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Abstract
We develop a new algebraic framework to reason about languages of Mazurkiewicz traces. This
framework supports true concurrency and provides a non-trivial generalization of the wreath product
operation to the trace setting. A novel local wreath product principle has been established. The
new framework is crucially used to propose a decomposition result for recognizable trace languages,
which is an analogue of the Krohn-Rhodes theorem. We prove this decomposition result in the
special case of acyclic architectures and apply it to extend Kamp’s theorem to this setting. We also
introduce and analyze distributed automata-theoretic operations called local and global cascade
products. Finally, we show that aperiodic trace languages can be characterized using global cascade
products of localized and distributed two-state reset automata.
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1 Introduction

Transformation monoids provide an abstraction of transition systems. One of the key tools
in their analysis is the notion of wreath product [7, 20, 18] which, when translated to the
language of finite state automata, corresponds to the cascade product. In the cascade product
of automata A and B, with A ‘followed by’ B, the automaton A runs on the input sequence,
while the automaton B runs on the input sequence as well as the state sequence produced by
the automaton A. The wreath product principle (see [20, 18, 17]) is a key result which relates
a language accepted by a cascade/wreath product to languages accepted by the individual
automata.
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46:2 Wreath products in the concurrent setting

In this work, we are interested in generalizing the wreath product operation from the
sequential setting to the concurrent setting involving multiple processes. Towards this, we
work with Mazurkiewicz traces (or simply traces) [12, 6] which are well established as models
of true concurrency, and asynchronous automata [21] which are natural distributed finite state
devices working on traces. A trace represents a concurrent behaviour as a labelled partial
order which faithfully captures the distribution of events across processes, and causality
and concurrency between them. An asynchronous automaton runs on the input trace in a
distributed fashion and respects the underlying causality and concurrency between events.
During the run, when working on an event, only the local states of the processes participating
in that event are updated; the rest of the processes remain oblivious to the occurrence of the
event at this point.

A natural generalization of the above mentioned sequential cascade product to asynchron-
ous automata A and B is as follows: the asynchronous automaton A runs on the input trace,
thus assigning, for each event, a local state for every process participating in that event. Now
the asynchronous automaton B runs on the input trace with the same set of events which
are additionally labelled by the previous local states of the participating processes in A. It is
easy to capture this operational semantics by another asynchronous automaton which we
call the local cascade product of A and B. Such a construction is used in [2] to provide an
asynchronous automata-theoretic characterization of aperiodic trace languages.

Here we propose a new algebraic framework to deal with the issues posed by the con-
current setting. More precisely, we introduce a new class of transformation monoids called
asynchronous transformation monoids (in short, atm’s). These monoids make a clear dis-
tinction between local and global ‘states’ and allow us to reason about whether a global
transformation is essentially induced by a particular subset of processes. Recall that, from a
purely algebraic viewpoint, the set of all traces forms a free partially commutative monoid
in which independent actions commute [6]. In order to recognize a trace language via an
atm, we introduce the notion of an asynchronous morphism which exploits the locality of
the underlying atm. It is rather easy to see that asynchronous morphisms are the algebraic
counterparts of asynchronous automata.

One of the central results here is a wreath product principle in the new algebraic framework.
It turns out that the standard wreath product operation yields an operation on asynchronous
transformation monoids. Let T1 and T2 be atm’s and T1 o T2 be the wreath product atm.
Our local wreath product principle describes a trace language recognized by T1 o T2 in terms
of a local asynchronous transducer which is a natural causality and concurrency preserving
map from traces to traces (over an appropriately extended alphabet), and trace languages
recognized by T1 and T2. It is a novel generalization of the standard wreath product principle.
The work [8] presents a wreath product principle for traces in the setting of transformation
monoids but it seems less significant since it uses non-trace structures.

The importance of the standard wreath product operation is clearly highlighted by
the fundamental Krohn-Rhodes decomposition theorem [11] which, broadly speaking, says
that any finite transformation monoid can be simulated by wreath products of ‘simple’
transformation monoids. The wreath product principle along with the Krohn-Rhodes
theorem can be used to provide alternate and conceptually simpler proofs (see [14, 3]) of
several interesting classical results about formal languages of words such as the theorems
due to Schützenberger [19], McNaughton-Papert [13] and Kamp [9] which together show
the equivalence between star-free, aperiodic, first-order-definable and linear-temporal-logic
definable word languages. Motivated by these applications, we investigate an analogue of the
fundamental Krohn-Rhodes decomposition theorem over traces. We use the new algebraic
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framework to propose a simultaneous generalization of the Krohn-Rhodes theorem (for word
languages) and Zielonka’s theorem (for trace languages). The proof of this generalization for
the special case of acyclic architectures is another significant result. As an application, we
extend Kamp’s theorem: we show a natural local temporal logic to be expressively complete.

It turns out that asynchronous morphisms into wreath products correspond to the
aforementioned distributed automata-theoretic local cascade products. We also introduce
the global cascade product operation and show that it can be realized as the local cascade
product with the help of the ubiquitous gossip automaton from [16].

Our final major contribution concerns aperiodic trace languages and is in the spirit of the
Krohn-Rhodes theorem for the aperiodic case. We establish that aperiodic trace languages
can be characterized using global cascade products of localized and distributed two-state
reset automata. The proof of this characterization crucially uses an expressively complete
process-based local temporal logic over traces from [4].

The rest of the paper is organized as follows. After setting up the preliminaries in
Section 2, we develop the new algebraic framework in Section 3 and establish the local wreath
product principle. In Section 4, we postulate a new decomposition result, and we prove it
for acyclic architectures. We introduce and analyze local and global cascade products in
Section 5. The global cascade product based characterization of aperiodic trace languages
appears in Section 6. Finally, we conclude in Section 7. Due to space constraints some proofs
and examples are omitted and can be found in the extended version [1].

2 Preliminaries

2.1 Basic Notions in Trace Theory
Let P be a finite set of agents/processes. A distributed alphabet over P is a family Σ̃ = {Σi}i∈P .
Let Σ =

⋃
i∈P Σi. For a ∈ Σ, we set loc(a) = {i ∈ P | a ∈ Σi}. By (Σ, I) we denote the

corresponding trace alphabet, i.e., I is the independence relation {(a, b) ∈ Σ2 | loc(a)∩loc(b) =
∅} induced by Σ̃. The corresponding dependence relation Σ2 \ I is denoted by D.

A Σ-labelled poset is a structure t = (E,≤, λ) where E is a set, ≤ is a partial order
on E and λ : E → Σ is a labelling function. For e, e′ ∈ E, define e l e′ if and only if
e < e′ and for each e′′ with e ≤ e′′ ≤ e′ either e = e′′ or e′ = e′′. For X ⊆ E, let
↓X = {y ∈ E | y ≤ x for some x ∈ X}. For e ∈ E, we abbreviate ↓{e} by simply ↓e.

A trace over Σ̃ is a finite Σ-labelled poset t = (E,≤, λ) such that
If e, e′ ∈ E with el e′ then (λ(e), λ(e′)) ∈ D
If e, e′ ∈ E with (λ(e), λ(e′)) ∈ D, then e ≤ e′ or e′ ≤ e

Let TR(Σ̃) denote the set of all traces over Σ̃. Henceforth a trace means a trace over Σ̃
unless specified otherwise. Let t = (E,≤, λ) ∈ TR(Σ̃). The elements of E are referred to
as events in t and for an event e in t, loc(e) abbreviates loc(λ(e)). Further, let i ∈ P. The
set of i-events in t is Ei = {e ∈ E | i ∈ loc(e)}. This is the set of events in which process i
participates. It is clear that Ei is totally ordered by ≤.

A subset c ⊆ E is a configuration of t if and only if ↓c = c. We let Ct denote the set
of all configurations of t. Notice that ∅, the empty set, and E are configurations. More
importantly, ↓e is a configuration for every e ∈ E. There are two natural transition relations
that one may associate with the configurations of t. The event based transition relation
⇒t ⊆ Ct×E×Ct is defined by c e⇒t c

′ if and only if e /∈ c and c∪{e} = c′. The action based
transition relation →t ⊆ Ct × Σ× Ct is defined by c a−→t c

′ if and only if there exists e ∈ E
such that λ(e) = a and c e⇒t c

′.

CONCUR 2020



46:4 Wreath products in the concurrent setting

Now we turn our attention to the important operation of concatenation of traces. Let
t = (E,≤, λ) ∈ TR(Σ̃) and t′ = (E′,≤′, λ′) ∈ TR(Σ̃). Without loss of generality, we can
assume E and E′ to be disjoint. We define tt′ ∈ TR(Σ̃) to be the trace (E′′,≤′′, λ′′) where

E′′ = E ∪ E′,
≤′′ is the transitive closure of ≤ ∪≤′ ∪ {(e, e′) ∈ E × E′ | (λ(e), λ′(e′)) ∈ D},
λ′′ : E′′ → Σ where λ′′(e) = λ(e) if e ∈ E; otherwise, λ′′(e) = λ′(e).

This operation, henceforth referred to as trace concatenation, gives TR(Σ̃) a monoid structure.
Observe that, with a (resp. b) denoting the singleton trace with the only event labelled a
(resp. b), if (a, b) ∈ I then ab = ba in TR(Σ̃).

A basic result in trace theory gives a presentation of the trace monoid as a quotient of
the free word monoid Σ∗. See [6] for more details. Let ∼I ⊆ Σ∗ × Σ∗ be the congruence
generated by ab ∼I ba for (a, b) ∈ I.

I Proposition 1. The canonical morphism from Σ∗ → TR(Σ̃), sending a letter a ∈ Σ to
the trace a, factors through the quotient monoid Σ∗/∼I and induces an isomorphism from
Σ∗/∼I to the trace monoid TR(Σ̃).

2.2 Transformation Monoids and Trace Languages
A map from a set X to itself is called a transformation of X. Under function composition,
the set of all such transformations forms a monoid; let us denote this monoid by F(X). The
function composition f1f2 applies from left-to-right, that is, (f1f2)(·) = f2(f1(·)).

A transformation monoid (or simply tm) is a pair T = (X,M) where M is a submonoid
of F(X). The tm (X,M) is called finite if X is finite.

I Example 2. Consider X = {1, 2} with the monoid M = {idX , r1, r2} where idX is the
identity transformation and ri maps every element in X to element i. Note that r1r2 = r2
and r2r1 = r1. Then (X,M) is a tm. We will refer to it as U2. y

Let T = (X,M) be a tm. By a morphism ϕ from TR(Σ̃) to T , we mean a (monoid)
morphism ϕ : TR(Σ̃) → M . We abuse the notation and also write this as ϕ : TR(Σ̃) → T .
Observe that, if (a, b) ∈ I, then as ab = ba in TR(Σ̃), ϕ(a) and ϕ(b) must commute in M .
In fact, in view of Proposition 1, any function ϕ : Σ→M which has the property that ϕ(a)
and ϕ(b) commute for every (a, b) ∈ I, can be uniquely extended to a morphism from TR(Σ̃)
to M .

Transformation monoids can be naturally used to recognize trace languages. Let L ⊆
TR(Σ̃) be a trace language. We say that L is recognized by a tm T = (X,M) if there exists
a morphism ϕ : TR(Σ̃) → T , an initial element xin ∈ X and a final subset Xfin ⊆ X such
that L = {t ∈ TR(Σ̃) | ϕ(t)(xin) ∈ Xfin}. A trace language is said to be recognizable if it is
recognized by a finite tm.

3 New Algebraic Framework

3.1 Asynchronous Transformation Monoids
Recall that we have a fixed finite set P of processes. If P is clear from the context, we use
the simpler notation {Xi} to denote the P-indexed family {Xi}i∈P . The elements of the sets
in a P-indexed family will be typically called states.

We begin with some notation involving local and global states. Suppose that each process
i ∈ P is equipped with a finite non-empty set of local i-states, denoted Si. We set S =

⋃
i∈P Si

and call S the set of local states. We let P range over non-empty subsets of P and let i, j
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range over P . A P -state is a map s : P → S such that s(j) ∈ Sj for every j ∈ P . We let SP
denote the set of all P -states. We call SP the set of all global states.

If P ′ ⊆ P and s ∈ SP then sP ′ is s restricted to P ′. We use the shorthand −P to indicate
the complement of P in P . We sometimes split a global state s ∈ SP as (sP , s−P ) ∈ SP ×S−P .
We let Sa denote the set of all loc(a)-states which we also call a-states for simplicity. Thus if
loc(a) ⊆ P and s is a P -state we shall write sa to mean sloc(a).

Now we are ready to introduce a new class of transformation monoids.

I Definition 3. An asynchronous transformation monoid (in short, atm) T (over P) is a
pair ({Si},M) where

Si is a finite non-empty set for each process i ∈ P.
M is a submonoid of F(SP), the monoid of all transformations from SP to itself.

Note that this definition is dependent on P and an atm T = ({Si},M) naturally induces
the tm (SP ,M). We abuse the notation and write T also for this tm.

A crucial feature of the definition of an atm is that it makes a clear distinction between
local and global states. Observe that the underlying transformations operate on global
states. It will be useful to know whether a global transformation is essentially induced by a
particular subset of processes. We develop some notions to make this precise.

Fix an atm ({Si},M) and P ⊆ P. Let f : SP → SP be a map. We define g : SP → SP
as: for s ∈ SP ,

g(s) = s′ iff f(sP ) = s′P and s−P = s′−P

We refer to g as the extension of f . More generally, h : SP → SP is said to be a P -map if it
is the extension of some f : SP → SP . Note that, in this case, for all s = (sP , s−P ) ∈ SP ,
h((sP , s−P )) = (f(sP ), s−P ) and f is uniquely determined by h. It is worth pointing out that
a map h : SP → SP with the property that for every s ∈ SP there exists s′P ∈ SP such that
h((sP , s−P )) = (s′P , s−P ) is not necessarily a P -map. This condition merely says that the
(−P )-component of a global state is not updated by h. The update of the P -component may
still depend on the (−P )-component.

The following lemma provides a characterization of P -maps. We skip the easy proof.

I Lemma 4. Let h : SP → SP . Then h is a P -map if and only if for every s in SP ,
[h(s)]−P = s−P and for every s, s′ in SP , sP = s′P implies that [h(s)]P = [h(s′)]P .

A simple but crucial observation regarding P -maps is recorded in the following lemma.

I Lemma 5. Let f, g : SP → SP be such that f is a P -map and g is a P ′-map. If P ∩P ′ = ∅,
then fg = gf .

I Example 6. Fix a process ` ∈ P . We define the atm U2[`] = ({Si},M) where, S` = {1, 2}
and for each i 6= `, Si has exactly one element. Observe that SP has only two global states
which are completely determined by their `-components. We will identify a global state with
its `-component. The monoid M is {idSP , r1, r2} where idSP is the identity transformation
and ri maps every global state to the global state i. Note that r1 and r2 are {`}-maps. y

3.2 Asynchronous Morphisms
Now we fix a distributed alphabet Σ̃ = {Σi}i∈P over P and introduce special morphisms
from the trace monoid TR(Σ̃) to atm’s.

CONCUR 2020



46:6 Wreath products in the concurrent setting

I Definition 7. Let T = ({Si},M) be an atm. An asynchronous morphism from TR(Σ̃) to
T is a (monoid) morphism ϕ : TR(Σ̃)→M such that, for a ∈ Σ, ϕ(a) is a loc(a)-map (or
simply, an a-map). We also write this as ϕ : TR(Σ̃)→ T .

It is important to observe that, contrary to the sequential case, a morphism from TR(Σ̃) to
M is not necessarily an asynchronous morphism from TR(Σ̃) to the atm T = ({Si},M). In
a morphism ψ : TR(Σ̃)→M , for (a, b) ∈ I, ψ(a) and ψ(b) must commute; however for some
a ∈ Σ, ψ(a) may not be an a-map.

I Example 8. Consider P = {p1, p2, p3}, Σ̃ = {Σp1 = {a, b},Σp2 = {b, c},Σp3 = {c}} and
the atm U2[p1] = ({Si},M) where M = {id, r1, r2}. Recall that r1 and r2 are {p1}-maps.
The function ψ(a) = id, ψ(b) = r2 and ψ(c) = r1 extends to a morphism from TR(Σ̃) to the
monoid M . However, it is not an asynchronous morphism to the atm U2[p1] as ψ(c) (being
r1) is not a {p2, p3}-map. y

A fundamental result about asynchronous morphisms is stated in the following lemma.
Its proof follows from Proposition 1 and Lemma 5, and can be found in [1].

I Lemma 9. Let T = ({Si},M) be an atm. Further, let ϕ : Σ→M be such that, for a ∈ Σ,
ϕ(a) is an a-map. Then ϕ can be uniquely extended to an asynchronous morphism from
TR(Σ̃) to T .

I Example 10. Consider the setup of Example 8. The function ϕ(a) = r1, ϕ(b) = r2 and
ϕ(c) = id extends to an asynchronous morphism from TR(Σ̃) to U2[p1]. y

Now we extend the notion of trace-language recognition from tm’s to atm’s via asyn-
chronous morphisms. Let L ⊆ TR(Σ̃) be a trace language. We say that L is recognized by
an atm T = ({Si},M) if there exists an asynchronous morphism ϕ : TR(Σ̃)→ T , an initial
element sin ∈ SP and a final subset Sfin ⊆ SP such that

L = {t ∈ TR(Σ̃) | ϕ(t)(sin) ∈ Sfin}.

In the rest of this subsection, we bring out the intimate relationship between asynchronous
morphisms and asynchronous automata. We begin with the description of an asynchronous
automaton – a model introduced by Zielonka for concurrent computation on traces.

An asynchronous automaton A over Σ̃ is a structure ({Si}i∈P , {δa}a∈Σ, sin) where
Si is a finite non-empty set of local i-states for each process i
For a ∈ Σ, δa : Sa → Sa is a transition function on a-states
sin ∈ SP is an initial global state

Observe that an a-transition of A reads and updates only the local states of the agents which
participate in a. As a result, actions which involve disjoint sets of agents are processed
concurrently by A. For a ∈ Σ, let ∆a : SP → SP be the extension of δa : Sa → Sa. Clearly,
if (a, b) ∈ I then ∆a and ∆b commute. Similar to P-indexed families, we will follow the
convention of writing {Ya} to denote the Σ-indexed family {Ya}a∈Σ.

Now we describe the notion of a run of A on an input trace. A trace run is easiest to
define using configurations. Towards this, fix a trace t = (E,≤, λ) ∈ TR(Σ̃). Recall that
(see Section 2.1) Ct is the set of all configurations of t and →t ⊆ Ct × Σ× Ct is the natural
action based transition relation on configurations. A trace run of A over t ∈ TR(Σ̃) is a map
ρ : Ct → SP such that ρ(∅) = sin, and for every (c, a, c′) in →t, we have ∆a(ρ(c)) = ρ(c′). As
A is deterministic, t admits a unique trace run; it will be denoted by ρt.

Let L ⊆ TR(Σ̃) be a trace language. We say that L is accepted by A if there exists a
subset Sfin ⊆ SP of final global states such that L = {t = (E,≤, λ) ∈ TR(Σ̃) | ρt(E) ∈ Sfin}.
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Our aim is to associate with A, a natural atm TA and an asynchronous morphism ϕA
such that languages accepted by A are precisely the languages recognized via ϕA.

We first describe the transition monoid MA associated to A. It is possible to extend the
global transition functions {∆a} to arbitrary traces using Proposition 1. For t ∈ TR(Σ̃), we
denote this extended global transition function by ∆t : SP → SP . It is easy to check that,
for t = (E,≤, λ) ∈ TR(Σ̃), ∆t(sin) = ρt(E). Further, as expected, for t, t′ ∈ TR(Σ̃), the
function composition ∆t∆t′ is identical to ∆tt′ . We let MA be the finite set of functions
{∆t | t ∈ TR(Σ̃)}. Clearly, it is a monoid under the usual composition of functions.

Next, we define the transition atm of A to be TA = ({Si},MA) and the natural map
ϕA : TR(Σ̃)→MA sending t to ∆t. It is clear that ϕA is a morphism of monoids. Furthermore,
it is an asynchronous morphism from TR(Σ̃) to TA; this is because, for a ∈ Σ, ϕA(a) = ∆a

is in fact an a-map of the atm TA. The map ϕA is called the transition (asynchronous)
morphism of A. Note that, for t = (E,≤, λ) ∈ TR(Σ̃),

ϕA(t)(sin) = ∆t(sin) = ρt(E)

We refer to the above statement as the duality between a run of A and an evaluation of ϕA.
The following lemma summarizes the above discussion for later reference and its proof is

immediate.

I Lemma 11. Given an asynchronous automaton A = ({Si}, {δa}, sin) over Σ̃, the transition
atm TA = ({Si},MA) and the transition asynchronous morphism ϕA : TR(Σ̃) → TA are
effectively constructible. Moreover, if L is a trace language, then L is accepted by A if and
only if it is recognized by TA via ϕA with sin as the initial state.

We now provide a form of converse to Lemma 11. Towards this, we fix an atm T =
({Si},M), a state sin ∈ SP and an asynchronous morphism ϕ : TR(Σ̃)→ T . Since ϕ is an
asynchronous morphism, ϕ(a) is an a-map, and is an extension of some δa : Sa → Sa over
a-states. We set Aϕ = ({Si}, {δa}, sin) over Σ̃. It turns out that the transition monoid of Aϕ
is the image of ϕ, a submonoid of M and the transition morphism of Aϕ is the appropriate
restriction of ϕ to this submonoid. The next lemma is easy to prove and we skip its proof.

I Lemma 12. Given T = ({Si},M), ϕ : TR(Σ̃) → T and sin ∈ SP , the asynchronous
automaton Aϕ over Σ̃ is effectively constructible. Moreover, a trace language L ⊆ TR(Σ̃) is
recognized by T via ϕ (with initial state sin) if and only if it is accepted by Aϕ.

3.3 Asynchronous Wreath Product
We begin with the crucial definition of a wreath product of transformation monoids. For sets
U and V , we denote the set of all functions from U to V by F(U, V ).

I Definition 13 (Wreath Product). Let T1 = (X,M) and T2 = (Y,N) be two tm’s. We define
T = T1 o T2 to be the tm (X × Y,M ×F(X,N)) where, for m ∈M and f ∈ F(X,N), (m, f)
represents the following transformation on X × Y :

for (x, y) ∈ X × Y, (m, f)((x, y)) = (m(x), f(x)(y))

The tm T is called the wreath product of T1 and T2. It turns out that, for (m1, f1), (m2, f2)
in M ×F(X,N), the composition law (m1, f1)(m2, f2) = (m, f) is such that m = m1m2 and
for x ∈ X, f(x) = f1(x) + f2(m1(x)). Here + denotes the composition operation of N .

It is a standard fact that the wreath product operation is associative [7]. We now adapt this
operation to asynchronous transformation monoids.

CONCUR 2020



46:8 Wreath products in the concurrent setting

I Definition 14. Let T1 = ({Si},M) and T2 = ({Qi}, N) be two atm’s. We define their
asynchronous wreath product, also denoted by T1 oT2, to be the atm ({Si×Qi},M×F(SP , N)).
An element (m, f) ∈ M × F(SP , N) represents the following global1 transformation on
SP ×QP :

for (s, q) ∈ SP ×QP , (m, f)((s, q)) = (m(s), f(s)(q))

The composition law on M ×F(SP , N) is the same as in Definition 13.

An important observation is that the tm associated with T1 o T2 is the wreath product of
the tm’s (SP ,M) and (QP , N) associated with T1 and T2 respectively. Sometimes, we will
refer to the asynchronous wreath product simply as wreath product. The associativity of the
asynchronous wreath product operation follows immediately.

We now present an important combinatorial lemma regarding the ‘support’ of a global
transformation in the wreath product. It plays a crucial role later.

I Lemma 15. Fix atm’s T1 = ({Si},M) and T2 = ({Qi}, N). Let (m, f) ∈M ×F(SP , N)
represent a P -map in T1 o T2 for some subset P ⊆ P. Then

m is a P -map in T1.
For every s ∈ SP , f(s) is a P -map in T2. Further, if s, s′ ∈ SP are such that sP = s′P ,
then f(s) = f(s′).

Proof. Fix x0 ∈ S−P and y0 ∈ Q−P . We define g1 : SP → SP and g2 : SP × QP → QP
by g1(x) = [m((x, x0))]P and g2(x, y) = [f((x, x0))(y, y0)]P . We first show that for all
s ∈ SP , q ∈ QP , (m, f)((s, q)) = ((g1(sP ), s−P ), (g2(sP , qP ), q−P )). Take an arbitrary
(s, q) ∈ SP × QP . Then consider the global state ((sP , x0), (qP , y0)) sharing the same
P -component as (s, q) and the fixed −P -component (x0, y0). By the wreath product action
(see Definition 13), (m, f) (((sP , x0), (qP , y0))) = (m((sP , x0)), f((sP , x0))((qP , y0))). Be-
ing a P -map, (m, f) does not change the −P -component of any global state. So we have
m((sP , x0)) = ([m((sP , x0))]P , x0) and f((sP , x0))((qP , y0)) = ([f((sP , x0))((qP , y0))]P , y0).

Let (m, f)((s, q)) = (s′, q′). Since (m, f) is a P -map and the two global states (s, q)
and ((sP , x0), (qP , y0)) share the same P -component, by Lemma 4, s′P = [m((sP , x0))]P and
q′P = [f((sP , x0))((qP , y0))]P . Further, s′−P = s−P and q′−P = q−P . Using the definitions of g1
and g2, we immediately see that (m, f)((s, q)) = ((g1(sP ), s−P ), (g2(sP , qP ), q−P )). However,
by the wreath product action, (m, f)((s, q)) = (m(s), f(s)(q)). Comparing this with the
previous expression, we have m(s) = (g1(sP ), s−P ) and f(s)(q) = (g2(sP , qP ), q−P ). The
result now follows from Lemma 4. J

3.4 Local Wreath Product Principle
Let A = ({Si}, {δa}, sin) be an asynchronous automaton over Σ̃. Based on A and Σ̃, we
define the alphabet Σ‖S = {(a, sa) | a ∈ Σ, s ∈ SP} where a letter a in Σ is extended with
local a-state information of A. This can naturally be viewed as a distributed alphabet Σ̃‖S

where ∀a ∈ Σ,∀s ∈ SP , (a, sa) ∈ Σ‖S

i if and only if a ∈ Σi. Then A induces the following
transducer over traces.

I Definition 16 (Local Asynchronous Transducer). Let χA : TR(Σ̃)→ TR(Σ̃‖S) be defined as
follows. If t = (E,≤, λ) ∈ TR(Σ̃), then χA(t) = t′ where t′ = (E,≤, µ) ∈ TR(Σ̃‖S) with the
labelling µ : E → Σ‖S defined by:

1 a global state (resp. P -state) of T1 o T2 is canonically identified with an element of SP × QP (resp.
SP ×QP )
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∀e ∈ E,µ(e) = (a, sa) where a = λ(e) and s = ρt(↓e \ {e})

(recall that ρt is the unique trace run of A over t). We call χA the local asynchronous
transducer of A.

I Example 17. Let χ be the local asynchronous transducer associated to Aϕ where ϕ is
as in Example 10. Figure 1 shows the run of Aϕ on a trace t ∈ TR(Σ̃) (by showing local
process states before and after each event), and the resulting trace χ(t) ∈ TR(Σ̃‖S). y

a
b

c
p3

p2

p1
1 1 2

⊥2 ⊥2 ⊥2

⊥3 ⊥3

Run of trace t in Aϕ

a
1 b

1

⊥2 c
⊥2
⊥3p3

p2

p1

Trace χ(t)

Figure 1 Local asynchronous transducer output on a trace; Sp2 = {⊥2}, Sp3 = {⊥3}.

Note that, in general, χA is not a morphism of monoids. The following lemma is a
straightforward consequence of the definition of χA and the duality between trace runs of A
and evaluations of the asynchronous asynchronous morphism ϕA.

I Lemma 18. Let t ∈ TR(Σ̃) with factorization t = t′a (where a ∈ Σ̃), and s = ϕA(t′)(sin).
Then the trace χA(t) ∈ TR(Σ̃‖S) factors as χA(t) = χA(t′)(a, sa).

I Theorem 19. Let A be an asynchronous automaton over Σ̃ and χA be the corresponding
local asynchronous transducer. If L ⊆ TR(Σ̃‖S) is recognized by an atm T , then χ−1

A (L) is
recognized by the atm TA o T .

Proof. Let ψ : TR(Σ̃‖S)→ T = ({Qi}, N) be an asynchronous morphism, which recognizes
L with qin ∈ QP as the initial global state, and Qfin ⊆ QP as the set of final global states.
Then L = {t ∈ TR(Σ̃‖S) | ψ(t)(qin) ∈ Qfin}. Note that, for (a, sa) ∈ Σ‖S , ψ((a, sa)) is an
a-map (that is, an extension of a map from Qa to Qa; recall that loc((a, sa)) = loc(a)).

For a ∈ Σ, we set η(a) = (ϕA(a), fa) where fa : SP → N is defined by fa(s) = ψ((a, sa)).
It is easy to check that η(a) is an a-map (that is, an extension of a map from Sa ×Qa to
Sa×Qa). By Lemma 9, this uniquely defines an asynchronous morphism η : TR(Σ̃)→ TA oT .

Let t = (E,≤, λ) ∈ TR(Σ̃). We write η(t) = (π1(t), π2(t)). It follows from the definition
of wreath product that π1(t) = ϕA(t). Now we claim that π2(t)(sin) = ψ(χA(t)). We
prove this by induction on the cardinality of E. Suppose t = t′a. Then η(t) = η(t′)η(a).
As a result, we have (π1(t), π2(t)) = (π1(t′), π2(t′))(π1(a), π2(a)). Therefore, for s ∈ SP ,
π2(t)(s) = π2(t′)(s) + π2(a)(π1(t′)(s)). In particular, it holds with s = sin. Recall that
π1(t′) = ϕA(t′). Also, by induction, π2(t′)(sin) = ψ(χA(t′)). Hence, with s = ϕA(t′)(sin),

π2(t)(sin) = π2(t′)(sin) + π2(a)(π1(t′)(sin))
= ψ(χA(t′)) + π2(a)(s)
= ψ(χA(t′)) + ψ((a, sa))
= ψ(χA(t′)(a, sa))
= ψ(χA(t))
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The last equality follows from Lemma 18. So, t ∈ χ−1
A (L) if and only if χA(t) ∈ L if and only if

ψ(χA(t))(qin) ∈ Qfin if and only if π2(t)(sin)(qin) ∈ Qfin if and only if η(t)(sin, qin) ∈ SP×Qfin.
This shows that η recognizes χ−1

A (L) with (sin, qin) ∈ SP × QP as the initial global state,
and SP ×Qfin ⊆ SP ×QP as the set of final global states. J

Now we focus our attention on what is usually termed as the wreath product principle.

I Theorem 20 (Local Wreath Product Principle). Let T1 and T2 be atm’s and let L ⊆ TR(Σ̃)
be a trace language recognized by an asynchronous morphism η : TR(Σ̃)→ T1 oT2, with initial
global state (sin, qin). For each a ∈ Σ, let η(a) = (ma, fa). Then ϕ : TR(Σ̃) → T1, defined
by ϕ(a) = ma, is an asynchronous morphism. Finally, let A = Aϕ be the asynchronous
automaton associated to ϕ and sin, and let χA be the corresponding local asynchronous
transducer. Then L is a finite union of languages of the form U ∩χ−1

A (V ), where U ⊆ TR(Σ̃)
is recognized by T1, and V ⊆ TR(Σ̃‖S) is recognized by T2.

Proof. We write T1 = ({Si},M) and T2 = ({Qi}, N). Consider a ∈ Σ and the a-map
η(a) = (ma, fa) ∈ M × F(SP , N). This means that η(a) is an extension of a map from
Sa ×Qa to Sa ×Qa. By Lemma 15, ma ∈M is an a-map (of T1) and fa : SP → N is such
that, for s ∈ SP , fa(s) ∈ N is an a-map (of T2) and it depends only on sa. In particular,
fa : SP → N may be viewed as fa : Sa → N . Below we will use fa in this sense.

Now we define an asynchronous morphism ψ : TR(Σ̃‖S) → T2 as follows: ψ((a, sa)) =
fa(sa). Note that, by Lemma 9, ψ is indeed an asynchronous morphism as fa(sa) is an
a-map. Further, as ma is an a-map, ϕ : TR(Σ̃)→ T1, defined by ϕ(a) = ma, also extends to
an asynchronous morphism.

Our aim is to express L in terms of languages recognized by T1 and T2. It suffices to
show the result when L is recognized with a single final global state, say (sfin, qfin). Then
L = {t ∈ TR(Σ̃) | η(t)((sin, qin)) = (sfin, qfin)}.

For t ∈ TR(Σ̃), we write η(t) = (π1(t), π2(t)). It follows from the definition of ϕ that
ϕ(t) = π1(t). Hence, we can alternatively write L as

L = {t ∈ TR(Σ̃) | ϕ(t)(sin) = sfin and π2(t)(sin)(qin) = qfin}

Let U = {t ∈ TR(Σ̃) | ϕ(t)(sin) = sfin}. Then, withW = {t ∈ TR(Σ̃) | π2(t)(sin)(qin) = qfin},
L = U ∩W . By using essentially the same ideas as in the proof of Theorem 19, we can show
that π2(t)(sin) = ψ(χA(t)). Therefore, W = {t ∈ TR(Σ̃) | ψ(χA(t))(qin) = qfin}.

It follows that, with V = {t′ ∈ TR(Σ̃‖S) | ψ(t′)(qin) = qfin}, W = χ−1
A (V ). Clearly, U is

recognized by the atm T1 (via ϕ), V is recognized by the atm T2 (via ψ) and L = U ∩χ−1
A (V ).

This completes the proof. J

4 Towards a Decomposition Result

In this section, we use the algebraic framework developed so far to propose an analogue
of the fundamental Krohn-Rhodes decomposition theorem over traces. We first recall the
Krohn-Rhodes theorem in the purely algebraic setting of transformation monoids. We briefly
explain how it is used to analyze/decompose morphisms from the free monoid and point out
some difficulties that arise when we consider morphisms from the trace monoid.

Let M and N be monoids. We say that M divides N (in notation, M ≺ N) if M is a
homomorphic image of some submonoid of N . This notion can be extended to transformation
monoids. Let (X,M) and (Y,N) be two tm’s. We say that (X,M) divides (Y,N), denoted
(X,M) ≺ (Y,N), if there exists a pair of mappings (f, ϕ) where f : Y → X is a surjective
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function and ϕ : N ′ → M is a surjective morphism from a submonoid N ′ of N , such that
ϕ(n)(f(y)) = f(n(y)) for all n ∈ N ′ and all y ∈ Y .

Recall that U2 = ({1, 2}, {id, r1, r2}) denotes the reset transformation monoid on two
elements. Along with it, the following class of transformation monoids plays an important
role in the Krohn Rhodes theorem.

I Example 21. Let G be a group. Then (G,G) is a tm where the monoid element g represents
the transformation mg : G→ G of the set G, which is the right multiplication by g. In other
words, for h ∈ G,mg(h) = hg. y

We are now in a position to state the Krohn-Rhodes theorem [11]. See [20] for a classical
proof of the theorem, and [5] for a modern proof.

I Theorem 22 (Krohn-Rhodes Theorem). Every finite transformation monoid T = (X,M)
divides a wreath product of the form T1 o . . . o Tn where each factor Ti is either U2 or is of the
form (G,G) for some non-trivial simple group G dividing M .

Henceforth, we will be dealing with only finite tm’s and sometimes we will omit the
qualifier ‘finite’. Now we turn our attention to the use of this decomposition theorem for
analysing word languages recognized by morphisms from the free monoid.

I Definition 23. Let ϕ : Σ∗ → T = (X,M) be a morphism. Further, let ψ : Σ∗ → T ′ = (Y,N)
be another morphism. We say that ψ simulates ϕ if there exists a surjective function
f : Y → X such that, for all a ∈ Σ and all y ∈ Y , f(ψ(a)(y)) = ϕ(a)(f(y)).

X X

Y Y

ϕ(a)

ψ(a)

f f

Figure 2 Visual illustration of condition f(ψ(a)(y)) = ϕ(a)(f(y)) in Definition 23

Observe that if ψ simulates ϕ then a language recognized by ϕ is also recognized by ψ.

I Proposition 24. Let ϕ : Σ∗ → T = (X,M) be a morphism. Then there exists a morphism
ψ : Σ∗ → T ′ which simulates ϕ such that the tm T ′ is of the form T1 o . . . o Tn where each
factor Ti is either U2 or (G,G) for some non-trivial simple group G dividing M .

Proof. Given T , we get T ′ = T1o. . .oTn = (Y,N) by the Krohn-Rhodes theorem. Since T ≺ T ′,
there exists a pair of mappings (f, θ) where f : Y → X is a surjective function and θ : N ′ →M

is a surjective morphism from a submonoid N ′ of N , such that θ(n)(f(y)) = f(n(y)) for
all n ∈ N ′ and all y ∈ Y . Construct ψ : Σ → N by mapping ψ(a), for each a in Σ, to an
arbitrary element in θ−1(ϕ(a)). Thanks to the fact that Σ∗ is a free monoid, ψ uniquely
extends to a morphism ψ : Σ∗ → T ′. It is easily checked that ψ simulates ϕ. J

Combined with the wreath product principle, the above proposition provides a powerful
inductive tool to prove many non-trivial results in the theory of finite words. See [14, 3].

Motivated by these applications, we look for an analogue of the above proposition for
the setting of traces. We now point to some problems that arise if one tries to naively lift
the Krohn-Rhodes theorem to the setting of traces. The first problem is that, unlike in the
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word scenario, division does not imply simulation of morphisms from the trace monoid. By
simulation of morphisms from the trace monoid, we simply mean an obvious adaptation of
the Definition 23 to the morphisms from the trace monoid. See the extended version [1] for
an example of the problem of the first kind. The second problem is that even if there is a
morphism from TR(Σ̃) to a wreath product of tm’s, in general it does not induce morphisms
from trace monoids to the individual tm’s beyond the first one. This is primarily because
the output of the sequential transducer associated with the first tm is not a trace.

I Example 25. Assume the DFA in Figure 3 represents the induced morphism to the first tm
in a wreath product chain. The figure below shows the outputs of the sequential transducer
associated with this DFA on three different linearizations of a single input trace. These
outputs have different sets of letters and can not constitute a single trace. y

b b
c

a
s q

b
a, c

c

a, b

abbc :
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)(
b
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)(
b
q

)(
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)
babc :
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s

)(
a
q

)(
b
q

)(
c
q

)
bbac :

(
b
s

)(
b
q

)(
a
q

)(
c
q

)
Figure 3 Sequential transducer outputs for all linearizations of a trace

Prior work in [8] devised a wreath product principle for traces, but it uses non-trace structures
to circumvent the second problem, thus limiting its applicability.

As seen in the previous section, the new algebraic framework of asynchronous structures
supports true concurrency and is well suited to reason about trace languages. Most im-
portantly, an asynchronous morphism to a wreath product chain gives rise to asynchronous
morphisms to individual atm’s of the chain (see the proof of Theorem 20 for an illustration).
This can be seen as a resolution of the second problem mentioned above.

Going ahead, we extend the notion of simulation to the case when the ‘simulating’
morphism is an asynchronous morphism to an atm.

I Definition 26. Let ϕ : TR(Σ̃) → T = (X,M) be a morphism to a tm. Further, let
T ′ = ({Si}, N) be an atm and ψ : TR(Σ̃)→ T ′ be an asynchronous morphism. We say that
ψ is an asynchronous simulation of ϕ (or simply ψ simulates ϕ) if there exists a surjective
function f : SP → X such that, for all a ∈ Σ and all s ∈ SP , f(ψ(a)(s)) = ϕ(a)(f(s)).

The fundamental theorem of Zielonka [21] states that every recognizable language is
accepted by some asynchronous automaton. See [15] for another proof of the theorem. From
the viewpoint of our algebraic setup and the previous definition, it guarantees the existence
of a simulating asynchronous morphism.

I Theorem 27 (Zielonka’s Theorem). Let ϕ : TR(Σ̃) → T be a morphism to a finite tm.
There exists an asynchronous morphism ψ : TR(Σ̃)→ T ′, to a finite atm, which simulates ϕ.

Recall that the atm U2[`], defined in Example 6, is a natural extension of the tm U2 to
the process `. In a similar vein, for a group G, the atm G[`] denotes the natural extension of
the tm (G,G) from Example 21 to the process `. We will use a similar notation to extend a
tm to an atm localized to a particular process.

Now we formulate the following decomposition question:



B.Adsul, P. Gastin, S. Sarkar, and P.Weil 46:13

I Question 1. Let ϕ : TR(Σ̃)→ (X,M) be a morphism to a finite tm. Does there exist an
asynchronous morphism ψ : TR(Σ̃)→ T ′ to a finite atm, such that ψ simulates ϕ, and the
atm T ′ is of the form T1 o . . . o Tn where each factor Ti is, for some ` ∈ P, either the atm
U2[`] or is of the form G[`] for some non-trivial simple group G dividing M?

In view of our discussion so far, it is clear that the above question asks for a simultaneous
generalization of the Krohn-Rhodes theorem for the setting of words (that is, Proposition 24),
and Zielonka’s theorem for the setting of traces (that is, Theorem 27). Question 1 in general
remains open. However we answer it positively in a particular case, namely that of acyclic
architectures, which is general enough to include the common client-server settings.

I Definition 28. Let Σ̃ = {Σi}i∈P be a distributed alphabet. Then its communication graph
is G = (P, E) where E = {(i, j) ∈ P × P | i 6= j and Σi ∩ Σj 6= ∅}. If the communication
graph is acyclic, then the distributed alphabet is called an acyclic architecture.

Observe that if Σ̃ is an acyclic architecture, then no action is shared by more than two
processes. The work [10] provides a simpler proof of Zielonka’s theorem in this case.

I Theorem 29. If Σ̃ is an acyclic architecture, then Question 1 admits a positive answer.

5 Local and Global Cascade Products

In this section, we introduce distributed automata-theoretic operations called local and global
cascade products.

5.1 Local Cascade Product
As seen before, asynchronous morphisms are the algebraic counterparts of asynchronous
automata. It turns out that an asynchronous morphism into a wreath product of atm’s
corresponds to the ‘local cascade product’ of asynchronous automata. See [1] for details.
Here we simply define the local cascade product of two asynchronous automata.

I Definition 30. Let A1 = ({Si}, {δa}, sin) over Σ̃, and A2 = ({Qi}, {δ(a,sa)}, qin) over
Σ̃‖S . We define the local cascade product of A1 and A2 to be the asynchronous automaton
A1 ◦` A2 = ({Si × Qi}, {∆a}, (sin, qin)) over Σ̃, where, for a ∈ Σ and (sa, qa) ∈ Sa × Qa,
∆a((sa, qa)) = (δa(sa), δ(a,sa)(qa)).

The operational working of A = A1 ◦` A2 can be understood in terms of A1 and A2 using
the local asynchronous transducer χA1 : TR(Σ̃)→ TR(Σ̃‖S) (associated with A1) as follows:
for an input trace t ∈ TR(Σ̃), the run of A on t ends in global state (s, q) if and only if the
run of A1 on t ends in global state s and the run of A2 on χA1(t) ends in global state q. This

A

(s, q)

t
A1

s

t
A2

q

χA1 (t)

Figure 4 Operational view of local cascade product

operational cascade of A1 followed by A2 is summarized in the right part of the Figure 4 and
is the essence of the local wreath product principle. Further, it is not difficult to check that
the local cascade product is associative and χA1◦`A2(t) = χA2(χA1(t)) for all t ∈ TR(Σ̃).
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5.2 Global Asynchronous Transducer and its Local Implementation
Let A = ({Si}, {δa}, sin) be an asynchronous automaton over Σ̃. Recall that the local
asynchronous transducer χA preserves the underlying set of events and, at an event, simply
records the previous local states of the processes participating in that event.

Now we introduce a natural variant of χA which is called the global asynchronous
transducer. In this variant, at an event, we record the maximal/best global state that causally
precedes the current event. This is the best global state that the processes participating in
the current event are (collectively) aware of. It is important to note that the global and local
asynchronous transducers coincide in the sequential setting.

We first define the alphabet ΣSP = Σ×SP where each letter in Σ is extended with global
state information of A. This can naturally be viewed as a distributed alphabet Σ̃SP where
for all a ∈ Σ and s ∈ SP , we have (a, s) ∈ ΣSP

i if and only if a ∈ Σi.

I Definition 31 (Global Asynchronous Transducer). Let A be an asynchronous automaton
over Σ̃. The global asynchronous transducer of A is the map θA : TR(Σ̃)→ TR(Σ̃SP) defined
as follows. If t = (E,≤, λ) ∈ TR(Σ̃), then θA(t) = (E,≤, µ) ∈ TR(Σ̃SP) with the labelling
µ : E → Σ× SP defined by:

∀e ∈ E, µ(e) = (a, s) where a = λ(e) and s = ρt(↓e \ {e})

I Example 32. For t and Aϕ from Example 17, Figure 5 shows its global asynchronous
transducer output θ(t). Note the difference from Figure 1. For example, here the only
p3-event has process p1 state 2 in its label (which is the best process p1 state in its causal
past) even though processes p1 and p3 never interact directly. y
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Figure 5 Global asynchronous transducer output on a trace

It is possible, albeit non-trivial, to give a uniform translation from the automaton A to
another automaton G(A) such that the global asynchronous transducer of A is realized by
the local asynchronous transducer of G(A). It turns out that one must make crucial use of
the latest information that the agents have about each other when defining the automaton
G(A). It has been shown in [16] that this information can be kept track of by a deterministic
asynchronous automaton. See [1] for more details.

5.3 Global Cascade Product
Now we are ready to define a cascade model which uses the global asynchronous transducer.

I Definition 33 (Operational Global Cascade Product). Let A1 = ({Si}, {δa}, sin) be an
asynchronous automaton over Σ̃, and A2 = ({Qi}, {δ(a,s)}, qin) be an asynchronous automaton
over Σ̃SP . Then their operational global cascade product, denoted by A1 ◦g A2, is a cascade
model where, for any input trace t ∈ TR(Σ̃), A1 runs on t (and ‘outputs’ θA1(t)) and A2
runs on θA1(t). See Figure 6.
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A1

s

t
A2

q

θA1 (t)

Figure 6 Operational view of global cascade product

Note that A1 ◦g A2 is not, a priori, an asynchronous automaton, but in view of the discussion
in the preceeding subsection, it is simulated by the asynchronous automaton G(A1) ◦` A2.

For simplicity, we view A1 ◦g A2 as an automaton with SP ×QP as its global states, and
extend the notions of run, acceptance etc. to it in a natural way (see [1]). Henceforth, we
refer to the operational global cascade product as the simply global cascade product. It
turns out that the global cascade product is associative in a natural sense. See [1] for more
details. Thanks to this, we can also talk about the global cascade product of a sequence of
asynchronous automata.

The following global cascade product principle is an easy consequence of the definitions.

I Theorem 34 (Global Cascade Product Principle). Let A (resp. B) be a global cascade
product over Σ̃ (resp. Σ̃SP ), where SP is the set of global states of A. Then any language
L ⊆ TR(Σ̃) accepted by A ◦g B is a finite union of languages of the form U ∩ θ−1

A (V ) where
U ⊆ TR(Σ̃) is accepted by A, and V ⊆ TR(Σ̃SP) is accepted by B.

6 Temporal Logics, Aperiodic Trace Languages & Cascade Products

An automata-theoretic consequence of Theorem 29 is that any aperiodic trace language
(that is, a trace language recognized by an aperiodic monoid) over an acyclic architecture
is accepted by a local cascade product of localized two-state reset automata. We call these
automata U2[`] as well. In this section, we generalize this result to any distributed alphabet,
but using global cascade product of U2[`]s.

Our proof uses a process-based past local temporal logic (over traces) called LocTL[Yi, Si]
that exactly defines aperiodic trace languages. This expressive completeness property of
LocTL[Yi, Si] is an easy consequence of a non-trivial result from [4], where the future version of
a similar local temporal logic is shown to coincide with first-order logic definable, equivalently,
aperiodic trace languages. The syntax of LocTL[Yi,Si] is as follows.

Event formula α = a | ¬α | α ∨ α | Yi α | α Si α a ∈ Σ, i ∈ P
Trace formula β = ∃iα | ¬β | β ∨ β

The semantics of the logic is given below. Each event formula is evaluated at an event of a
trace. Let t = (E,≤, λ) ∈ TR(Σ̃) be a trace with e ∈ E. For any event x in t and i ∈ P, we
denote by xi the unique maximal event of (↓x \ {x}) ∩ Ei, if it exists.

t, e |= a if λ(e) = a

t, e |= ¬α if t, e 6|= α

t, e |= α ∨ β if t, e |= α or t, e |= β

t, e |= Yi α if ei exists, and t, ei |= α

t, e |= α Si α′ if e ∈ Ei and ∃f ∈ Ei such that f < e and t, f |= α′

and ∀g ∈ Ei f < g < e⇒ t, g |= α
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Note that the since operator is a strict version. LocTL[Yi,Si] trace formulas are evaluated
for traces, with the following semantics.

t |= ∃iα if there exists a maximal i-event e in t such that t, e |= α

The semantics of the boolean combinations of trace formulas are obvious. Any LocTL[Yi, Si]
trace formula β over Σ̃ defines the trace language Lβ = {t ∈ TR(Σ̃) | t |= β}. The following
theorem gives a global cascade product characterization of LocTL[Yi, Si] definable languages.

I Theorem 35. A trace language is defined by a LocTL[Yi,Si] formula if and only if it is
accepted by a global cascade product of U2[`].

By the expressive completeness of LocTL[Yi, Si] from [4], this gives a new characterization
of aperiodic or equivalently, first-order logic definable trace languages in terms of global
cascade products of localized two state asynchronous reset automata. It is in the spirit of
the classical Krohn-Rhodes theorem for aperiodic word languages.

We now give a temporal logic characterization of local cascade product of U2[`]. The
local temporal logic LocTL[Si] is simply the fragment of LocTL[Yi, Si] where Yi is disallowed.
The semantics is inherited. It is unknown whether the logic LocTL[Si] is as expressive as
LocTL[Yi,Si].

I Theorem 36. A trace language is defined by a LocTL[Si] formula if and only if it is
recognized by a local cascade product of U2[`].

Note that if our postulated decomposition (see Question 1) were true, it would imply that
LocTL[Si] is expressively complete, which would be a stronger temporal logic characterization
for aperiodic trace languages than what is currently known. In particular, by Theorem 29,
LocTL[Si] is expressively complete over tree architecture. And this holds true for any
distributed alphabet where Question 1 admits a positive answer.

7 Conclusion

We have presented an algebraic framework equipped with wreath products and proved a
wreath product principle which is well suited for the analysis of trace languages. Building
on this framework, we have postulated a natural decomposition theorem which has been
proved for the case of acyclic architectures. This special case already provides an interesting
generalization of the Krohn-Rhodes theorem. It simultaneously proves Zielonka’s theorem
for acyclic architectures.

The wreath product operation in the new framework, when viewed in terms of automata,
manifests itself in the form of a local cascade product of asynchronous automata. We
have also proposed global cascade products of asynchronous automata and applied them to
arrive at a novel decomposition of aperiodic trace languages. This is a non-trivial and truly
concurrent generalization of the cascade decomposition of aperiodic word languages using
two-state reset automata.
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