Multivariate sparse clustering for extremes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Multivariate sparse clustering for extremes

Résumé

Identifying directions where extreme events occur is a major challenge in multivariate extreme value analysis. In this paper, we use the concept of sparse regular variation introduced by Meyer and Wintenberger (2021)} to infer the tail dependence of a random vector X. This approach relies on the Euclidean projection onto the simplex which better exhibits the sparsity structure of the tail of X than the standard methods. Our procedure based on a rigorous methodology aims at capturing clusters of extremal coordinates of X. It also includes the identification of the threshold above which the values taken by X are considered as extreme. We provide an efficient and scalable algorithm called MUSCLE and apply it on numerical examples to highlight the relevance of our findings. Finally we illustrate our approach with financial return data.
Fichier principal
Vignette du fichier
muscle_jasa_v3.pdf (863.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02904347 , version 1 (22-07-2020)
hal-02904347 , version 2 (17-03-2021)
hal-02904347 , version 3 (06-12-2022)

Identifiants

Citer

Nicolas Meyer, Olivier Wintenberger. Multivariate sparse clustering for extremes. 2022. ⟨hal-02904347v3⟩
313 Consultations
190 Téléchargements

Altmetric

Partager

More