Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method - Archive ouverte HAL
Article Dans Une Revue Numerical Algorithms Année : 2022

Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method

Résumé

This paper deals with the coupling between one-dimensional heat and wave equations in unbounded subdomains, as a simplified prototype of fluid-structure interaction problems. First we build artificial boundary conditions for each subproblem so as to solve it numerically in a bounded subdomain. Then we devise an optimized Schwarz-in-time (or Schwarz Waveform Relaxation) method for the numerical solving of the coupled equations , which allows possibly different solvers and different time steps for each separated problem. Particular emphasis is made on the design of optimized transmission conditions. Notably, for this setting, the optimal transmission conditions can be expressed analytically in a very simple manner. This result is illustrated by some numerical experiments .
Fichier principal
Vignette du fichier
wr_unbounded.pdf (1.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02906573 , version 1 (25-07-2020)

Identifiants

Citer

Franz Chouly, Pauline Klein. Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method. Numerical Algorithms, 2022, 90 (2), pp.631-668. ⟨10.1007/s11075-021-01201-x⟩. ⟨hal-02906573⟩
104 Consultations
199 Téléchargements

Altmetric

Partager

More