Carreau law for non-Newtonian fluid flow through a thin porous media - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Carreau law for non-Newtonian fluid flow through a thin porous media

Résumé

We consider the flow of quasi-Newtonian fluid through a thin porous media. The media under consideration is a bounded perforated three dimensional domain confined between two parallel plates, where the distance between the plates is described by a small parameter ε. The perforation consists in an array of solid cylinders, which connect the plates in perpendicular direction, with diameter of size ε and distributed periodically with period ε. The flow is described by the three dimensional incompressible stationary Stokes system with a non-linear viscosity following the Carreau law. We study the limit when the thickness tends to zero and prove that the averaged velocity satisfies a non-linear two dimensional homogenized law of Carreau type.
Fichier principal
Vignette du fichier
Anguiano_SuarezGrau.pdf (536.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02906828 , version 1 (25-07-2020)
hal-02906828 , version 2 (22-10-2021)

Identifiants

  • HAL Id : hal-02906828 , version 1

Citer

María Anguiano, Francisco J. Suárez-Grau. Carreau law for non-Newtonian fluid flow through a thin porous media. 2020. ⟨hal-02906828v1⟩
488 Consultations
342 Téléchargements

Partager

More