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Abstract

Identifying directions where extreme events occur is a major challenge in multi-
variate extreme value analysis. In this paper, we use the concept of sparse regular
variation introduced by Meyer and Wintenberger (2021) to infer the tail dependence
of a random vector X. This approach relies on the Euclidean projection onto the sim-
plex which better exhibits the sparsity structure of the tail of X than the standard
methods. Our procedure based on a rigorous methodology aims at capturing clusters
of extremal coordinates of X. It also includes the identification of the threshold above
which the values taken by X are considered as extreme. We provide an efficient and
scalable algorithm called MUSCLE and apply it on numerical examples to highlight
the relevance of our findings. Finally we illustrate our approach with financial return
data.
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1 Introduction

The aim of this article is to study the tail dependence of a random vector X ∈ Rd
+ with

continuous marginals. In this context it is customary to assume that X is regularly varying

(see e.g. Resnick (1987), Resnick (2007), Hult and Lindskog (2006)), i.e. that there exist

an →∞ and a non-zero Radon measure µ on the Borel σ-field of Rd
+ \ {0} such that

nP(a−1n X ∈ ·) v→ µ(·) , n→∞ , (1.1)

where
v→ denotes the vague convergence in the space of nonnegative Radon measures on

[0,∞]d \{0}. The limit measure µ is called the tail measure of the regularly varying vector

X. It satisfies the homogeneity property µ(tB) = t−αµ(B), for any set B in Rd
+ \ {0} and

any t > 0. The parameter α is called the tail index of X. It highlights the intensity of the

extremes. The smaller this index is, the heaviest the tail of X is likely to be.

It is often more convenient to decompose the former convergence into a radial and an

angular part (see for instance Beirlant et al. (2006), Section 8.2.3): the regular variation

property is equivalent to the convergence

P((|X|/t,X/|X|) ∈ · | |X|> t)
w→ P((Y,Θ) ∈ ·) , t→∞ , (1.2)

where
w→ denotes weak convergence, and where Θ is a random vector on the positive

unit sphere {x ∈ [0,∞)d : |x|= 1} independent of the random variable Y which satisfies

P(Y > y) = y−α, y > 1. The random vector Θ is called the spectral vector and its

distribution P(Θ ∈ ·) the spectral measure. Its support indicates the directions supported

by large events. The subspaces of the positive unit sphere on which the spectral vector puts

mass correspond to the directions where large events are likely to appear. Note that the

choice of the norm |·| in Equation (1.2) is arbitrary. In this article we choose the `1-norm

and thus focus on the simplex Sd−1+ := {x ∈ [0,∞)d : x1 + · · ·+ xd = 1}.
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In order to study the support of the spectral measure we partition the simplex in terms

of the nullity of some coordinates (Chautru (2015), Goix et al. (2017), Simpson et al.

(2020)). For β ⊂ {1, . . . , d} the subspace Cβ is defined as

Cβ = {x ∈ Sd−1+ : xi > 0 for i ∈ β, xi = 0 for i /∈ β} . (1.3)

This partition highlights the extremal structure of X. For a given β ⊂ {1, . . . , d} the

inequality P(Θ ∈ Cβ) > 0 implies that the marginals Xj, j ∈ β, are likely to take simulta-

neously large values while the ones for j ∈ βc are of smaller order. Hence the identification

of clusters of directions β which concentrate the mass of the spectral measure brings out

groups of coordinates which can be large together.

Highlighting such groups is at the core of several recent papers on multivariate extremes,

all of them relying on some hyperparameters (Chiapino and Sabourin (2016), Goix et al.

(2017), Chiapino et al. (2019), Simpson et al. (2020)). This approach faces a crucial issue,

namely the difference of support between Θ and X/|X|. Indeed, the spectral measure is

likely to place mass on low-dimensional subspaces Cβ, β 6= {1, . . . , d}. We say that this

measure is sparse when the number of coordinates in the associated clusters β is small.

Conversely, the distribution of the self-normalized vector X/|X| only concentrates on the

subset C{1,...,d} since X has continuous marginals.

All the existing approaches proposed in the literature rely on nonstandard regular vari-

ation for which α = 1 and all marginals are tail equivalent, possibly after a standardization.

However, sparsity arises all the more for standard regular variation (1.2). In this case, it is

possible that the marginals of X are not tail equivalent so that the support of the spectral

measure is included in Sr−1+ for r � d. This is the approach we use in this article. For

a comparison of standard and nonstandard regular variation we refer to Resnick (2007),

Section 6.5.6.

3



In this article we provide a method which highlights the sparsity of the tail structure

by exhibiting sparse clusters of extremal directions. By sparse clusters we mean groups of

coordinates β which contain a reduced number of directions compared to d. We refer to this

method as sparse clustering. The statistical procedure we propose to achieve this clustering

relies on the framework of Meyer and Wintenberger (2021) which allows to circumvent the

estimation’s issue that arises with the spectral measure. The angular component X/|X| in

(1.2) is replaced by π(X/t), where π denotes the Euclidean projection onto Sd−1+ (Duchi et

al. (2008), Kyrillidis et al. (2013), Condat (2016)). This substitution leads to the concept

of sparse regular variation. A random vector X is said to be sparsely regularly varying if

P((|X|/t, π(X/t)) ∈ · | |X|> t)
w→ P((Y,Z) ∈ ·) , t→∞ , (1.4)

where Z is a random vector on the simplex Sd−1+ and P(Y > y) = y−α, y > 1. Meyer

and Wintenberger (2021) proved that under mild assumptions both concepts of regular

variation (1.2) and (1.4) are equivalent (see Theorem 1 in their article). In particular, the

relation Z = π(YΘ) holds.

Similarly to the existing approaches with Θ, we are willing to capture the tail depen-

dence of X via the identification of the clusters β which satisfy P(Z ∈ Cβ) > 0. We call

such β’s the extremal clusters. They can be identified via the study of π(X/t) since the

convergence P(π(X/t) ∈ Cβ | |X|> t) → P(Z ∈ Cβ) holds for any β ⊂ {1, . . . , d} (see

Meyer and Wintenberger (2021), Proposition 2). This encourages to consider for any β the

quantity

Tn,k(β) =
k∑
j=1

1{π(X(j)/|X(k+1)|) ∈ Cβ} , (1.5)

where X1, . . . ,Xn is a sample of iid sparsely regularly varying random vectors, k = kn is an

intermediate sequence called level which satisfies k → ∞ and k/n → 0, and X(j) denotes
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the observation with j-th largest norm: |X(1)|≥ · · · ≥ |X(n)|.

It turns out that the number of positive Tn,k(β) often overestimates the total number

of extremal clusters. We call the clusters which satisfy Tn,k(β) > 0 and P(Z ∈ Cβ) = 0 the

biased clusters. The approach we propose to reduce this bias relies on model selection. It

consists in fitting a multinomial model to the data and to compare the Kullback-Leibler

divergence between the data and this theoretical model. We obtain a minimization crite-

rion based on a penalized likelihood similarly to Akaike’s criterion (Akaike (1973)). This

approach provides a way to select the appropriate number of extremal clusters for a given

level k. This is the first step of our procedure, which we call the bias selection.

The second step then consists in extending the procedure in order to automatically

select an appropriate level k. We call this step the level selection. Several authors have

pointed out that choosing a reasonable level, or equivalently a reasonable threshold above

which the data are considered as extreme, is a challenging task in practice. This issue is

tackled in a few articles (Stărică (1999), Abdous and Ghoudi (2005), Kiriliouk et al. (2019),

Wan and Davis (2019), see also the review on marginals threshold selection by Caiero and

Gomes (2015)). It turns out that in the sparse regular variation framework the choice of

such a level and the identification of the extremal clusters are closely related. Therefore

our approach consists in extending the bias selection by including k as a parameter to

tune. Since Akaike’s procedure only holds for a constant sample size we have to adapt the

standard approach to an extreme setting where the number of extremes varies. Therefore

we include the non-extreme values in the model and separate the data into an extreme group

and a non-extreme one. The procedure then provides a level k for which this separation is

reasonable. To the best of our knowledge, our work is the first one which simultaneously

tackles this issue with the study of tail dependence.
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Outline of the paper The paper is organized as follows. Section 2 introduces the theo-

retical background on sparse regular variation and level selection that is needed throughout

the paper. In Section 3 we introduce the statistical framework of our method and establish

asymptotic results for the estimators of the probabilities P(Z ∈ Cβ). Section 4 details the

methodology of our approach. We develop the two steps of the model selection, the bias

selection and the level selection. In Section 5 we illustrate our findings on numerical results

and compare our approach with the existing procedures proposed by Goix et al. (2017) and

Simpson et al. (2020). Finally we illustrate our approach on financial data in Section 6.

The proofs are given in the Supplementary Material.

2 Preliminaries

2.1 Notation

Symbols in bold such as x ∈ Rd are column vectors with components denoted by xj, j ∈

{1, . . . , d}. Operations and relationships involving such vectors are meant componentwise.

If x = (x1, . . . , xd)
> ∈ Rd, then Diag(x) or Diag(x1, . . . , xd) denotes the diagonal matrix

whose diagonal is x. We denote by Ids the identity matrix of Rs. We define Rd
+ := {x ∈ Rd :

x1 ≥ 0, . . . , xd ≥ 0}, 0 := (0, . . . , 0)> ∈ Rd, and 1 := (1, . . . , 1)> ∈ Rd. For j = 1, . . . , d, ej

denotes the j-th vector of the canonical basis of Rd. In all the paper we denote the `1-norm

by |·|. For d ≥ 1 we denote by Pd the power set of {1, . . . , d} and by P∗d the set Pd \ {∅}.

If β ∈ Pd we denote by |β| the number of coordinates in β.
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2.2 Sparse regular variation

We consider a sparsely regularly varying random vector X ∈ Rd
+ as defined in (1.4) and

focus on its angular component π(X/t):

P (π(X/t) ∈ · | |X|> t)
w→ P(Z ∈ ·) , t→∞ . (2.1)

The orthogonal projection on the simplex enjoys many sparsity properties which justifies its

use to study high-dimensional data. The vector π(X/t) may put mass in every subspace Cβ

even if X is almost surely positive. This is a key difference with the self-normalized vector

X/|X| which shares the same sparsity properties as X, and therefore always concentrates

on the interior C{1,...,d} of the simplex.

Remark 1. Our statistical methodology exhibits the choice of a level k which corresponds

to the number of vectors among a sample X1, . . . ,Xn which are considered as extreme. This

is achieved by studying also the n−k non-extreme vectors. In terms of the convergence (2.1)

the latter vectors correspond to vectors whose norm is below the threshold t = |X(k+1)|. In

order to propose a consistent methodology based on these non-extreme vectors we need to

slightly modify the projection and to consider π as the Euclidean projection onto the unit

positive `1-ball Bd+ = {x ∈ Rd
+ : x1 + . . .+ xd ≤ 1}. It does not change the theory of sparse

regular variation since projecting onto the sphere or the ball is equivalent for vectors with

norm larger than 1. The only difference is that a vector v such that |v|< 1 now satisfies

π(v) = v.

Our aim is to infer the distribution of the angular vector Z in order to identify the

extremal directions of X. This is achieved by focusing on the probabilities p∗(β) := P(Z ∈

Cβ) for β ∈ P∗d . We define the set of extremal clusters

S∗(Z) := {β : p∗(β) > 0} , (2.2)
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and denote by s∗ its cardinality. Meyer and Wintenberger (2021) proved that for any β we

have the convergence

P(π(X/t) ∈ Cβ | |X|> t)→ p∗(β) , t→∞ . (2.3)

This convergence allows one to study the behavior of Z on the subsets Cβ via the one of

π(X/t). The aim of this paper is to build a statistical procedure to identify the extremal

clusters β ∈ S∗(Z).

Example 1 (Discrete spectral measure). For β ∈ P∗d , we denote by e(β) the sum
∑

j∈β ej

so that the vector e(β)/|β| belongs to the simplex Sd−1+ (recall that |β| corresponds to the

length of the cluster β). We consider the following family of discrete distributions on the

simplex: ∑
β∈P∗d

c(β) δe(β)/|β| , (2.4)

where (c(β))β is a probability vector on R2d−1 (see Segers (2012), Example 3.3). Meyer

and Wintenberger (2021) proved that in this case we have Z = Θ a.s. and that the family

of distribution in (2.4) is the only possible discrete distributions for Z. For this type of

distributions we have S∗(Z) = {β : c(β) > 0}.

If we choose c(β) = 0 for all β’s except the ones of length 1 then the spectral measure

becomes
∑d

j=1 cj δej , (cj)1≤j≤d ∈ Sd−1+ . This corresponds to asymptotic independence (see

e.g. Ledford and Tawn (1996), Heffernan and Tawn (2004), de Haan and Ferreira (2006),

Section 6.2).

If Θ places mass on a subset Cβ then so does Z, but the converse is not true. Thus

the set of clusters we identify with our method includes the usual ones on which Θ puts

mass. However, the notion of maximal cluster (an extremal cluster which is not included
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in another extremal one) defined by Meyer and Wintenberger (2021) coincide for Θ and Z

and links both types of clusters.

Example 2. Consider a spectral measure in dimension 2 with Θ1 ∼ U (0, 1). Then the

distribution of Z is given by Z1 = 1
4
δ0+ 1

2
U (0, 1)+ 1

4
δ1, see Meyer and Wintenberger (2021),

Example 1. In this case the clusters {1} and {2} are extremal clusters for Z but not for

Θ. The only maximal cluster for Z and Θ is C{1,2}.

2.3 Impact of the level on the sparsity structure

We briefly explain in this section how the choice of a threshold t > 0 influences the sparsity

of the projected vector π(x/t) for x ∈ Rd
+. For t > 0, let us denote by πt the Euclidean

projection onto the positive sphere {x ∈ Rd
+ : x1 + · · · + xd = t}. The relation πt(x) =

tπ(x/t) implies that the sparsity structures of πt(x) and π(x/t) are the same. The number

of null coordinates of the projected vector πt(x) strongly depends on the choice of t. Indeed,

if t is close to |x|, then πt(x) has only non-null coordinates (as soon as x itself has non-null

coordinates). On the contrary, the vector πt(x) is sparse if t� |x|.

Moving on to a statistical framework, we consider a sample X1, . . . ,Xn of iid random

vectors in Rd
+. It is common in extreme value theory to define a level k = kn satisfying

k →∞ and k/n→ 0 (see e.g. de Haan and Ferreira (2006), Beirlant et al. (2006), Resnick

(2007)). It leads to the choice of a threshold t = un →∞ such that

n

k
P(|X|> un)→ 1 , n→∞ . (2.5)

The level k must be seen as the number of extreme vectors used for the statistical analysis.

It is therefore natural to consider the k-largest vectors in terms of their norm, i.e. the

vectors X(1), · · · ,X(k) where |X(j)| denotes the j-th largest norm |X(1)|≥ · · · ≥ |X(n)|. Note
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that since we assumed the marginals of X to be continuous, these inequalities are strict

almost surely. This encourages to work with the random threshold |X(k+1)|. By Vervaat’s

Lemma (see Lemma 1.0.2 in de Haan and Ferreira (2006)), the assumption (2.5) implies

that |X(k+1)|/un converges to 1 in probability as n→∞.

0 x1

x2

1

1

×

×
×

×

×
×

×
×

××
××•

un 0 x1

x2

1

1

×

×
×

×

×
×

×
×

•

un

(a) For k = 12 the points in the blue area are

projected on the interior of the positive sphere

{y ∈ Rd
+ : y1 + · · ·+ yd = un} while the ones in

the red area are projected on the edges of this

sphere.

(b) For k = 8 all points in the blue area are

projected on the interior of the positive sphere

{y ∈ Rd
+ : y1 + · · ·+ yd = un}.

Figure 1: Influence of the level k on the sparsity structure of the data. The threshold un

corresponds to the norm of the vector X(k+1) which is represented by a bullet.

A small k corresponds to a large threshold un and vice versa. In this case only a few

extreme vectors are kept for the statistical analysis and they are close to the threshold.

Thus, these vectors are projected on subsets Cβ with large |β|’s which means that the

projected vectors are not very sparse. On the other hand, choosing a large k means choosing

a low threshold un so that we move away from the extreme region. In this case the largest

vectors are projected on subsets Cβ with small |β|’s, i.e. the projected vectors are sparse.
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We refer to Figure 1 for an illustration of these two cases. Following these remarks we have

to make a balanced choice between providing a sparse structure for the data and staying

in the extreme region.

3 Asymptotic analysis of the extremal clusters

We consider a sequence of iid sparsely regularly varying random vectors X1, . . . ,Xn with

generic distribution X and angular limit vector Z. We also consider a level k satisfying

k → ∞ and k/n → 0 and a threshold un such that (2.5) is satisfied. In order to identify

the set S∗(Z) defined in (2.2) we provide suitable estimators for the probabilities p∗(β),

β ∈ P∗d . We define the estimators

Tn(x, β) =
n∑
j=1

1{X/un∈A(x,β)} , β ∈ P∗d , x > 0 ,

where A(x, β) = {y ∈ Rd
+ : x|y|> 1, π(xy) ∈ Cβ} so that the estimator Tn,k(β) defined in

(1.5) satisfies Tn,k(β) = Tn(un/|X(k+1)|, β). An empirical version of S∗(Z) is then given by

Ŝn := {β ∈ P∗d : Tn,k(β) > 0} . (3.1)

We denote by ŝn the cardinality of this set. Finally, we define

pn(β) = P(π(X/un) ∈ Cβ | |X|> un) , β ∈ P∗d .

which converges to p∗(β) ∈ P∗d for any β, see Equation (2.3).

3.1 The bias between Ŝn and S∗(Z)

In this section we compare the set S∗(Z) with its empirical counterpart Ŝn. We first

establish the consistency of our estimator.
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Proposition 1. For any β ∈ P∗d ,

Tn,k(β)

k
=

1

k

k∑
j=1

1{π(X(j)/|X(k+1)|)∈Cβ} → p∗(β) , n→∞ , (3.2)

in probability.

The proof relies on Proposition 2.2 of de Haan and Resnick (1993). It suffices to prove

that Z does not put any mass on the boundary of {|x|> 1} ∩ π−1(Cβ), which has already

been established in Proposition 2 of Meyer and Wintenberger (2021).

Proposition 1 implies that if p∗(β) = 0, i.e. if Z does not place mass on the subset

Cβ, then Tn,k(β)/k becomes smaller and smaller as n increases. Actually as soon as the

dimension d is large a lot of Tn,k(β)’s are even equal to 0 since the number of extreme

vectors, that is k, is far below the number of clusters, that is 2d − 1.

In order to study the bias between Ŝn and S∗(Z) we focus on the speed of convergence of

P(Tn,k(β) = 0), and thus on the one of P(X/un ∈ A(x, β)) = P({y ∈ Rd
+ : x|y|> 1, π(xy) ∈

Cβ}). Meyer and Wintenberger (2021) established the equivalence

π(x) ∈ Cβ if and only if ∀i ∈ βc, ∀j ∈ β, xi ≤
|xβ|
|β|

< xj .

In other words, all xj, j ∈ β, should be of the same order, while the xi, i ∈ βc, should be

of smaller order. We set xβ, i =
∑

j∈β(xj − xi) for any i and define

Cβ = {x ∈ Rd
+ : min

i∈βc
xβ, i ≥ 0} =

{
x ∈ Rd

+ :
∑
j∈β

(xj −max
i∈βc

xi) ≥ 0
}
,

which forms a cone of Rd
+. Studying the convergence of P(X/un ∈ A(x, β)) then boils down

to studying the asymptotic behavior of X on the cone Cβ. Based on the theory of hidden

regular variation (HRV) by Lindskog et al. (2014), we make the following assumption on

X.
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Assumption (HRV). For every β ∈ P∗d the vector X is regularly varying on Rd
+ \Cβ with

tail index α(β) and exponent measure µβ satisfying

µβ({x ∈ Rd
+ : max

i∈β
xβ, i < 1, min

i∈βc
xβ, i ≥ 1}) > 0 .

This assumption allows one to deal with the asymptotic behavior of P(Tn,k(β) = 0)

even when p∗(β) = 0, as stated in the following lemma.

Lemma 1. Under Assumption (HRV) we have for every β ∈ P∗d ,

logP(Tn,k(β) = 0)

−kpn(β)
→ 1 , n→∞ .

Lemma 1 encourages to focus on the quantity kpn(β) and to consider the set

S∞ = {β ∈ P∗d : kpn(β)→∞ as n→∞} . (3.3)

We denote by s∞ its cardinality. This set contains S∗(Z) so that we have the inequality

s∗ ≤ s∞. Subsequently, Lemma 1 implies that

P(S∞ ⊂ Ŝn) = 1− P(∃β ∈ S∞, β /∈ Ŝn) ≥ 1−
∑
β∈S∞

P(Tn,k(β) = 0)→ 1 ,

as n→∞. This leads to the following proposition.

Proposition 2. Under Assumption (HRV) the inclusions

S∗(Z) ⊂ S∞ ⊂ Ŝn

hold true with probability converging to 1.

These inclusions highlight the fact that the observations Tn,k(β) tend to overestimate the

number of clusters β in S∗(Z). They imply that we only have a “one-side bias” composed
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of clusters that appear empirically but which theoretically do not contain any mass. One

of the main challenge of our study is the derivation of the asymptotic properties of Tn,k(β)

for biased clusters β ∈ Ŝn \ S∗(Z).

By Lemma 1 the inclusion Ŝn ⊂ S∞ means that we only observe faces Cβ for which

P(Tn,k(β) = 0) does not decrease super-exponentially fast with n. We define the sets of

admissible sequences (kn) by

K = {(kn) : kn →∞, kn/n→ 0, S∞ = Ŝn a.s. for all n large enough} .

That K is non empty is a strong assumption equivalent to the fact that Ŝn converges a.s.

to S∞ for some sequence of levels (kn). Combining the definition of K with Assumption

(HRV) we can rely on the statistics Tn,k(β), (kn) ∈ K, which are non-null sufficiently often

even when pn(β)→ p∗(β) = 0, in order to quantify the bias.

3.2 Asymptotic normality

We now establish a convergence result for the joint distribution of Tn,k(β) for β ∈ S∞.

This is achieved via the study of the joint distribution of Tn(x, β) for x ∈ [ 1
1+τ

, 1 + τ ],

τ > 0. Having in mind the model selection proposed in Section 4 we consider for any

0 ≤ s < r ≤ s∞ and any disjoint clusters β1, . . . , βr ∈ S∞ the vectors

Ts,r
n (x) =

(
Tn(x, β1), . . . , Tn(x, βs),

r∑
j=s+1

Tn(x, βj)
)>
∈ Rs+1 ,

and

Ps,r
n (x) =

(
xα(β1)pn(β1), . . . , x

α(βs)pn(βs),
r∑

j=s+1

xα(βj)pn(βj)
)>
∈ Rs+1 .

For τ > 0 we denote by `∞([ 1
1+τ

, 1 + τ ]) the set of functions defined and bounded on

[ 1
1+τ

, 1 + τ ].
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Theorem 1. Let Assumption (HRV) hold. Assume that there exists (kn) ∈ K and choose

un such that k ∼ nP(|X|> un) as n→∞.

1. The following convergence holds in `∞([ 1
1+τ

, 1 + τ ]) as n→∞:{√
kDiag(Ps,r

n (x))−1/2
(

Ts,r
n (x)

k
− E

[Ts,r
n (x)

k

])
; (1 + τ)−1 ≤ x ≤ 1 + τ

}
s<r

d→ (Ns,r)s<r , (3.4)

where the constant limit process is identified to Ns,r, a standard centered multivariate

Gaussian vector in Rs+1.

2. If we assume moreover that for any β ∈ S∞,

sup
x∈[ 1

1+τ
,1+τ ]

√
k

pn(β)

∣∣∣n
k
P(X/un ∈ A(x, β))− xα(β)pn(β)

∣∣∣→ 0 , n→∞ , (3.5)

then we have{√
kDiag(Ps,r

n (x))−1/2
(

Ts,r
n (x)

k
−Ps,r

n (x)

)
; (1 + τ)−1 ≤ x ≤ 1 + τ

}
s<r

d→ (Ns,r)s<r ,

(3.6)

in `∞([ 1
1+τ

, 1 + τ ]) as n→∞.

Based on Theorem 1, we establish the asymptotic behavior of the estimators Tn,k(β).

We define

Ts,r
n,k = Ts,r

n (un/|X|(k+1)) =
(
Tn,k(β1), . . . , Tn,k(βs),

r∑
j=s+1

Tn,k(βj)
)>
∈ Rs+1 .

Proposition 3. Under the assumptions of Theorem 1, under (3.5), and under the bias

assumption
√
k(pn(β)− p∗(β))→ 0 , n→∞ , β ∈ S∞ , (3.7)
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we have the convergence

√
kDiag(Ps,r

n (1))−1/2
(

Ts,r
n,k

k
−Ps,r

n (1)

)
d→ (Ids+1 −

√
Ps,r ·

√
Ps,r

>
)N , n→∞ , (3.8)

where N ∈ Rs+1 is a standard centered multivariate Gaussian vector, and where Ps,r is the

limit vector of Ps,r
n (1):

Ps,r =
(
p∗(β1), . . . , p

∗(βs),
r∑

j=s+1

p∗(βj)
)>

= lim
n→∞

(
pn(β1), . . . , pn(βs),

r∑
j=s+1

pn(βj)
)>

.

Remark 2. The bias assumption (3.7) holds for β ∈ S∞ \ S∗(Z) if k = o(nκ) as n → ∞

where κ > 2(α(β)−α)
2α(β)−α for every β ∈ S∞ \ S∗(Z). We refer to the Supplementary Material for

a proof.

Remark 3. For r = s∞ the matrix Ids+1 −
√

Ps,r ·
√

Ps,r
>

is symmetric and satisfies

(Ids+1 −
√

Ps,r ·
√

Ps,r
>

)2 = Ids+1 − 2
√

Ps,r ·
√

Ps,r
>

+ (
√

Ps,r ·
√

Ps,r
>

)2

= Ids+1 −
√

Ps,r ·
√

Ps,r
>
,

since
√

Ps,r
> ·
√

Ps,r =
∑r

j=1 p
∗(βj) = 1. Therefore it corresponds to an orthogonal

projection with rank s. Cochran’s theorem then ensures that the `2-norm of the vector

(Ids+1 −
√

Ps,r
√

Ps,r
>

)N follows a chi-squared distribution with s degrees of freedom.

Going back to Proposition 3 we obtain the following convergence:

k
s∑
j=1

(Tn,k(βj)/k − pn(βj))
2

pn(βj)
+ k

[
∑r

j=s+1(Tn,k(βj)/k − pn(βj))]
2∑r

j=s+1 pn(βj)

d→ ψ(s) , (3.9)

where ψ(s) follows a chi-squared distribution with s degrees of freedom. This convergence is

useful to identify the parameter s in the bias selection, see Lemma 4 in the Supplementary

Material.
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4 Methodology

We develop in this section our methodology to estimate the set S∗(Z). We use the same

notation as in Section 3.

4.1 Bias selection

We consider the vector Tn,k ∈ R2d−1 with components Tn,k(β) whose distribution Pk

is multinomial with probability weights (pn(β))β∈P∗d , and adding up to k. We propose

a bias selection which consists in comparing the distribution Pk with the theoretical

multinomial model Mk with 2d − 1 outcomes adding up to k and a probability vector

(p1, . . . , ps, p, . . . , p, 0, . . . , 0)> ∈ [0, 1]2
d−1, with p1 ≥ · · · ≥ ps > p and r − s components p

satisfying p1 + · · · + ps + (r − s)p = 1. The parameters pj model the probability that Z

belongs to the associated subsets Cβ while the parameter p models the probability that a

biased cluster appears. We denote by p the vector (p1, . . . , ps)
> ∈ Bs+(0, 1). The likelihood

LMk
of the model Mk is given by

LMk
(p; y) =

k!∏2d−1
i=1 yi!

s∏
i=1

pyii

r∏
i=s+1

(1−
∑s

j=1 pj

r − s

)yi
1{yr+1=···=y2d−1

=0} , (4.1)

for any vector p ∈ Bs+(0, 1) = {u ∈ Rs
+ : u1 + · · · + us ≤ 1} and any y ∈ N2d−1

0 adding up

to k, where N0 denotes the sets of non-negative integers.

The identification of the extremal clusters β in S∗(Z) is achieved by choosing the model

Mk which best fits the sample Tn,k. Following the AIC approach of Akaike (1973), we

select the multinomial model which minimizes the expectation of the Kullback-Leibler

(KL) divergence (see Kullback and Leibler (1951)) between the true distribution Pk and

the model Mk evaluated at p̂, where p̂ denotes the maximum-likelihood estimator of p.
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Hence we consider the quantity

E[KL(Pk‖Mk)|p=p̂] = E[ logLPk(Tn,k)]− E[E[ logLMk
(p; Tn,k)]|p=p̂] , (4.2)

where LPk denotes the likelihood of the distribution Pk. Theorem 2 below provides an

asymptotic expansion of this quantity.

Before stating this result we compute the maximum likelihood estimator of the model

Mk. The first components of the model Mk being associated to the extremal clusters,

we reorder the coordinates of the vector Tn,k so that its components are ordered in the

decreasing order. Hence we define Tn,k,1 = maxβ Tn,k(β) and

Tn,k,j = max {Tn,k(β), β ∈ P∗d} \ {Tn,k,1, . . . , Tn,k,j−1} , j = 2, . . . , 2d − 1 .

The expression in (4.1) is also maximal when r corresponds to the number ŝn of clus-

ters that appear empirically. This leads to the following expression of the log-likelihood

logLMk
(p; Tn,k):

log(k! )−
2d−1∑
i=1

log(Tn,k,i! ) +
s∑
i=1

Tn,k,i log(pi) +
( r∑
i=s+1

Tn,k,i

)
log
(1−

∑s
j=1 pj

r − s

)
. (4.3)

The optimization of this quantity then provides the maximum likelihood estimator p̂ ∈ Rs

with components p̂j := Tn,k,j/k for 1 ≤ j ≤ s.

Theorem 2. Under the assumptions of Proposition 3 the following convergence holds:

E[KL(Pk‖Mk)|p=p̂]− E[ logLPk(Tn,k)] + E[logLMk
(p̂; Tn,k)]→ s , n→∞ .

Based on Theorem 2 we choose the model Mk which minimizes the quantity

− logLMk
(p̂; Tn,k) + s . (4.4)

Therefore for a given sequence (kn) ∈ K the bias selection procedure consists in choosing

the parameter ŝ(k) which minimizes this penalized log-likelihood.
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4.2 Level selection

The second step of the model selection consists in considering k as a parameter which has

to be estimated and tuned. It is therefore necessary to consider all observations X1, . . . ,Xn

and not only the extreme ones. We consider a vector T′n ∈ R2d such that

L((T ′n,1, . . . , T
′
n,2d−1) | T

′
n,2d = n− k) = Tn,k .

The last component T ′
n,2d

corresponds to the number of non-extreme values of the sample.

We assume that this vector follows a multinomial distribution P′n with parameter n and

probability vector p′n = (qnpn,1, . . . , qnpn,2d−1, 1− qn)> ∈ R2d .

Similarly to Section 4.1 we consider a multinomial model M′
n with probability vector

given by (q′p′1, . . . , q
′p′s′ , q

′p′, . . . , q′p′, 0, . . . , 0, 1 − q′)> ∈ R2d with p′1 ≥ . . . ≥ p′s′ > p′ and

r′−s′ components q′p′ satisfying the relation p′1+. . .+p′s+(r′−s′)p′ = 1. Here q′ models the

proportion of extreme vectors. We denote by p′ the vector (p′1, . . . , p
′
s′ , q

′)> ∈ Bs′+ × (0, 1).

We consider the Kullback-Leibler divergence between P′n and M′
n given by

KL(P′n‖M′
n) = E

[
log

(
LP′n(T′n)

LM′n(p′; T′n)

)]
= E[ logLP′n(T′n)]− E[ logLM′n(p′; T′n)] , (4.5)

where LP′n (resp. LM′n) denotes the likelihood of the distribution P′n (resp. M′
n). Following

the same ideas as in Section 4.1 and similarly to an AIC procedure we estimate the Kullback-

Leibler divergence in Equation (4.5) by the estimator KL(P′n‖M′
n)|p̂′ where p̂′ denotes the

maximum likelihood estimator of p′.

We make the following assumptions.

(B1) For k ∈ K and βj ∈ S∞ we have

E[Tn,n−T ′
n,2d

,j | T ′n,2d ]

n− T ′
n,2d

=
E[Tn,k,j]

k
+O(1) , n→∞ .
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(B2) For n sufficiently large, k ∈ K, there exist c, C > 0 such that cnqn ≤ k ≤ Cnqn.

Assumptions (B1) and (B2) allow one to control the bias between Tn,n−T ′
n,2d

,j | T ′n,2d
and Tn,k,j, and between k and nqn respectively.

The following theorem provides an asymptotic expansion of the expectation of this

estimator.

Theorem 3. Under (B1), (B2) and the assumptions of Proposition 3 we have

E[KL(P′n‖M′
n)|p̂′ ] = nqn

(E[− logLMk
(p̂; Tn)] + s

k
+ log(k/n)

)
+O(nqn) , n→∞ .

Theorem 3 encourages to choose a level k which minimizes the penalized log-likelihood

− logLMk
(p̂; Tn) + s

k
+ log

(k
n

)
.

It turns out that the additive penalization term log(k/n) leads to numerical instability as

k/n is small. To cope with this issue we upper bound it by k/n − 1. The level k which

minimizes the criterion is then smaller than the one that appears with log(k/n). Thus it

satisfies more likely the bias assumptions (B1), (B2). So in practice we choose a level k

which minimizes the following penalized log-likelihood

− logLMk
(p̂; Tn) + s

k
+
k

n
. (4.6)

Note that the two steps of our procedure are clearly identified in the penalized log-

likelihood. The term − logLMk
(p̂; Tn) + s corresponds to the bias selection and the mul-

tiplicative factor and the additional term to the level one.
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4.3 Algorithm: MUltivariate Sparse CLustering for Extremes

(MUSCLE)

In practice we choose a large range K of k (often between 0.5% and 10% of n) and we

compute the value of (4.6) for these k and for s = 1, . . . , ŝn, where ŝn depends on the

chosen level k. We choose k̂ which minimizes the penalized log-likelihood (4.6) and then

choose ŝ(k̂) which minimizes (4.6) for k = k̂. Then we define Ŝ∗ as the set gathering the

ŝ(k̂) clusters corresponding to the largest Tn,k̂(β)’s. Finally we consider the probability

vector ζ̂ defined by

ζ̂(β) :=
Tn,k̂(β)∑
γ∈Ŝ∗ Tn,k̂(γ)

,

for β ∈ Ŝ∗ and 0 elsewhere, as an estimator of p∗. Our procedure entails the follow-

ing parameter-free algorithm called MUSCLE for MUltivariate Sparse CLustering for Ex-

tremes.

Remark 4. While our procedure leads to the choice of a unique k̂, we expect that this

approach is not too sensitive to this choice. Therefore, it is relevant to plot the function

k 7→ ŝ(k) which provides the chosen value of s for every k ∈ K. We expect that this

function is approximately constant around the chosen value k̂.

5 Numerical results

5.1 Overview

The aim of the numerical results is to compare the extremal clusters given by MUSCLE

with the theoretical ones in S∗(Z). To this end we compare the estimated probability
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Algorithm 1: MUltivariate Sparse CLustering for Extremes (MUSCLE)

Data: A sample X1, . . . ,Xn ∈ Rd
+ and a range of values K for the level

Result: A list Ŝ∗ of clusters β and the associated probability vector ζ̂.

for k ∈ K do

Compute un = |X|(k+1) the (k + 1)-th largest norm;

Assign each π(Xj/un) the subsets Cβ it belongs to;

Compute Tn,k(β) for each β ∈ P∗d ;

Compute the minimizer ŝ(k) which minimizes the criterion given in Equation

(4.4);

end

Choose k̂ which minimizes (4.6) plugging in the minimal value in (4.4);

Output: Ŝ∗ = {the clusters β associated to the Tn,k̂,1, . . . , Tn,k̂,ŝ(k̂)} and ζ̂ as

above.

vector ζ̂ with the theoretical one p∗ via the Hellinger distance

h(p∗, ζ̂) =
1√
2

[ ∑
β∈P∗d

(p∗(β)1/2 − ζ̂(β)1/2)2
]1/2

. (5.1)

The closer h(p∗, ζ̂) is to 0, the better ζ̂ estimates p∗. In order to compare our method with

some existing ones, we also compute the Hellinger distance between the true probabilities

P(Θ ∈ Cβ) and the estimated ones given by the algorithm called DAMEX of Goix et al.

(2017) and the two methods of Simpson et al. (2020). We represent the mean Hellinger

distance over N = 100 simulations. The parameters in the method of Goix et al. (2017) are

chosen to be ε = 0.1, k =
√
n, and p = 0.1, see the notation in their paper. Regarding the

methods of Simpson et al. (2020) we use the parameters given by the authors in Section 4.2

of their paper, i.e. we set π = 0.01, and p = 0.5 and uβ to be the 0.75 quantile of observed
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Q values in region Cβ for the first method, and δ = 0.5 and uβ to be the 0.85 quantile of

observed Q values in region Cβ for the first method. We refer to Simpson et al. (2020) for

more insights on these parameters.

Remark 5. Contrary to the aforementioned methods, we recall that MUSCLE does not

require any hyperparameter. This is a main advantage from a statistical and computational

point of view. On the contrary, for the other methods these values could be tuned via cross-

validation. For the numerical results we do not choose this approach and keep the values

fixed by the authors of the cited papers.

In the following section we develop the example of a max-mixture distribution. The

code related to this article can be found at https://drive.google.com/drive/folders/

11TvhbVMPXcSkxmdnnAySvZt64lpMKZqL?usp=sharing. Another example related to asymp-

totic independence is given in the Supplementary Material.

5.2 Max-mixture distribution

For any β ∈ P∗d , let Aβ ∈ R|β|+ be a random vector with standard Fréchet marginal distri-

butions and with dependence structure given below, and let {Aβ : β ∈ P∗d} be independent

random vectors. Then the vector X = (X1, . . . , Xd)
> whose components are defined via

Xj = maxβ∈P∗d :i∈β λi, βXj ,β, with λi, β ∈ [0, 1] and
∑

β∈P∗d :i∈β
λi, β = 1, has also standard

Fréchet marginal distributions and is regularly varying.

For our simulations we consider the five-dimensional example introduced by Simpson

et al. (2020) which we recall for completeness. We consider two bivariate Gaussian copulas

with correlation parameter ρ and Fréchet marginals A{1,2} and A{4,5}, and three extreme-

value logistic copulas with dependence parameter α and Fréchet marginals A{1,2,3}, A{3,4,5},
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and A{1,2,3,4,5}. For ρ < 1, the Gaussian copula is asymptotically independent (see Example

1 for more insights on this notion) and thus the spectral measure defined in (1.2) concen-

trates on the subsets C{1}, C{2}, C{4}, and C{5}. For α ∈ (0, 1) the logistic distribution

is asymptotically dependent so that the spectral measure also places mass on the subsets

C{1,2,3}, C{3,4,5}, and C{1,2,3,4,5}. Following Simpson et al. (2020), we set

λ{1,2} = (5, 5)/7 , λ{4,5} = (5, 5)/7

λ{1,2,3} = (1, 1, 3)/7 , λ{3,4,5} = (3, 1, 1)/7 , λ{1,2,3,4,5} = (1, 1, 1, 1, 1)/7 ,

so that equal mass is assigned to each of the seven aforementioned subsets. In order to

compute the mass the distribution of Z assigns to every subset Cβ we start from the

distribution of Θ and use Monte-Carlo simulation. We then compare these probabilities

with their estimated ones ζ̂ given by MUSCLE.

We run our algorithm for different values of ρ ∈ {0, 0.25, 0.5, 0.75} and α ∈ {0.1, 0.2, . . . , 0.9}.

Figures 2 and 3 shows the average mean Hellinger distance for our method, the one of Goix

et al. (2017), and the two of Simpson et al. (2020) over 100 simulations. Our method pro-

vides a mean Hellinger distance which stabilizes between 0.2 and 0.3 for all values of ρ and

α. For α ≤ 0.7 the distance slightly decreases with alpha, while it increases for α ≥ 0.8.

The standard deviation is quite small for α ≤ 0.7 and then increases with α. Regarding the

approach of Goix et al. (2017), the mean Hellinger distance tends to increase with α and

with ρ. The smallest values is obtained for ρ ∈ {0, 0.25} and for small α. The estimation

particularly deteriorates for ρ = 0.75. Finally both methods proposed by Simpson et al.

(2020) provide a mean Hellinger distance which increases with α and ρ. The second one

seems to provide almost always better results than the first one.

While all methods provided by Goix et al. (2017) and Simpson et al. (2020) deteriorate

when ρ or α increase, our procedure provides results which stabilize around a mean Hellinger
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Figure 2: Mean Hellinger distance over 100 simulations for ρ = 0 (top) and ρ = 0.25

(bottom). The abbreviation SWT1 (resp. SWT2) refers to the first (resp. second) method

of Simpson et al. (2020).
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Figure 3: Mean Hellinger distance over 100 simulations for ρ = 0.5 (top) and ρ = 0.75

(bottom). The abbreviation SWT1 (resp. SWT2) refers to the first (resp. second) method

of Simpson et al. (2020).
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distance of 0.2. This distance is the smallest one for ρ = 0.5 and ρ = 0.75 for all α compared

to the one of the three other methods. For small ρ, MUSCLE better performs for large α.

For small α the second method of Simpson et al. (2020) provides better results than our

approach, while its standard deviation is larger. It turns out that except for small α with

ρ = 0 and ρ = 0.25 our algorithm better detects the extremal clusters.

6 Application to real-world data

6.1 Preprocessing for real-world data

In Section 5 we considered an example with standard Fréchet marginal distributions so that

the tail index (see Equation (1.2)) of the considered vectors is equal to 1. The influence of

this index on the extremal clusters has been studied on some numerical results by Meyer

and Wintenberger (2021). It turns out that a large tail index does not provide accurate

results while a small one highlights one-dimensional clusters, see Remark 11 in their article.

A tail index of α = 1 seems to provide the best results.

For real-world data the estimation of the tail index of a sample x1, . . . ,xn is achieved

with a Hill plot (Hill (1975)). It consists in plotting

α̂(k) =

(
1

k

k∑
j=1

log(|x|(j))− log(|x|(k))
)−1

, k = 2, . . . , n ,

where |x|(j) denotes the order statistics of the norms |x1|, . . . , |xn|, i.e. |x|(1)≥ . . . ≥ |x|(n),

and to choose α̂ as the value around which the plot stabilizes. Then, we consider the

power transform x′j = (xj)
α̂. This transformation highlights the tail structure of the data

without modifying the support of the spectral measure, see Meyer and Wintenberger (2021),
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Remark 8. It differs from the standardization discussed in the introduction for which the

vectors are normalized via a rank transform.

In the following section we apply MUSCLE to financial data. An application on wind

speed data can be found in the Supplementary Material.

6.2 Extreme variability for financial data

The data set we use corresponds to the value-average daily returns of 49 industry portfo-

lios compiled and posted as part of the Kenneth French Data Library. They are available at

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. A

related study on a similar dataset has been conducted by Cooley and Thibaud (2019). We

restrict our study to the period 1970−2019 which provides n = 12 613 observations denoted

by xobs
1 , . . .xobs

n ∈ R49. Our goal is to study the variability of these returns so that we take

the componentwise absolute value xj = |xobs
j | of the data. Thus, we study the non-negative

vectors x1, . . . ,xn in Rd
+ with n = 12 613 and d = 49. Following Section 6.1, we consider

the vectors x′j = (xj)
α̂, where α̂ = 2.99 is the Hill estimator of the sample |x1|, . . . , |xn|.

Following Remark 4, we plot the evolution of the estimator of the Kullback-Leibler

divergence in (4.6) as a function of k. We see on Figure 4 that this estimator decreases until

it reaches a minimal value for k̂ = 441, before increasing for k ≥ k̂. The level k̂ corresponds

to a proportion k̂/n = 3% and leads to a number of extremal clusters ŝ(k̂) = 14. Contrary

to the numerical results, we do not observe a range of k for which the minimal value ŝ(k)

remains approximately constant.

MUSCLE provides ŝ(k̂) = 14 extremal clusters which gather 12 portfolios. These clus-

ters and their inclusions are represented in Figure 5. The number of identified clusters

is much smaller compared to the total number 249 ≈ 1015. Besides these clusters are
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Figure 4: Evolution with respect to k of the penalized log-likelihood given in (4.6) (left)

and of ŝn(k) (right) for the financial data.

at most three-dimensional so that our procedure drastically reduces the dimension of the

study. Most of the extremal portfolios which appear in the clusters correspond to ”of-

fice/executive” sectors, such as Health, Software, Hardware, Banks, Finance, Electronic

Equipment (Chips), Real Estate. Some other clusters group portfolios related to heavy

industries, such as Steel, Coal, and Gold. The only clusters gathering a heavy industry

and service sectors are {Coal, Banks} and {Coal, Banks, Fin}. The tail dependence of the

variability of these different kinds of portfolios may result from the financing of the coal

industry by several big banks, see Raval et al. (2020).

We conclude that the aforementioned 14 clusters given by MUSCLE correspond to sub-

sets Cβ which gather the mass of Z. Among them, eight gather some mass of Z and are

not included in larger subsets on which Z places mass. Following Meyer and Wintenberger

(2021), Theorem 2, these maximal subsets also concentrate the mass of the spectral mea-

sure. We refer to Meyer and Wintenberger (2021), Section 3.2, for a discussion on maximal

and non-maximal subsets. Standard approaches which hold for low-dimensional extremes

can then be applied to these subsets, see Einmahl et al. (1993), Einmahl et al. (1997),
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Einmahl and Segers (2009).

Coal, Banks, Fin

Hlth, Softw Coal, Banks Steel, Coal Gold, Coal Hardw, Chips

Softw Hlth Banks Coal Txtls Gold RlEst Smoke

Figure 5: Representation of the 14 clusters and their inclusions. The abbreviations are the

following ones: Softw = Computer Software, Txtls = Textiles, Hlth = Healthcare, RlEst

= Real Estate, Hardw = Hardware, Chips = Electronic Equipment, Fin = Finance.

After removing the 12 extremal components we reapply MUSCLE to obtain the depen-

dence structure of the non-extremal portfolios. The algorithm provides a unique cluster

with all 37 remaining portfolios. Hence these portfolios tend to have a dependent tail

structure: their extreme variability is strongly correlated.

7 Conclusion

The statistical analysis introduced in this article provides a new approach to detect the

extremal directions of a multivariate random vector X. This method relies on the notion

of sparse regular variation which better highlights the tail dependence of X. Several con-

vergence results are established in Section 3 and are used to build a rigorous statistical

method based on model selection. This approach provides not only the clusters of direc-

tions on which the extremes of X gather but also a reasonable threshold above which the
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data are considered as extreme values. The latter issue has always been challenging and no

theoretical-based procedure has been provided in a multivariate setting yet, even if it has

been the subject of much attention in the literature. The choice of the directions is achieved

with an AIC-type minimization whose penalization allows to reduce the number of selected

subsets. Including the choice of the level k of the random threshold |X|(k) then entails

multiplicative and additive penalization terms. This approach leads to the parameter-free

algorithm MUSCLE whose purpose is to recover the extremal clusters of a sample of iid

sparsely regularly varying random vectors X1, . . . ,Xn.

The absence of any hyperparameter is a main difference with the existing methods

(Goix et al. (2017), Simpson et al. (2020), Chiapino and Sabourin (2016), Chiapino et al.

(2019)). Another main advantage of our procedure is that it is still efficient for large d.

This follows from the expected linear-time algorithm introduced by Duchi et al. (2008) to

compute the Euclidean projection.

The numerical experiments on max-mixture distributions provide promising results.

Our algorithm provides better results than the ones of Goix et al. (2017) and Simpson et

al. (2020) for ρ close to 1, or small ρ and α close to 1. Moreover the results do not vary a lot

with ρ and α. Finally, the application of our algorithm on financial data highlights sparse

clusters and thus reduces the dimension of the study. We obtain a sparse tail dependence

structure for for the extreme variability of several industry portfolios. This reinforces the

relevance of our approach for reducing the dimension in Extreme Value Theory.
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