On log-algebraic identities for Anderson t-modules and characteristic p multiple zeta values - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2023

On log-algebraic identities for Anderson t-modules and characteristic p multiple zeta values

Résumé

Based on the notion of Stark units we present a new approach that obtains refinements of log-algebraic identities for Anderson t-modules. As a consequence we establish a generalization of Chang's theorem on logarithmic interpretations for special characteristic p multiple zeta values (MZV's) and recover many earlier results in this direction. Further, we devise a direct and conceptual way to get logarithmic interpretations for both MZV's and ν-adic MZV's. This generalizes completely the work of Anderson and Thakur for Carlitz zeta values.
Fichier principal
Vignette du fichier
LogAlgMZVs_v2.pdf (537.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02904276 , version 1 (21-07-2020)
hal-02904276 , version 2 (18-06-2022)

Identifiants

Citer

Nathan Green, Tuan Ngo Dac. On log-algebraic identities for Anderson t-modules and characteristic p multiple zeta values. International Mathematics Research Notices, 2023, 2023 (16), pp.13687-13756. ⟨10.1093/imrn/rnac141⟩. ⟨hal-02904276v2⟩
291 Consultations
126 Téléchargements

Altmetric

Partager

More