly, if n → ∞, then θ ∈ Ty′∂S. Considering y′, we have y′ ∈ ∂S,
θ ∈ Ty′∂S and y′ ∈ rθ,y, which contradicts the assumption that rθ,y is not included in any
hyper-plane tangent to S.

Lemma 2. Let S ⊂ R
d be a compact set fulfilling the outside and inside α-rolling conditions.

Let ε > 0 such that ε < 4α and ν = 2
√

2ε(α− 2ε). For any line rθ,y fulfilling condition L(ε)
and rθ,y ∩ ∂S 6= ∅, we have that rθ,y meets ∂S at a finite number of points t1, . . . , tk, where
ti+1 − ti > 2ν for all i = 1, . . . , k − 1. Consequently, if ε < α/4, then k ≤ diam(S)ε−1/2/(4

√
α).

Proof. Note that if a line fulfills condition L(ε), then it fulfills condition L(0). Consequently, the
fact that rθ,y intersects ∂S in a finite number of points follows from Lemma 1. Let us denote
by t1 < · · · < tk the intersection of rθ,y with ∂S. Proceeding by contradiction, assume that for
some i, ti+1 − ti < 2ν. Let us denote by ηti and ηti+1 the outer normal vectors at ti and ti+1,
respectively. We have two cases: the open interval (ti, ti+1) ⊂ Sc or (ti, ti+1) ⊂ int(S). Let us
consider the first case (the proof for the second one is similar).

Because (ti, ti+1) ⊂ Sc and S fulfills the inside α-rolling condition on ti, there exists z ∈ S
such that ti ∈ ∂B(z, α) and B(z, α) ⊂ S. In particular, B(z, α) ∩ (ti, ti+1) = ∅, which implies
〈ηti , θ〉 ≥ 0.

Reasoning in the same way but with ti+1, we get 〈ηti+1θ〉 ≤ 0. Given that rθ,y is not
included in any tangent hyperplane, we have that 〈ηti , θ〉 > 0 and 〈ηti+1 , θ〉 < 0. Because
S fulfills the inside and outside α-rolling conditions, ∂S is a (d − 1)-dimensional C1 manifold
whose normal vector is Lipschitz (see Theorem 1 in Walther, G. (1999)). By Theorem 3.8 in
Colesanti and Manselli (2010), there exists a curve γ : [0, 1] → ∂S such that γ(0) = ti, γ(1) = ti+1

and d(γ(t), rθ,y) < 4ε for all t. From 〈ηti , θ〉 > 0 and 〈ηti+1 , θ〉 < 0, it follows that there exists
an s0 ∈ (0, 1) such that 〈ηγ(s0), θ〉 = 0, which contradicts the hypothesis that y is at a distance
larger than 4ε from all the (d − 1)-dimensional hyperplanes tangent to S. This proves that
ti+1 − ti > 2ν for all i = 1, . . . , k − 1.

Lemma 3. Let S ⊂ R
d be a compact set fulfilling the outside and inside α-rolling ball conditions

and with a (C, ε0)-regular boundary. Then for all ε ≤ ε0,

∫

θ∈(S+)d−1

∫

y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤ C
diam(S)

2
√
α

√
ε.
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Moreover if ∂S has bounded number of linear intersections then

∫

θ∈(S+)d−1

∫

y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤ CNSε. (7)

Proof. From the proof of the previous lemma, it follows that for any y ∈ Eθ with d(y, Fθ) = l,
n∂S(θ, y) ≤ diam(S)l−1/2/(4

√
α). Hence,

∫

θ∈(S+)d−1

∫

y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ

=

∫

θ∈(S+)d−1

∫ ε

l=0

∫

{y∈θ⊥:d(y,Fθ)=l}

n∂S(θ, y)dµd−2(y)dldθ

≤
∫

θ∈(S+)d−1

∫ ε

l=0

∫

{y∈θ⊥:d(y,Fθ)=l}

1

4
diam(S)(αl)−1/2dµd−2(y)dldθ

≤
∫

θ∈(S+)d−1

∫ ε

l=0

1

4
diam(S)(αl)−1/2

∫

{y∈θ⊥d(y,Fθ)=l}

dµd−2(y)dldθ

≤
∫

θ∈(S+)d−1

∫ ε

l=0

1

4
diam(S)(αl)−1/2|

{

y ∈ θ⊥ : d(y, Fθ) = l
}

|d−2dldθ.

By the definition of ϕθ,

∣

∣

∣

{

y ∈ θ⊥ : l ≤ d(y, Fθ) ≤ l + dl
}

∣

∣

∣

d−1
= ϕθ(l + dl)− ϕθ(l).

From the (C, ε0)-regularity of ∂S and the mean value theorem we obtain

∣

∣

∣

{

y ∈ θ⊥ : d(y, Fθ) = l
}

∣

∣

∣

d−2
≤ sup

ε∈(0,ε0)

ϕ′
θ(ε) ≤ C,

which implies

∫

θ∈(S+)d−1

∫

y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤
∫

θ∈(S+)d−1

∫ ε

l=0

C
1

4
diam(S)(αl)−1/2dldθ ≤ C

diam(S)

2
√
α

√
ε.

Applying exactly the same calculus, under the hypothesis of bounded number of linear inter-
sections for ∂S, we get

∫

θ∈(S+)d−1

∫

y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤
∫

θ∈(S+)d−1

∫ ε

l=0

CNSdldθ ≤ CNSε.

Lemma 4. Let S be a compact set fulfilling the outside and inside α-rolling conditions. Let
Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 be such that dH(Xn, S) ≤ εn. Let rθ,y = y+ λθ be any line
fulfilling condition L(εn). Then, for n large enough such that 4εn < α, n∂S(θ, y) = n̂εn(θ, y).
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Proof. Note that the choice of εn ensures that S ⊂ Ŝn(εn), thus

rθ,y ∩ S ⊂ rθ,y ∩ Ŝn(εn). (8)

First, we will prove that
n̂εn(θ, y) ≥ n∂S(θ, y). (9)

Because n̂ǫn(θ, y) is not the number of connected components of rθ,y ∩ Ŝn(εn), (9) does not
follow directly from (8). If rθ,y ∩ ∂S = ∅ inequality (9) holds. Assume rθ,y ∩ ∂S 6= ∅. Let
t1 < . . . < tk be the intersection of rθ,y with ∂S (this set is finite due to Lemma 1). Let us prove
that

if (ti, ti+1) ⊂ Sc, then: ∃s ∈ (ti, ti+1) such that d(s, S) > 4εn. (10)

Because S fulfills the inside α-rolling condition on ti, there exists a zi ∈ S such that ti ∈
∂B(z, α) and B(z, α) ⊂ S. Since B(z, α) ∩ (ti, ti+1) = ∅, it follows that 〈ηti , θ〉 ≥ 0 (recall
that ηti = (ti − zi)/α and ti+1 − ti = ||ti+1 − ti||θ). Reasoning in the same way but with ti+1,
〈ηti+1 , θ〉 ≤ 0. By condition L(εn) we obtain

〈ηti , θ〉 > 0 and 〈ηti+1 , θ〉 < 0. (11)

Suppose that for all t ∈ (ti, ti+1) we have d(t, ∂S) ≤ 4εn. Take n large enough such that
4εn < α. Because ∂S fulfills the outside and inside α-rolling conditions, by Lemma 2.3 in
Pateiro-López and Rodŕıguez-Casal (2009) it has positive reach. Then, by Theorem 4.8 in
Federer (1956), γ = {γ(t) = π∂S(t), t ∈ (ti, ti+1)}, the orthogonal projection onto ∂S of the inter-
val (ti, ti+1) is well defined and is a continuous curve in ∂S. By Theorem 1 in Walther, G. (1999),
the map from ∂S to R

d that sends ηx ∈ ∂B(0, 1) to x ∈ ∂S is Lipschitz. Thus, t→ 〈ηγ(t), θ〉 is a
continuous function of t for all t ∈ (ti, ti+1), which, together with (11), ensures the existence of
an s ∈ (ti, ti+1) such that d(s, γ(s)) ≤ 4εn and θ ∈ η⊥γ(s), which contradicts the assumption that

rθ,y fulfills condition L(εn). This proves (10), which implies that

if (ti, ti+1) ⊂ Sc, then: ∃s ∈ (ti, ti+1) such that d(s,Xn) > 4εn

and now (9) follows from (8).

Next we will prove the opposite inequality,

n̂εn(θ, y) ≤ n∂S(θ, y). (12)

Assume first rθ,y ∩ ∂S 6= ∅. Let {t1, . . . , tk} be the intersection of rθ,y with ∂S (this set is
finite due to Lemma 1).

Consider t∗ ∈ (ti, ti+1) ⊂ Sc and t∗ ∈ Ŝn(εn). Equation (12) will be derived from the fact
that (t∗, ti+1] ⊂ Ŝn(εn) ∩ rθ,y or [ti, t

∗) ⊂ Ŝn(εn) ∩ rθ,y.
Introduce ψ(t) : (ti, ti+1) → R defined by ψ(t) = d(t, ∂S). Consider points t such that

d(t, ∂S) < α, and let pt ∈ ∂S such that ||pt − t|| = d(t, ∂S). By item (3) in Theorem 4.8 in
Federer (1956), ψ′(t) = 〈ηpt

, θ〉.
Let Xj be the closest observation to t∗ (recall that because t∗ ∈ Ŝn(εn), we have ||Xj − t∗|| ≤

εn). Now, because there exists a point p∗ ∈ [t,Xj ]∩ ∂S, we obtain that ψ(t∗) ≤ εn and, because
rθ,y fulfills L(εn), 〈ηpt∗

, θ〉 6= 0.
Assume that, for instance, 〈ηpt∗

, θ〉 < 0. Then ψ(t∗) ≤ εn and ψ′(t∗) < 0. Suppose that
there exists a t′ ∈ (t∗, ti+1) such that ψ(t′) ≥ εn and consider t′′ = inf{t > t∗, ψ(t′) ≥ εn}. Then
for all t ∈ (t∗, t′′) we have ψ(t) ≤ εn, and thus ψ is differentiable on this interval. From the fact
that ψ(t′′) ≥ ψ(t∗) and ψ′(t∗) < 0 we deduce that there exists a t̃ ∈ (t∗, t′′) such that ψ′(t̃) = 0,
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which contradicts L(εn) because ψ(t̃) ≤ εn. To summarize, we have shown that if 〈ηpt∗
, θ〉 < 0,

then (t∗, ti+1) ⊂ Ŝn(εn). Symmetrically, if 〈ηpt∗
, θ〉 > 0, then (ti, t

∗) ⊂ Ŝn(εn), which concludes
the proof.
Reasoning in the same way, if rθ,y ∩ ∂S = ∅ and n̂εn(θ, y) > 0, a contradiction with condition
L(ǫn) is obtained.

Lemma 5. Let S ⊂ R
d be a compact set fulfilling the outside and inside α-rolling conditions. Let

εn → 0 be a sequence such that dH(Xn, S) ≤ εn, while rθ,y = y + λθ and A1, . . . , Ak are the sets
in Definition 5. Put Ai = (ai, bi) for i = 1, . . . , k, and suppose that the sets are indexed in such
a way that a1 < b1 < a2 < . . . < bk. Then for all i = 2, . . . , k, we have that ||ai− bi−1|| > 3

√
εnα

for n large enough such that 3
√
αεn < α/2 and εn < α/2, which implies

n̂εn(θ, y) ≤
diam(S)

3
√
α

ε−1/2
n .

Proof. Assume by contradiction that for some i, ||ai − bi−1|| ≤ 3
√
εnα. By construction,

[bi−1, ai] ⊂ Ŝn(εn)
c ⊂ Sc. Because ai and bi are on ∂Ŝn(εn), we have d(ai,Xn) = d(bi−1,Xn) =

εn.
The projection πS : [bi−1, ai] → ∂S is uniquely defined because ∂S has reach at least α and

d(t, ∂S) ≤ d(t, ai)+d(ai, ∂S) ≤ ||ai−bi−1||+d(ai,Xn) for all t ∈ (bi−1, ai), ||ai−bi−1|| ≤ 3
√
εnα <

α/2 and d(ai, ∂S) ≤ εn ≤ α/2. Moreover, π is a continuous function. Hence maxx∈[bi−1,ai] ||x−
πS(x)|| ≥ εn, and the maximum is attained at some x0 ∈ [bi−1, ai]. We will prove that ||x0 −
πS(x0)|| ≥ 3εn, which guarantees that x0 ∈ (bi−1, ai) and that η0, the outward unit normal
vector to ∂S at πS(x0), is normal to θ. Indeed, suppose by contradiction that for all t ∈ (bi−1, ai),
d(t, ∂S) ≤ 3εn. Then d(t,Xn) ≤ 4εn, which contradicts the definition of the points ai and bi.
Put z0 = πS(x0) + η0α. Observe that d(ai, S) ≤ εn and d(bi−1, S) ≤ εn. From the outside
α-rolling condition at πS(x0), and using the fact that η0 is normal to θ, we have (see Figure 7)

rθ,y ∩B(z0, α− εn) ⊂ [bi−1, ai],

which implies, see Figure 7, that ||ai− bi−1|| ≥ 2
√

(α− εn)2 − (α− l)2, where l = d(x0, πS(x0)).
Therefore,

||ai − bi−1|| ≥ 2
√

(l − εn)(2α− l− εn). (13)

If we bound l ≥ 3εn and use the fact that l = o(1), which follows from l ≤ ||bi−1− ai||+ εn ≤
3
√
εnα+ εn, then we get, from (13),

||ai − bi−1|| ≥ 2
√

2εn(2α− l − εn) = 2
√

4εnα(1 + o(1))) = 4
√
αεn(1 + o(1)),

and for n large enough this contradicts ||ai − bi−1|| ≤ 3
√
αεn.

Lastly, the number of disjoint intervals Ai is bounded from above by diam(S)/(3
√
εnα). Thus,

n̂εn(θ, y) ≤ diam(S)/(3
√
εnα).

Corollary 5. Let S ⊂ R
d be a compact set fulfilling the outside and inside α-rolling conditions

and with a (C, ε0)-regular boundary. For n large enough such that 3
√
αεn < min(α/2, ε0), we

have
∫

θ

∫

y∈Aεn(θ)

n̂εn(θ, y)dµd−1(y)dθ ≤ C
diam(S)

3
√
α

√
εn.
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Figure 7: ||ai − bi−1|| ≥ 2
√

(α− εn)2 − (α − l)2, where l = d(x0, πS(x0)).

7.1.3 Proof of Theorem 1

Without loss of generality, we can assume that 0 ∈ S. Recall that for θ ∈ (S+)d−1, Aεn(θ) is the
set of all y ∈ θ⊥ such that ||y|| ≤ diam(S) and rθ,y does not fulfill L(εn). First, from Lemma 4,
we have

|Id−1(∂S)− Îd−1(∂S)| ≤
1

β(d)

∫

θ∈(S+)d−1

∫

y∈Aεn(θ)

|n̂εn(θ, y)− n∂S(θ, y)|dµd−1(y)dθ.

So, by the triangle inequality we can bound the difference between the integralgeometric and its
estimation by

1

β(d)

∫

θ∈(S+)d−1

∫

y∈Aεn (θ)

n̂εn(θ, y)dµd−1(y)dθ+

1

β(d)

∫

θ∈(S+)d−1

∫

y∈Aεn(θ)

n∂S(θ, y)dµd−1(y)dθ.

Now, by applying Corollaries 5 and Lemma 3, we get that

|Id−1(∂S)− Îd−1(∂S)| ≤
5Cdiam(S)

6β(d)
√
α

√
εn,

for n large enough.

7.1.4 Proof of Theorem 2

The proof of Theorem 2 is basically the same than the previous one. Since N0 ≥ NS Lemma
4 ensures that, for all ry,θ not in Aεn(θ), min(n̂(θ, y), N0) = n∂S(θ, y), for n large enough such
that 4ǫn < α thus we still have, for n large enough,

|Id−1(∂S)− Îd−1(∂S)| ≤
1

β(d)

∫

θ∈(S+)d−1

∫

y∈Aεn(θ)

|n̂εn(θ, y)− n∂S(θ, y)|dµd−1(y)dθ.
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So, by the triangle inequality we can bound the difference between the integralgeometric and its
estimation by

1

β(d)

∫

θ∈(S+)d−1

∫

y∈Aεn (θ)

n∂S(θ, y)dµd−1(y)dθ+

1

β(d)

∫

θ∈(S+)d−1

∫

y∈Aεn (θ)

n̂εn(θ, y)dµd−1(y)dθ.

Now, by applying (7) for the first part and a similar calculus for the second part we get that

|Id−1(∂S)− Îd−1(∂S)| ≤ C(NS +N0)ε

for n large enough.

7.2 Proof of Theorem 3

Theorem 3 will be obtained from the two following lemmas. The first one states that eventually
almost surely, the boundary of the α′-convex hull of an iid sample drawn on a α-convex support
has some good geometrical properties.

The second one, which is purely geometric, bounds the difference between the measures of
two sets, the first one having a positive reach α (as ∂S) and the second one having the same
good geometrical properties as the boundary of Cα(Xn).

We will introduce some notation. Let A and B be two sub-spaces of Rd. We denote by
∡(A,B) the operator norm of the difference between the orthogonal projection onto A, πA, and
the projection onto B, πB , i.e., ∡(A,B) = ||πA − πB||op. If f is a function, then ∇f is its
gradient and Hf is its Hessian matrix. Given a point x in a (d − 1)-dimensional manifold E,
NxE = {v ∈ R

d : 〈v, u〉 = 0, ∀v ∈ TxE} is the 1-dimensional orthogonal subspace. If A = (ai,j)i,j
is a matrix, ||A||∞ = maxi,j |ai,j |.

Lemma 6. Let S ⊂ R
d be a compact set fulfilling the inside and outside α-rolling conditions.

Let {X1, . . . , Xn} be an iid sample of X with distribution PX supported on S. Assume that PX

has density f (w.r.t µd) bounded from below by some f0 > 0. Then, for each α′ ≤ α, there exists
an a = a(α, α′) and a c = c(α, α′) such that with probability one, for n large enough,

1. ∂Cα′(Xn) ∩ ∂S = ∅

2. ∂Cα′(Xn) =
⋃m

i=1 Fi, where Fi is a compact (d − 1)-dimensional C2 manifold, for all
i = 1, . . . ,m.

3. dH(∂Cα′(Xn), S) ≤ ε2n < reach(E), with εn = a(ln(n)/n)1/(d+1).

4. π∂S : ∂Cα′(Xn) → ∂S the orthogonal projection onto ∂S is one to one.

5. For all i = 1, . . . ,m and all x ∈ Fi, ∡(NxFi, Nπ∂S(x)∂S) ≤ cεn.

Proof. 1. Note that ∂S ∩ ∂Cα′(Xn) 6= ∅ implies that Xn ∩ ∂S 6= ∅, which is an event with null
probability, and so

P(∂S ∩ ∂Cα′(Xn) 6= ∅) = 0,

which proves that condition 1 is fulfilled.
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2. Observe that ∂Cα′(Xn) is a finite union of subsets of hyper-spheres of radius α′ (this is
proven in Edelsbrunner et al. (1983) for dimension 2, and the generalization to any dimen-
sion is easy). This proves condition 2.

3. Recall that in Rodŕıguez-Casal (2007) it is proven that for any α′ ≤ α there exists an a
such that, with probability one for n large enough,

dH(∂Cα′(Xn), ∂S) ≤ a2(ln(n)/n)2/(d+1). (14)

Hence, dH(∂Cα′(Xn), ∂S) < reach(S) = α, with probability one for n large enough. This
proves condition 3.

4. To prove 4 and 5 let x ∈ ∂Cα′(Xn), and put x∗ = π∂S(x), with η̂x the outward unit normal
vector of ∂Cα′(Xn) at x and ηx∗ the outward unit normal vector of ∂S at x∗. We are going

to prove that if equation (14) holds and a2 (ln(n)/n)
2

d+1 ≤ α/2, then

1− 〈η̂x, ηx∗〉 ≤ 2(α+ α′)

αα′
a2
(

ln(n)

n

)
2

d+1

. (15)

Put O = x+ α′η̂x and O∗ = x∗ − αηx∗ (see Figure 8), we will prove that

B(O,α′) ⊂ Cα′(Xn)
c and B(O∗, α) ⊂ S. (16)

To prove the first inclusion, observe that ∂Cr(Xn) is a union of a finite number of subsets
of ∂B(Oi, α

′) for some centres Oi, such that B(Oi, α
′) ⊂ Cα′(Xn)

c. Now, if x ∈ ∂B(O,α′)
(with O one of these centres), it follows that (O− x)/α′ is the outward unit normal vector
of ∂Cα′(Xn) at x, which concludes the proof. The second inclusion is a direct consequence
the inner rolling ball condition.

Write y∗ = [O∗, O] ∩ ∂B(O∗, α) and y = [O∗, O] ∩ ∂B(O,α′). Then, from the second
inclusion in (16), we get y ∈ S, and from the first inclusion in (16) we get d(y, Cα′(Xn)) ≥
||y−y∗||. This fact, combined with (14), implies that ||y−y∗|| ≤ a2(ln(n)/n)2/(d+1), which
in turn implies

α+ α′ − ||O −O∗|| ≤ a2
( ln(n)

n

)
2

d+1

. (17)

Figure 8: x ∈ ∂Cα′(Xn), x
∗ = π∂S(x), O = x+ α′η̂x and O∗ = x∗ − αηx∗
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From x∗ = π∂S(x) we get that x∗ = x + lηx∗ where l = ||x − x∗|| ≤ a2(ln(n)/n)2/(d+1).
Then O = O∗ + (α− l)ηx∗ + α′η̂x and

α+ α′ − ||O −O∗|| = α+ α′ −
√

(α′)2 + (α− l)2 + 2α′(α− l)〈η̂x, ηx∗〉
= α+ α′ −

√

(α′ + α− l)2 − 2α′(α− l)(1− 〈η̂x, ηx∗〉)

= α+ α′ − (α′ + α− l)

√

1− 2α′(α− l)(1− 〈η̂x, ηx∗〉)
(α′ + α− l)2

≥ l +
α′(α − l)(1− 〈η̂x, ηx∗〉)

α+ α′ − l
≥ α′α(1 − 〈η̂x, ηx∗〉)

2(α+ α′)
,

where in the first inequality of the last line we bounded
√

1− 2B/A2 ≤ A(1 − B/A2) =
A−B/A, and in the last inequality α− l ≥ α/2.

This combined with (17) proves (15).

Next we show that from (15) it follows that the hypotheses 4) and 5) in Lemma 7 are ful-
filled (with probability one for n large enough). The proof of the bijectivity of π∂S restricted
to ∂Cα′(Xn) follows the same ideas as those used to prove Theorem 3 in Aaron and Bodart
(2016). The surjectivity follows from (14) and the rolling ball conditions, while the injectiv-
ity is a consequence of 〈η̂x, ηx∗〉 > 0. To prove this last assertion, observe that if injectivity
is not true, there exists a y ∈ ∂S such that the half-line {y+tηy, t ≥ 0} intersects ∂Cα′(Xn)
a first time pointing inside Cα′(Xn) and then a second time ‘pointing outside Cα′(Xn)’ and
at this second point we have 〈η̂x, ηx∗〉 ≤ 0.

Finally, Equation ( 15) implies that

cos(∡(η̂x, ηx∗)) ≥ 1− 2(α+ α′)

αα′
a2
(

ln(n)

n

)
2

d+1

,

and so

∡(η̂x, ηx∗) = ∡

(

Nx∂Cα′(Xn), Nπ∂S(x)∂S
)

≤ 2a

√

α+ α′

αα′

(

ln(n)

n

)
1

d+1

.

Lemma 7. Let E ⊂ R
d be a compact (d− 1)-dimensional C3 manifold with positive reach α. Let

ε > 0 and Ê ⊂ R
d be a set such that

1. Ê ∩ E = ∅.

2. Ê =
⋃m

i=1 Fi, where Fi is a compact (d− 1)-dimensional C2 manifold, for all i = 1, . . . ,m.

3. dH(Ê, E) ≤ ε2 < reach(E).

4. πE : Ê → E the orthogonal projection onto E is one to one.

5. For all i = 1, . . . ,m and all x ∈ Fi, ∠(NxFi, NπE(x)E) ≤ cε.

Also, assume that ε is small enough to ensure,

2ε2α+ (d− 1)ε4α2 +
c2ε2

(1− cε)2
(1 + dε2)2 < (d− 1)−3/2. (18)
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Then,

(

1− (d− 1)
3
2 (2α+ c2)ε2 +O(ε4)

)
d−1
2 ≤ |Ê|d−1

|E|d−1
≤
(

1 + (d− 1)
3
2 (2α+ c2)ε2 +O(ε4)

)
d−1
2

.

Proof. Fix t > 0. We will prove first that E can be partitioned into m connected sets G1, . . . , Gm

such that:

1. |Gi ∩Gj |d−1 = 0 for all i 6= j.

2. there exist I(i) ∈ N such that π−1
E (Gi) ⊂ FI(i), for each i = 1, . . . ,m.

3. for each i = 1, . . . ,m there exists an orthonormal basis (e1, . . . , ed) of R
d, Hi ⊂ R

d−1, and
functions fi : Hi → R, C2 such that:

Gi =
{

(x, fi(x1, . . . , xd−1)) : x =

d−1
∑

i=1

xiei ∈ Hi

}

.

4. maxi(maxx∈Gi
||∇fi(x)||∞) ≤ t and maxi(maxx∈Gi

||Hfi (x)||op) ≤ α+ t.

We provide a sketch of the proof, leaving the details to the reader. For any x ∈ E, consider
the parametrization ϕx : TxE ∩ B(x, rx) → E such that ∇ϕx(x) = 0 and Hϕx

(x) is the second
fundamental form, which is bounded by α in all directions (see Proposition 6.1 in Niyogi et al.
(2008)). The regularity conditions on E allow finding a radius rx > 0 such that for all y ∈
B(x, rx), ||∇ϕx(y)||∞ < t, and ||Hϕx

(y)||op < α + t. By compactness there exists a finite
covering of E by balls B(x1, r1), . . . ,B(xm, rm), from which we extract only the Voronoi cells of
{x1, . . . , xm}. Let us denote by Vi the Voronoi cell of xi. Lastly, the family of sets {Vi∩πE(Fj)}i,j
is the required partition.

We will now introduce, for x ∈ Hi, Ji(x) the block matrix Ji(x) = (Id−1,∇fi(x))′. Ob-
serve that this is the Jacobian matrix of the parametrization ϕx. Also Ji(x)

′Ji(x) = Id−1 +
∇fi(x)∇fi(x)′. Now if v is any vector orthogonal to ∇fi(x), J ′

i(x)J(x)v = v, and it follows that
1 is an eigenvalue of J ′

i(x)Ji(x) with multiplicity d− 1. On the other hand, J ′
i(x)Ji(x)∇fi(x) =

(1 + ||∇fi(x)||2)∇fi(x) = ||nx||2∇fi(x), where nx = (−∇fi(x), 1) ∈ N(x,f(x))Gi. Then,

|Gi|d−1 =

∫

Hi

√

detJi(x)′Ji(x)dx =

∫

Hi

||nx||2dx,

from which it follows that

|Hi|d−1 ≤ |Gi|d−1 ≤ (1 + t)|Hi|d−1. (19)

Because dH(Ê, E) < reach(E), by item (3) in Theorem 4.8 in Federer (1956) there exists a
function l such that for all (x, fi(x)) ∈ Gi and y = π−1

E ((x, fi(x))) ∈ Ê, we have that y = x +

fi(x)ed + l(x)nx with |l(x)|/||nx||2 = d(y, E) > 0, because Ê ∩E = ∅. Then l(x) = ||nx||2d(y, E)
or l(x) = −||nx||2d(y, E). Since the sets Fj are of class C2, again by item (3) in Theorem 4.8 in
Federer (1956) l(x) is of class at least C1. By differentiation, for j ∈ {1, . . . , d−1} let t̂j = dy/dxj
be the following vector of TyÊ,

t̂j = ej +
∂fi
∂xj

(x)ed +
∂l

∂xj
(x)nx − l(x)

(

d−1
∑

k=1

∂2fi
∂xj∂xk

(x)ek

)

. (20)
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This implies that

||t̂j || ≤ 1 + t+ d(α+ t)ε2 +

∣

∣

∣

∣

∂l

∂xj

∣

∣

∣

∣

. (21)

Since t̂j ∈ TyÊ, πNyFI(i)
(t̂j) = 0, thus by Hypothesis 5 we have ||πNxE(t̂j)|| ≤ cε||t̂j || that is:

∣

∣

∣

∣

∣

∂l

∂xj
(x) +

l(x)

||nx||2

(

d−1
∑

k=1

∂2fi
∂xj∂xk

(x)
∂fi
∂xk

(x)

)
∣

∣

∣

∣

∣

≤ cε||t̂j ||,

which gives that
∣

∣

∣

∣

∂l

∂xj

∣

∣

∣

∣

≤ cε||t̂j ||+ ε2d(α+ t)t (22)

Thus, from (21) and (22) we obtain that:

||∇l(x)||∞ ≤ cε(1 + t) + d(α+ t)ε2(t+ cε)

1− cε
(23)

This bound on ||∇l||∞ allows to bound the surface estimation. Indeed, using a change of variables,
it turns out that

|π−1
E (Gi)|d−1 =

∫

Hi

√

det
(

Ĵi(x)′Ĵi(x)
)

dx, (24)

where, from (20),

Ĵi(x) =

(

Id−1 − l(x)Hfi (x)
∇fi(x)

)

+ n′
x∇l(x)

=

(

Id−1 − l(x)Hfi (x) + (∇f(x))′∇l(x)
∇fi(x) +∇l(x)

)

=

(

Id−1 + E(x)
u(x)

)

.

thus Ĵ ′
i Ĵi = Id−1 + E′ + E + E′E + u′u = Id−1 + Si where Si is diagonalizable and ||Si||∞ ≤

2||E||∞ + (d − 1)||E||2∞ + (||∇fi(x) + ∇l(x)||∞)2 and so, using that ||Hfi(x)||∞ < α + t and
||∇fi(x)||∞ < t, we get,

||Si||∞ ≤ 2(ε2(α+ t) + t||∇l(x)||∞) + (d− 1)(ε2(α+ t) + t||∇l(x)||∞)2 +(t+ ||∇l(x)||∞)2. (25)

If we combine (23) with (18), and choose t small enough to guarantee ||Si||∞ < (d − 1)−3/2,
then ρ(Si) ≤ (d − 1)3/2||Si||∞ < 1, ρ(Si) being the spectral radius of Si. Indeed, let u be a
unit eigenvector associated to the eigen value λ we have Siu = λu, and so |λ|2 = ||Siu||2 =
∑

k

(

∑

j Sk,juj

)2

≤∑k

(

∑

j Sk,j

)2

||u||2 ≤ (d− 1)((d− 1)||Si||∞)2. From (24), we get,

|Hi|d−1(1− (d− 1)
3
2 ||Si||∞)

d−1
2 ≤ |π−1

E (Gi)|d−1 ≤ |Hi|d−1(1 + (d− 1)
3
2 ||Si||∞)

d−1
2 .

By (19) it follows that,

|Gi|d−1

1 + t
(1− (d− 1)

3
2 ||Si||∞)

d−1
2 ≤ |π−1

E (Gi)|d−1 ≤ |Gi|d−1(1 + (d− 1)
3
2 ||Si||∞)

d−1
2 .

Lastly, if we sum on i theses equations, use the uniform bound on ||Si||∞ obtained in (25), and
take t→ 0, we get

(

1− (d− 1)3/2ε′
)

d−1
2 ≤ |Ê|d−1

|E|d−1
≤
(

1 + (d− 1)3/2ε′
)

d−1
2

.

Where ε′ = 2αε2 + (d− 1)ε4α2 +
c2ε2

(1− cε)2
(1 + dε2)2,

which concludes the proof of the Lemma.
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7.2.1 Proof of Theorem 3

Lemma 6 proves that all the hypotheses of Lemma 7 are fulfilled (with probability one for n
large enough) with E = ∂S, Ê = ∂Cα′(Xn), εn = a(ln(n)/n)1/(d+1) and c > 2

√

(α+ α′)/(αα′).
Lastly, we obtain that, with probability one, for n large enough,

∣

∣|∂S|d−1 − |∂Cα′(Xn)|d−1

∣

∣ = O
(( ln(n)

n

)
2

d+1
)

.

Conclusion 2 of the theorem is a consequence of Theorem 3.2.26 in Federer (1969), (see page
261).
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Cuevas, A., Fraiman, R., and Rodŕıguez-Casal, A. (2007). A nonparametric approach to the
estimation of lengths and surface areas. Ann. Statist. 35(3) 1031–1051.
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Pateiro-López, B. and Rodŕıguez-Casal, A. (2008). Length and surface area estimation under
smoothness restrictions. Advances in Applied Probability 40(2) 348–358.
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