Stability estimates for reconstruction from the Fourier transform on the ball - Archive ouverte HAL
Article Dans Une Revue Journal of Inverse and Ill-posed Problems Année : 2021

Stability estimates for reconstruction from the Fourier transform on the ball

Résumé

Abstract We prove Hölder-logarithmic stability estimates for the problem of finding an integrable function v on ℝ d {{\mathbb{R}}^{d}} with a super-exponential decay at infinity from its Fourier transform ℱ ⁢ v {\mathcal{F}v} given on the ball B r {B_{r}} . These estimates arise from a Hölder-stable extrapolation of ℱ ⁢ v {\mathcal{F}v} from B r {B_{r}} to a larger ball. We also present instability examples showing an optimality of our results.
We prove Hölder-logarithmic stability estimates for the problem of finding an integrable function v on R^d with a super-exponential decay at infinity from its Fourier transform Fv given on the ball B_r. These estimates arise from a Hölder-stable extrapolation of Fv from B_r to a larger ball. We also present instability examples showing an optimality of our results.
Fichier principal
Vignette du fichier
HLS_Fourier2.pdf (310.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02906953 , version 1 (26-07-2020)

Identifiants

Citer

Mikhail Isaev, Roman Novikov. Stability estimates for reconstruction from the Fourier transform on the ball. Journal of Inverse and Ill-posed Problems, 2021, 29 (3), pp.421-433. ⟨10.1515/jiip-2020-0106⟩. ⟨hal-02906953⟩
90 Consultations
58 Téléchargements

Altmetric

Partager

More