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Abstract

We prove Hölder-logarithmic stability estimates for the problem of finding an

integrable function v on Rd with a super-exponential decay at infinity from its

Fourier transform Fv given on the ball Br. These estimates arise from a Hölder-

stable extrapolation of Fv from Br to a larger ball. We also present instability

examples showing an optimality of our results.
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1 Introduction

We consider the classical Fourier transform F defined by

Fv(ξ) := 1
(2π)d

∫
Rd

eiξxv(x)dx, ξ ∈ Rd,
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where v is a test function on Rd and d ≥ 1. Let

Br :=
{
ξ ∈ Rd : |ξ| < r

}
, where r > 0.

Assume that v is integrable and, for some N, σ > 0 and ν ≥ 1, we have that

Qv(λ) := 1
(2π)d

∫
Rd

eλ|x||v(x)|dx ≤ N exp (σλν) , for all λ ≥ 0. (1.1)

Remark 1.1. In particular, for the case of ν = 1, the class of functions satisfying (1.1)

includes all functions v with supp v ⊂ Bσ and 1
(2π)d

‖v‖L1(Rd) ≤ N . Furthermore, if v is

such that

|v(x)| ≤ C exp (−µ|x|η) for some µ,C > 0 and η > 1,

then assumption (1.1) holds with ν := η
η−1 and with some positive constants σ = σ(µ, η)

and N = N(C, µ, η, d).

Under assumption (1.1), we consider the following two problems:

Problem 1.1. Given Fv on the ball Br. Find v.

Problem 1.2. Given Fv on the ball Br. Find Fv on BR, where R > r.

Problems 1.1 and 1.2 are fundamental in the theory of inverse coefficient problems. For

example, Problem 1.1 with r = 2
√
E can be regarded as a linearized inverse scattering

problem for the Schrödinger equation with potential v at fixed positive energy E, for

d ≥ 2, and on the the energy interval [0, E], for d ≥ 1. More details can be found in

[12, Section 4]. Problem 1.1 with r = ω0 also arises in a multi-frequency inverse source

problem for the homogeneous Helmholtz equation with frequencies ω ∈ [0, ω0]; see Bao et

al. [2, Section 3] for more details. In addition, in many cases, Problem 1.2 is an essential

step for solving Problem 1.1. For more applications related to Problems 1.1 and 1.2 in

the case of compactly supported v, see [8] and references therein.

The present work continues the studies of our recent article [8], which considers the

case of compactly supported functions v. Besides, in [8], we deal with reconstructions of

Fv on [−R,R]d and v on Rd from Fv given on the cube [−r, r]d, in place of the balls BR

and Br. Due to the equivalence of ‖·‖2 -norm and ‖·‖∞-norm in Rd, these formulations are

essentially equivalent, but BR and Br are more natural in the context of inverse problems.

In the present work, under assumption (1.1), we give Hölder-logarithmic stability

estimates for Problem 1.1 in the norm of L∞(Rd) and of Hs(Rd), for any real s; see

Section 3. (Note that the stability estimates of [8] are given in the norm of L2(Rd)
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only.) In addition, we obtain Hölder stability estimates for Problem 1.2 in the norm

of L∞(BR); see Section 5. The related reconstruction procedures are also given; see

Sections 2 and 3. Besides, we present examples showing an optimality of our stability

estimates and reconstruction procedures; see Section 4.

2 Reconstruction procedures

Let F−1 be the classical inverse Fourier transform defined by

F−1[u](x) :=

∫
Rd

u(ξ)e−iξxdξ, x ∈ Rd.

For a given r > 0, we consider the following family of extrapolations CR,n : L∞(Br) →
L∞(BR), depending on two parameters R ≥ r and n ∈ N := {0, 1, . . .}. For a function w

on Br (for example, such that w ≈ Fv|Br), we define

[CR,nw](ξ) :=


w(ξ), ξ ∈ Br,
n−1∑
k=0

ak

(
ξ

|ξ|

)
Tk

(
|ξ|
r

)
, ξ ∈ BR \Br,

0, ξ ∈ Rd \BR,

(2.1)

where ξ = |ξ|θ and, for θ ∈ Sd−1,

ak(θ) = ak[w](θ) :=



1

π

r∫
−r

w(tθ)√
r2 − t2

dt, if k = 0,

2

π

r∫
−r

w(tθ)Tk
(
t
r

)
√
r2 − t2

dt, otherwise.

(2.2)

In the above, (Tk)k∈N stand for the Chebyshev polynomials on R, which can be defined

by Tk(t) := cos(k arccos(t)) if t ∈ [−1, 1] and extended to |t| > 1 in a natural way. For

n = 0, the sum in (2.1) is taken to be 0. Note that formulas (2.1) and (2.2) are correctly

defined for almost all ξ and θ under the assumption that w ∈ L∞(Br).

Suppose w ≈ Fv|Br . The transforms CR,nw on BR can be considered as a family

of reconstruction procedures for Problem 1.2. The transforms F−1CR,nw on Rd can be

considered as a family of reconstruction procedures for Problem 1.1.

In Section 3, we give stability estimates for Problem 1.1 arising from the reconstruc-

tions F−1CR,n; see Theorem 3.1 and Theorem 3.2. In Section 5, we give stability estimates
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for Problem 1.2 arising from the extrapolations CR,n; see Lemma 5.1, Theorem 5.2, and

Corollary 5.4.

3 Stability estimates for Problem 1.1

We will assume that the unknown function v : Rd → C satisfies (1.1) for some N, σ > 0

and ν ≥ 1 and the given data w is such that, for some δ, r > 0,

‖w −Fv‖L∞(Br) ≤ δ < N, (3.1)

where F is the Fourier transform. Note that if (1.1) holds then, for any ξ ∈ Rd,

|Fv(ξ)| ≤ 1

(2π)d

∫
Rd
|v(x)|dx = Qv(0) ≤ N. (3.2)

This explains the condition δ < N in assumption (3.1). Indeed, if the noise level δ is

greater than N then the given data w tells about v as little as the trivial function w0 ≡ 0.

To achieve optimal stability bounds, the parameters R and n in the reconstruction

F−1CR,n have to be chosen carefully depending on N, δ, r, σ. For any τ ∈ [0, 1], let

Lτ (δ) = Lτ (N, δ, r, σ, ν) := max

{
1,

1

2

(
(1− τ) ln N

δ

σrν

)τ}
. (3.3)

Here and thereafter, we assume 0 < δ < N . Using (2.1), define

C∗τ,δ := CRτ (δ),nτ (δ), (3.4)

where
Rτ (δ) = Rτ (N, δ, r, σ, ν) := rLτ (δ),

nτ (δ) = nτ (N, δ, r, σ, ν) :=


⌈

(2− τ) ln N
δ

ln 2 + 1
τν

ln(2Lτ (δ))

⌉
, if τ > 0,

0, otherwise.

(3.5)

and d·e denotes the ceiling of a real number. Let

c(d) :=

∫
∂B1

1 dx =
dπd/2

Γ(d
2

+ 1)
. (3.6)

Our first result is a stability estimate for Problem 1.1 in the norm L∞(Rd). In addition

to (1.1), we assume also that v ∈ Wm(Rd), where the space Wm(Rd), m ≥ 0, and its
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norm are defined by

Wm(Rd) :=
{
u ∈ L1(Rd) : (1 + |ξ|2)

m
2 Fu ∈ L∞(Rd)

}
,

||u||Wm(Rd) :=
∥∥(1 + |ξ|2)

m
2 Fu

∥∥
L∞(Rd) .

We note that for integer m the space Wm(Rd) contains the standard Sobolev space

Wm,1(Rd) of m-times smooth functions in L1 on Rd.

Theorem 3.1. Let the assumptions of (1.1) and (3.1) hold for some N, σ, r, δ > 0 and

ν ≥ 1. Assume also that v ∈ Wm(Rd), for some real m > d, and that ‖v‖Wm(Rd) ≤ γ1.

Then, for any α such that 0 ≤ α ≤ 1, the following estimate holds:∥∥v −F−1C∗τ,δw∥∥L∞(Rd) ≤
8c(d)
d
N1−αrd (Lτ (δ))

d+1 δα

+
c(d)
m−dγ1r

−m+d (Lτ (δ))
−m+d ,

(3.7)

where τ = 1−
√

1− (1− α)ν−1 and Lτ (δ), C∗τ,δ, c(d) are defined by (3.3), (3.4), (3.6). In

particular, for any β1 such that 0 < β1
m−d < 1−

√
1− ν−1, we have∥∥v −F−1C∗τ,δw∥∥L∞(Rd) ≤ c1
(
ln(3 + δ−1)

)−β1 , (3.8)

where τ = β1
m−d and c1 = c1(N, σ, ν, r,m, γ1, d, β1) is a positive constant.

Our second result is a stability estimate for Problem 1.1 in the norm Hs(Rd). Recall

that the Sobolev space Hs(Rd), s ∈ R, and its norm can be defined by

Hs(Rd) :=
{
u ∈ L2(Rd) : F−1(1 + |ξ|2)

s
2Fu ∈ L2(Rd)

}
,

||u||Hs(Rd) :=
∥∥F−1(1 + |ξ|2)

s
2Fu

∥∥
L2(Rd) .

Theorem 3.2. Let the assumptions of (1.1) and (3.1) hold for some N, σ, r, δ > 0 and

ν ≥ 1. Assume also that v ∈ Hm(Rd), for some real m ≥ −d
2

, and that ‖v‖Hm(Rd) ≤ γ2.

Then, for any α ∈ [0, 1] and any s < m, the following estimate holds:

‖v −F−1C∗τ,δw‖Hs(Rd) ≤ 8(2π)d/2c(d)N1−α

(∫ rLτ (δ)

0

(1 + t2)std−1dt

)1/2

Lτ (δ) δ
α

+ γ2r
−m+s (Lτ (δ))

−m+s ,

(3.9)

where τ := 1 −
√

1− (1− α)ν−1 and Lτ (δ), C∗τ,δ, c(d) are defined by (3.3), (3.4), (3.6).

In particular, for any β2 such that 0 < β2
m−s < 1−

√
1− ν−1, we have∥∥v −F−1C∗τ,δw∥∥Hs(Rd) ≤ c2

(
ln(3 + δ−1)

)−β2 , (3.10)

where τ = β2
m−s and c2 = c2(N, σ, ν, r,m, s, γ2, d, β2) is a positive constant.
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The proofs of Theorems 3.1 and 3.2 are given in Section 6. The first terms of the

right-hand side in estimates (3.7) and (3.9) correspond to the error caused by the Hölder

stable extrapolation of the noisy data w from Br to BRτ (δ) and the second (logarithmic)

terms correspond to the error caused by ignoring the values of Fv outside BRτ (δ); see

Section 6 for more details.

Let N , σ, ν, r, m, γ1, γ2, d be fixed. Then estimates (3.8) and (3.10) used for

v := v1 − v2 and w := w0 ≡ 0 yield the following corollary.

Corollary 3.3. Let v1 and v2 be such that v := v1 − v2 satisfies (1.1) for some N, σ > 0

and ν ≥ 1. Let τ be such that 0 < τ < 1−
√

1− ν−1. Then the following bounds hold.

(a) If v1 − v2 ∈ Wm(Rd), for some real m < d, and ‖v1 − v2‖Wm(Rd) ≤ γ1, then

‖v1 − v2‖L∞(Rd) ≤ c1

(
ln

(
3 +

1

‖Fv1 −Fv2‖L∞(Br)

))−β1
, (3.11)

where β1 = τ(m− d) and c1 is the constant of (3.8).

(b) If v1 − v2 ∈ Hm(Rd) for some real m ≥ −d
2

, ‖v1 − v2‖Hm(Rd) ≤ γ2, and s < m, then

‖v1 − v2‖Hs(Rd) ≤ c2

(
ln

(
3 +

1

‖Fv1 −Fv2‖L∞(Br)

))−β2
, (3.12)

where β2 = τ(m− s) and c2 is the constant of (3.10).

One can see that the estimates of Theorem 3.1, Theorem 3.2, and Corollary 3.3 are

available for any β1, β2 such that:

0 < β1 < βmax
1 :=

(
1−
√

1− ν−1
)

(m− d),

0 < β2 < βmax
2 :=

(
1−
√

1− ν−1
)

(m− s).
(3.13)

In particular, for ν = 1, we have that βmax
1 = m− d and βmax

2 = m− s. In Section 4, we

present instability examples showing that

• if ν = 1 then (3.11) is impossible for β1 > m and (3.12) is impossible for β2 > m

(when d ≥ 2 and s = 0) and for β2 > m+ 1
2

(when d = 1 and s = 0);

• if ν = 2 then (3.11) and (3.12) (with s = 0) are impossible for β1, β2 > m/2.

These examples show that the logarithmic bounds (3.11) and (3.12) are rather optimal

with respect to the values of the exponents β1 and β2. Consequently, in this respect, it
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is impossible to essentially improve the stability bounds of Theorems 3.1 and 3.2, even

using any other reconstruction procedure (for example, based on a more advanced basis

instead of Chebyshev polynomials).

Moreover, observe that, for the case ν = 1, the values of βmax
1 and βmax

2 are very close

to the best possible: for example, we determined that β2 = m is indeed the threshold

value for (3.12) when d ≥ 2 and s = 0. However, we do not know whether the claimed

exponents βmax
1 , βmax

2 =
(
1−
√

1− ν−1
)
m+O(1) are also that close to optimal for ν > 1.

Our instability examples for ν = 2 imply that they can not exceed m/2, but there is still

a gap from m/2 down to
(

1− 1√
2

)
m.

Theorem 3.1, Theorem 3.2, and Corollary 3.3 illustrate similar stability behaviour in

more complicated non-linear inverse problems. In fact, the relationship is closer than a

mere illustration taking into account that the monochromatic reconstruction from the

scattering amplitude in the Born approximation is reduced to Problem 1.1. In particular,

estimates (3.10), (3.11) and (3.12) (with ν = 1) should be compared with the results on

the monochromatic inverse scattering problem obtained by Hähner, Hohage [4], Isaev,

Novikov [7, Theorem 1.2] and Hohage, Weidling [5] under the assumption that v is a

compactly supported sufficiently regular function on R3. More precisely, for this case,

estimate (3.11) with m > 3 and β1 = m−3
3

is similar to [7, Theorem 1.2]; estimate (3.12)

with s = 0, m > 3
2
, and β2 = m

m+3
is similar to [4, Theorem 1.2]; estimates (3.10), (3.12)

with m > 7/2 and some appropriate β2 ∈ (0, 1) are similar to [5, Corollary 1.4]. For other

known results on logarithmic and Hölder-logarithmic stability in inverse problems, see

also Alessandrini [1], Bao et al. [2], Isaev [6], Isakov [9], Novikov [11], Santacesaria [13]

and references therein.

As observed above, logarithmic and Hölder-logarithmic stability was established for

many different inverse problems. However, to our knowledge, even for the compactly

supported case, the estimates of Theorem 3.1, Theorem 3.2 (with α < 1) and Corollary 3.3

are implied by none of results given in the literature before the recent work [8]. The

related results of [8] are essentially equivalent to the special case of (3.9), (3.10), (3.12)

when v ∈ Hm(Rd) is compactly supported, m is a positive integer, and s = 0.

4 Examples of exponential instability for Problem 1.1

First, we recall the results from [8, Section 6]. Let A and B be open bounded domains

in Rd, d ≥ 1. Then, for any fixed positive integer m and positive γ, we give examples of
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real-valued functions vn ∈ Cm(Rd) such that

supp(vn) ⊆ A, ‖vn‖Cm(Rd) ≤ γ, (4.1)

and the following asymptotics hold as n→ +∞:

‖Fvn‖L∞(B) = O(e−n), ‖vn‖L∞(Rd) = Ω(n−m),

‖vn‖L2(Rd) =

Ω(n−m), for d ≥ 2,

Ω(n−m−
1
2 ), for d = 1.

Recall that for two sequences of real numbers an and bn, we say an = Ω(bn) if an > 0

always and bn = O(an). It follows from the above that, for any β1 > m and any constant

c1 > 0,

‖vn‖L∞(Rd) > c1

(
ln
(

3 + ‖Fvn‖−1L∞(Br)

))−β1
, (4.2)

when n is sufficiently large. Similarly, for any β2, where β2 > m if d ≥ 2 and β2 > m+ 1
2

if d = 1, and for any constant c2 > 0, we have that

‖vn‖L2(Rd) > c2

(
ln
(

3 + ‖Fvn‖−1L∞(Br)

))−β2
, (4.3)

when n is sufficiently large.

Condition (4.1) and instability estimates (4.2) and (4.3) show an optimality (or nearly

optimality) of the exponent β1 in stability estimates (3.7), (3.8), (3.11) and of the exponent

β2 in stability estimates (3.9), (3.10), (3.12) with s = 0. Recall that Theorem 3.1,

Theorem 3.2, and Corollary 3.3 require β1 < βmax
1 , β2 < βmax

2 , where βmax
1 and βmax

2

are defined in (3.13). In particular, for ν = 1 (which includes the compactly supported

case), we have that βmax
1 = m−d and βmax

2 = m (for s = 0), which are close to the infima

of the exponents β1 and β2 in (4.2) and (4.3).

However, βmax
1 (ν) and βmax

2 (ν) decrease to 0 as ν → +∞. In particular, for ν no-

ticeable greater than 1, the instability behaviour exhibiting by the functions vn recalled

above become much less tight with respect to βmax
1 (ν) and βmax

2 (ν). This motivates us

to construct other explicit examples of exponential instability for Problem 1.1, which are

non-compactly supported and provide considerably smaller exponents β1 and β2 in the

instability estimates in comparison with vn.

For k ∈ Rd, integer m > 0, and real ε > 0, consider the functions vk,m,ε defined by

vk,m,ε(x) := ε|k|−me−x2/2 cos(kx), x ∈ Rd. (4.4)
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Note that

Fvk,m,ε(ξ) = 1
2
(2π)d/2ε|k|−m

(
e−(ξ−k)

2/2 + e−(ξ+k)
2/2
)
, ξ ∈ Rd.

Similarly to Remark 1.1, we find that the functions vk,m,ε satisfy (1.1) for ν = 2, any

σ > 1
2
, and N = ε|k|−mN ′(d, σ). Then, for any fixed σ > 1

2
, r > 0, integer m > 0, and

real γ0, γ1, γ2 > 0, we have that

N ≤ γ0, ‖vk,m,ε‖Wm(Rd) ≤ γ1, ‖vk,m,ε‖Hm(Rd) ≤ γ2; (4.5)

for all sufficiently small ε > 0 and |k| > 1; and, for fixed ε > 0, the following formulas

hold as |k| → +∞:

‖Fvk,m,ε‖L∞(Br) = O
(
exp(−α|k|2)

)
, for any α ∈ (0, 1

2
),

‖vk,m,ε‖L∞(Rd) = ε|k|−m, ‖vk,m,ε‖L2(Rd) = Ω(|k|−m).
(4.6)

It follows from (4.6) that, for fixed scaling parameter ε, exponents β1, β2 > m/2, and

constants c1, c2 > 0,

‖vk,m,ε‖L∞(Rd) > c1

(
ln
(

3 + ‖Fvk,m,ε‖−1L∞(Br)

))−β1
, (4.7)

‖vk,m,ε‖L2(Rd) > c2

(
ln
(

3 + ‖Fvk,m,ε‖−1L∞(Br)

))−β2
, (4.8)

when |k| is sufficiently large. Condition (4.5) and instability estimates (4.7), (4.8) show

nearly optimality of the exponent β1 in stability estimates (3.7), (3.8), (3.11) and of the

exponent β2 in stability estimates (3.9), (3.10), (3.12) with s = 0, for the case when ν = 2.

Namely, for this case,

βmax
1 (2) =

(
1− 1√

2

)
(m− d) and βmax

2 (2) =
(

1− 1√
2

)
m (for s = 0).

One can see that m/2, which is the infima of the exponents β1 and β2 in (4.7) and (4.8),

is substantially closer to βmax
1 (2) and βmax

2 (2) than the infima of the exponents β1 and β2

in (4.2) and (4.3), respectively.

It is also important to note that the instability behaviour exhibiting by the functions

vk,m,ε defined in (4.4) is impossible for the compactly supported case, at least for suffi-

ciently large m. This is because βmax
1 (1) and βmax

2 (1) (for s = 0) get bigger than m/2 so

(4.7) and (4.8) would contradict to Corollary 3.3.
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5 Stability estimates for Problem 1.2

Lemma 5.1. Let v ∈ L1(Rd) and λ, r, R > 0 be such that r ≤ R ≤ λ/2, and Qv(λ) < +∞.

Then, for any w ∈ L∞(Br) and n ∈ N, the following estimate holds:

‖Fv − CR,n[w]‖L∞(BR) ≤ 2
(

2R
r

)n
‖w −Fv‖L∞(Br) + 4Qv(λ)

(
R
λ

)n
.

Lemma 5.1 is proved in Section 7. Optimising the parameter n in Lemma 5.1, we

obtain the following Hölder stability estimate for Problem 1.2.

Theorem 5.2. Let v ∈ L1(Rd) and λ, r, R > 0 be such that r ≤ R ≤ λ/2, and Qv(λ) <

+∞. Suppose that ‖w − Fv‖L∞(Br) ≤ δ for some function w and 0 < δ < Qv(λ). Then

the following estimate holds:

‖Fv − CR,n∗w‖L∞(BR) ≤ 8R
r

(
Qv(λ)
δ

)τ(λ)
δ, (5.1)

where

n∗ :=


ln
(
Qv(λ)
δ

)
ln(2λ/r)

 and τ(λ) :=
ln(2R/r)

ln(2λ/r)
. (5.2)

Remark 5.3. Problem 1.2 is a particular case of the problem of stable analytic con-

tinuation; see, for example, Demanet, Townsend [3], Lavrent’ev et al. [10, Chapter 3],

Tuan [14], and Vessella [15]. In particular, [3, Theorem 1.2] or [15, Theorem 1] lead to a

Hölder stability estimate similar to (5.1). In the present work, we independently establish

estimate (5.1) mainly for the purpose to give a simple explicit expression for the factor

in front of the Hölder term δ1−τ(λ). Besides, we derive our estimates for specific analytic

functions which are the Fourier transforms of functions satisfying (1.1).

Proof of Theorem 5.2. By the assumptions, we have that

η :=
ln
(
Qv(λ)
δ

)
ln(2λ/r)

> 0.

Note that η is the solution of the equation(
2R
r

)η
δ = Qv(λ)

(
R
λ

)η
.

Using also that R ≥ r, we get(
2R
r

)η+1

δ = 2R
r
Qv(λ)

(
R
λ

)η
≥ 2Qv(λ)

(
R
λ

)η
.
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By definition of n∗ and η, we find that η ≤ n∗ < η + 1. Then, applying Lemma 5.1, we

obtain that

‖Fv − CR,n∗ [w]‖L∞(BR) ≤ 2
(

2R
r

)n∗
δ + 4Qv(λ)

(
R
λ

)n∗
≤ 2

(
2R
r

)η+1

δ + 4Qv(λ)
(
R
λ

)η
≤ 4

(
2R
r

)η+1

δ.

Then, by the definitions of τ(λ) and η, we get(
2R
r

)η
= exp

(
η ln 2R

r

)
= exp

(
η τ(λ) ln 2λ

r

)
=
(
Qv(λ)
δ

)τ(λ)
.

Combining the above formulas completes the proof.

Theorem 5.2 leads to the following stability estimate for the extrapolation C∗τ,δ used

in Theorem 3.2.

Corollary 5.4. Let the assumptions of (1.1) and (3.1) hold for some N, σ, r, δ > 0 and

ν ≥ 1. Then, for any τ ∈ [0, ν−1], we have

‖Fv − C∗τ,δ[w]‖L∞(BRτ (δ))
≤ 8Lτ (δ)

(
N
δ

)ντ(2−τ)
δ = 8Lτ (δ)N

1−αδα,

where Lτ (δ) and Rτ (δ) are defined in (3.3) and (3.5) and α = α(τ) := 1− ντ(2− τ). In

addition, the exponent α is positive if and only if 0 ≤ τ < 1−
√

1− ν−1 ≤ ν−1.

Proof. First, we consider the case Lτ (δ) = 1. Then, (3.5) and (2.1) imply that Rτ (δ) = r

and C∗τ,δ[w] ≡ w. Recalling from (3.1) that δ < N , we find that

‖Fv − C∗τ,δ[w]‖L∞(BRτ (δ))
= ‖Fv − w‖L∞(Br) ≤ δ ≤ 8Lτ (δ)

(
N
δ

)ντ(2−τ)
δ.

Next, suppose that

Lτ (δ) = 1
2

(
(1−τ) ln N

δ

σrν

)τ
> 1.

This is only possible when τ 6= 0. Let

λ := r(2Lτ (δ))
1
ντ .

Then, from (1.1), we get

Qv(λ) ≤ N exp(σλν) = δ
(
N
δ

)2−τ
.

11



In addition, by the assumptions,

Rτ (δ) ≥ r and λ ≥ r (2Lτ (δ)) = 2Rτ (δ).

Observe that n∗ defined in (5.2) for λ = r(2Lτ (δ))
1
ντ coincides with nτ (δ) defined in (3.5).

Then, applying Theorem 5.2, we get that

‖Fv − C∗τ,δ[w]‖L∞(BRτ (δ))
≤ 8Lτ (δ)

((
N
δ

)2−τ)τ(λ)
δ,

where τ(λ) is defined in (5.2). Note that τ(λ) is different from τ . However, we can replace

τ(λ) by ντ in the estimate above since δ < N and

τ(λ) =
ln(2Rτ (δ)/r)

ln(2λ/r)
=

ln(2Lτ (δ))

ln 2 + 1
ντ

ln(2Lτ (δ))
≤ ντ.

The required bound follows.

6 Proofs of Theorem 3.1 and Theorem 3.2

In this section, we prove Theorem 3.1 and Theorem 3.2. Their proofs are very similar.

Starting from the inverse Fourier transform formula

v(x) =

∫
Rd

e−iξxFv(ξ)dξ, x ∈ Rd,

we analyse the contributions of the two regions BRτ (δ) and Rd \ BRτ (δ). For the first

region, we apply Corollary 5.4. For the second region we use the smoothness assumptions

‖v‖Wm(Rd) ≤ γ1 or ‖v‖Hm(Rd) ≤ γ2.

Note that α in estimates (3.7), (3.9) is the same as in Corollary 5.4. Indeed, as stated

in Theorem 3.1 and Theorem 3.2, for a given α ∈ [0, 1], we define

τ = τ(α) := 1−
√

1− (1− α)ν−1.

Then, observe that 0 ≤ τ ≤ 1−
√

1− ν−1 ≤ ν−1 and

1− ντ(2− τ) = α,

as in Corollary 5.4.
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Recall also the definitions of Lτ (δ), Rτ (δ) and c(d) from (3.3), (3.5), and (3.6), re-

spectively. It is straightforward to check that (3.8) and (3.10) follow from (3.7) and (3.9),

respectively. Indeed, for any N, σ, r > 0, ν ≥ 1, τ ∈ (0, 1−
√

1− ν−1), we have that

C1

(
ln(3 + δ−1)

)τ ≤ Lτ (δ) ≤ C2

(
ln(3 + δ−1)

)τ
, for 0 < δ < N ,

where C1 = C1(N, σ, ν, r, τ) > 0 and C1 = C1(N, σ, ν, r, τ) > 0. Then, the second terms of

the right-hand side on the estimates (3.7) and (3.9) dominates the first terms as δ → 0.

Observing also that ln(3 + δ−1) ≥ 1 for all δ > 0, we can find some suitable constants

c1 and c2 such that estimates (3.8) and (3.10) always hold (given the assumptions) with

β1 = (m− d)τ and β2 = (m− s)τ . Thus, to complete the proofs of Theorems 3.1 and 3.2,

it remains to establish stability estimates (3.7) and (3.9).

6.1 Proof of estimate (3.7)

Observe that

‖v −F−1C∗τ,δw‖L∞(Rd) ≤ sup
x∈Rd

∫
Rd

∣∣e−iξx (Fv(ξ)− C∗τ,δw(ξ)
)∣∣ dξ = I1 + I2.

where

I1 :=

∫
BRτ (δ)

|Fv(ξ)− C∗τ,δw(ξ)|dξ,

I2 :=

∫
Rd\BRτ (δ)

|Fv(ξ)− C∗τ,δw(ξ)|dξ.

Using Corollary 5.4, we get that

I1 ≤
∫

BRτ (δ)

∥∥Fv − C∗τ,δw∥∥L∞(BRτ (δ))
dξ ≤

∫
BRτ (δ)

8Lτ (δ)N
1−αδα dξ

=
8c(d)
d
N1−αrd (Lτ (δ))

d+1 δα.

Next, since v ∈ Wm(Rd), we have that

|ξ|m|Fv(ξ)| ≤ (1 + |ξ|2)m/2|Fv(ξ)| ≤ ‖v‖Wm(Rd).
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Thus, we can bound

I2 =

∫
Rd\BRτ (δ)

|Fv(ξ)|dξ ≤ c(d)

+∞∫
Rτ (δ)

‖v‖Wm(Rd)

tm−d−1
dt

=
c(d)
m−d‖v‖Wm(Rd)(Rτ (δ))

−m+d

=
c(d)
m−d‖v‖Wm(Rd)r

−m+d (Lτ (δ))
−m+d .

Combining the above bounds for I1 and I2 completes the proof of (3.7).

6.2 Proof of estimate (3.9)

The Parseval-Plancherel identity states that

‖u‖L2(Rd) = (2π)
d
2‖Fu‖L2(Rd) = (2π)−

d
2‖F−1u‖L2(Rd). (6.1)

Thus, we get that

‖v −F−1C∗τ,δw‖Hs(Rd) = (2π)
d
2

∥∥(1 + |ξ|2)
s
2 (Fv − C∗τ,δw)

∥∥
L2(Rd) ≤ (2π)

d
2 (Ĩ1 + Ĩ2),

where

Ĩ1 :=

 ∫
BRτ (δ)

(1 + |ξ|2)s|Fv(ξ)− C∗τ,δw(ξ)|2dξ


1/2

,

Ĩ2 :=

 ∫
Rd\BRτ (δ)

(1 + |ξ|2)s|Fv(ξ)− C∗τ,δw(ξ)|2dξ


1/2

.

Using Corollary 5.4, we get that

Ĩ1 ≤

 ∫
BRτ (δ)

(1 + |ξ|2)s
∥∥Fv − C∗τ,δw∥∥2L∞(BRτ (δ))

dξ


1/2

≤ 8N1−α

c(d)

Rτ (δ)∫
0

(1 + t2)std−1dt

1/2

Lτ (δ)δ
α.

Applying (6.1) and recalling that v ∈ Hm(Rd), we find that∫
Rd\BRτ (δ)

(1 + |ξ|2)s|Fv(ξ)|2dξ ≤
∥∥∥∥(1 + |ξ|2)m2 Fv

(Rτ (δ))m−s

∥∥∥∥2
L2(Rd\BR(τ,δ))

≤
(2π)−d‖v‖2Hm(Rd)

(Rτ (δ))2(m−s)
.
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Thus, we can bound

Ĩ2 ≤

 ∫
Rd\BRτ (δ)

(1 + |ξ|2)s|Fv(ξ)|2dξ


1/2

≤
∥∥∥∥(1 + |ξ|2)m2 Fv

(Rτ (δ))m−s

∥∥∥∥
L2(Rd\BRτ (δ))

≤
(2π)−

d
2‖v‖Hm(Rd)

(Rτ (δ))m−s
= (2π)−

d
2‖v‖Hm(Rd)r

−m+s (Lτ (δ))
−m+s .

Combining the above bounds for Ĩ1 and Ĩ2 completes the proof of (3.9).

7 Proof of Lemma 5.1

To prove Lemma 5.1, we need a bound for the error term in approximations of holomorphic

functions by truncated series of Chebyshev polynomials stated in the following lemma.

For completeness purposes, we include a proof of this bound.

Lemma 7.1. Suppose that f(z) is a holomorphic function in the ellipse

D(ρ) := {cos z : z ∈ C and |=z| < ln ρ} (7.1)

for some ρ > 2 and sup
z∈D(ρ)

|f(z)| ≤Mρ < +∞ for some Mρ > 0. Then,

∥∥∥∥∥f −
n−1∑
k=0

bkTk

∥∥∥∥∥
L∞([−ρ′,ρ′])

≤ 2Mρ

(
1− 2ρ′

ρ

)−1 (2ρ′

ρ

)n
,

for any n ∈ N and any ρ′ ∈ [1, ρ/2), where (Tk)k∈N are the Chebyshev polynomials and

bk :=



1
π

1∫
−1

f(t)√
1− t2

dt, if k = 0,

2
π

1∫
−1

f(t)Tk(t)√
1− t2

dt, otherwise.

(7.2)

Proof. First of all, we note that the condition ρ′ ∈ [1, ρ/2) ensures that interval [−ρ′, ρ′]
(of the real axe) lies in the ellipse D(ρ). Indeed,

D(ρ) ∩ R =
(
−ρ+ρ−1

2
, ρ+ρ−1

2

)
.

Note also that

|=ζ| < ρ/2 for ζ ∈ D(ρ). (7.3)
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Let g(z) := f(cos z). Note that g(z) is an even 2π-periodic holomorphic function in

the stripe |=z| < ln ρ and, for all k ∈ N,

2π∫
0

eikϕg(ϕ)dϕ =

2π∫
0

e−ikϕg(ϕ)dϕ = 2

1∫
−1

f(t)Tk(t)√
1− t2

dt,

Hence, by the Cauchy integral theorem, we get that

g(z) =
∞∑
k=0

bk cos kz, for |=z| < ln ρ, (7.4)

where

|bk| =

∣∣∣∣∣∣ 1π
2π∫
0

eikϕg(ϕ)dϕ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1π
2π+i ln ρ∫
0+i ln ρ

eikzg(z)dz

∣∣∣∣∣∣ ≤
≤ 1

π

2π∫
0

e−k ln ρ|g(t)|dt ≤ 2Mρρ
−k, k ∈ N.

Using (7.4) and recalling that Tk(t) := cos(k arccos(t)) for |t| ≤ 1, we get that

f(z) =
∞∑
k=0

bkTk(z), z ∈ D(ρ).

Observe that if |t| ≤ 1 then |Tk(t)| ≤ 1, otherwise

|Tk(t)| = | cosh(k arccosh(t))| = 1
2
|(t−

√
t2 − 1)k + (t+

√
t2 − 1)k| ≤ (2|t|)k. (7.5)

Combining the estimates above, we get that, for any t ∈ [−ρ′, ρ′] and n ∈ N,∣∣∣∣∣f(t)−
n−1∑
k=0

bkTk(t)

∣∣∣∣∣ ≤
∞∑
k=n

|bkTk(t)|

≤ 2Mρ

∞∑
k=n

(
2ρ′

ρ

)k
= 2Mρ

(
1− 2ρ′

ρ

)−1 (
2ρ′

ρ

)n
.

This completes the proof of Lemma 7.1.

Now we are ready to prove Lemma 5.1. For θ ∈ Sd−1, consider functions fr,θ : R→ C
defined by

fr,θ(s) := Fv (sr θ) = 1
(2π)d

∫
Rd

eisrθxv(x)dx, s ∈ R.
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Provided Qv(λ) < +∞, we have that fr,θ admits a holomorphic extension to the ellipse

D(ρ) defined by (7.1) with ρ := 2λ/r. Furthermore, using (7.3), we get that

|fr,θ(ζ)| ≤ 1
(2π)d

∫
Rd

er|=ζ|·|x||v(x)|dx ≤ Qv(λ), for ζ ∈ D(ρ).

Applying Lemma 7.1 and taking into account that ρ = 2λ/r and r ≤ R ≤ λ/2, we find

that ∥∥∥∥∥fr,θ −
n−1∑
k=0

ak(θ)Tk

∥∥∥∥∥
L∞([−R/r,R/r])

≤ 2Qv(λ)
(

1− R
λ

)−1 (
R
λ

)n
.

It follows that

‖Fv − CR,n [Fv]‖L∞(BR)
≤ 4Qv(λ)

(
R
λ

)n
. (7.6)

We note that

CR,n[w]− CR,n [Fv] = CR,n [w −Fv] .

Observe that
r∫

−r

|Tk(t/r)|√
r2 − t2

dt ≤
r∫

−r

dt√
r2 − t2

= π.

Recalling the definition of CR,n and using the above two formulas and (7.5), we get that

‖CR,n[w]− CR,n[Fv]‖L∞(BR)

≤ 2

π

n−1∑
k=0

‖Tk‖L∞([−R/r,R/r])‖w −Fv‖L∞(Br)

r∫
−r

|Tk(t/r)|√
r2 − t2

dt

≤ 2
n−1∑
k=0

(
2R
r

)k
δ ≤ 2

(
2R
r

)n
δ.

This bound together with (7.6) implies Lemma 5.1.
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