Wreath/cascade products and related decomposition results for the concurrent setting of Mazurkiewicz traces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Wreath/cascade products and related decomposition results for the concurrent setting of Mazurkiewicz traces

Résumé

We develop a new algebraic framework to reason about languages of Mazurkiewicz traces. This framework supports true concurrency and provides a non-trivial generalization of the wreath product operation to the trace setting. A novel local wreath product principle has been established. The new framework is crucially used to propose a decomposition result for recognizable trace languages, which is an analogue of the Krohn-Rhodes theorem. We prove this decomposition result in the special case of acyclic architectures and apply it to extend Kamp's theorem to this setting. We also introduce and analyze distributed automata-theoretic operations called local and global cascade products. Finally, we show that aperiodic trace languages can be characterized using global cascade products of localized and distributed two-state reset automata.
Fichier principal
Vignette du fichier
single.pdf (513.17 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02905961 , version 1 (23-07-2020)

Licence

Identifiants

Citer

Bharat Adsul, Paul Gastin, Saptarshi Sarkar, Pascal Weil. Wreath/cascade products and related decomposition results for the concurrent setting of Mazurkiewicz traces. 31st International Conference on Concurrency Theory, Sep 2020, Vienna, Austria. pp.19:1 -19: 17, ⟨10.4230/LIPIcs.CONCUR.2020.19⟩. ⟨hal-02905961⟩
55 Consultations
50 Téléchargements

Altmetric

Partager

More