Accelerating linear system solvers for time-domain component separation of cosmic microwave background data
Résumé
Component separation is one of the key stages of any modern cosmic microwave background data analysis pipeline. It is an inherently nonlinear procedure and typically involves a series of sequential solutions of linear systems with similar but not identical system matrices, derived for different data models of the same data set. Sequences of this type arise, for instance, in the maximization of the data likelihood with respect to foreground parameters or sampling of their posterior distribution. However, they are also common in many other contexts. In this work we consider solving the component separation problem directly in the measurement (time-) domain. This can have a number of important benefits over the more standard pixel-based methods, in particular if non-negligible time-domain noise correlations are present, as is commonly the case. The approach based on the time-domain, however, implies significant computational effort because the full volume of the time-domain data set needs to be manipulated. To address this challenge, we propose and study efficient solvers adapted to solving time-domain-based component separation systems and their sequences, and which are capable of capitalizing on information derived from the previous solutions. This is achieved either by adapting the initial guess of the subsequent system or through a so-called subspace recycling, which allows constructing progressively more efficient two-level preconditioners. We report an overall speed-up over solving the systems independently of a factor of nearly 7, or 5, in our numerical experiments, which are inspired by the likelihood maximization and likelihood sampling procedures, respectively.
Origine | Publication financée par une institution |
---|
Loading...