
HAL Id: hal-02903839
https://hal.science/hal-02903839v1

Submitted on 21 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Accelerating linear system solvers for time-domain
component separation of cosmic microwave background

data
Jan Papež, Laura Grigori, Radek Stompor

To cite this version:
Jan Papež, Laura Grigori, Radek Stompor. Accelerating linear system solvers for time-domain com-
ponent separation of cosmic microwave background data. Astronomy and Astrophysics - A&A, 2020,
638, pp.A73. �10.1051/0004-6361/202037687�. �hal-02903839�

https://hal.science/hal-02903839v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A&A 638, A73 (2020)
https://doi.org/10.1051/0004-6361/202037687
c© J. Papež et al. 2020

Astronomy
&Astrophysics

Accelerating linear system solvers for time-domain component
separation of cosmic microwave background data

J. Papež1,2, L. Grigori1, and R. Stompor3,4

1 INRIA Paris, Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions, ALPINES Team,
France
e-mail: jan@papez.org

2 Currently at Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
3 Université de Paris, CNRS, AstroParticule et Cosmologie, 75013 Paris, France
4 CNRS-UCB International Research Laboratory, “Centre Pierre Binétruy”, UMI2007, CPB-IN2P3, France

Received 7 February 2020 / Accepted 12 April 2020

ABSTRACT

Component separation is one of the key stages of any modern cosmic microwave background data analysis pipeline. It is an inherently
nonlinear procedure and typically involves a series of sequential solutions of linear systems with similar but not identical system
matrices, derived for different data models of the same data set. Sequences of this type arise, for instance, in the maximization of the
data likelihood with respect to foreground parameters or sampling of their posterior distribution. However, they are also common in
many other contexts. In this work we consider solving the component separation problem directly in the measurement (time-) domain.
This can have a number of important benefits over the more standard pixel-based methods, in particular if non-negligible time-
domain noise correlations are present, as is commonly the case. The approach based on the time-domain, however, implies significant
computational effort because the full volume of the time-domain data set needs to be manipulated. To address this challenge, we
propose and study efficient solvers adapted to solving time-domain-based component separation systems and their sequences, and
which are capable of capitalizing on information derived from the previous solutions. This is achieved either by adapting the initial
guess of the subsequent system or through a so-called subspace recycling, which allows constructing progressively more efficient
two-level preconditioners. We report an overall speed-up over solving the systems independently of a factor of nearly 7, or 5, in our
numerical experiments, which are inspired by the likelihood maximization and likelihood sampling procedures, respectively.

Key words. cosmic background radiation – methods: numerical

1. Context and motivation

Measurements registered by cosmic microwave background
(CMB) experiments contain, in addition to the sought-after
signal of cosmological origin, contributions from astrophysi-
cal sources. These are generically called foregrounds and can
be of either galactic or extragalactic origins and be either dif-
fuse or point-source-like morphologically. A separation of the
foreground signals from each other and, specifically, from the
CMB signal is therefore an essential step of any modern CMB
data analysis. This step is referred to as component separation.
It is performed by capitalizing on either different electromag-
netic frequency dependence and/or statistical properties of dif-
ferent signals (e.g., Planck Collaboration X 2016, and references
therein). In polarization the foreground signals tend to dominate
the CMB signal over a broad range of angular scales and obser-
vational frequencies. The next generation of CMB observatories
will therefore be only capable of delivering its science in full
if high-precision statistically sound and reliable component sep-
aration techniques and their numerically efficient implementa-
tions are available.

Component separation is a nonlinear operation. Based on
data measured at multiple different frequency bands, it aims to
simultaneously recover the frequency dependence of the fore-
grounds as well as their spatial morphology. It is commonly per-
formed in a pixel domain and uses maps of the sky estimated for

each frequency band and their statistical uncertainties as inputs.
These objects are assumed to have been obtained in a preceding
step of the data analysis that is called map-making.

For concreteness, in this work we focus on the so-called para-
metric component separation approach (e.g., Brandt et al. 1994;
Eriksen et al. 2008; Stompor et al. 2009), where the frequency-
scaling relations for each considered sky component are assumed
to be given up to a limited number of unknown parameters, called
foreground spectral parameters. However, the numerical tech-
niques discussed here are more general and should be found useful
also in other component separation methods.

The component separation is typically performed in two
steps. In the first step, the spectral parameters, or more gener-
ally, the mixing matrix elements, are estimated from the data,
and in the second step, they are used to recover maps of sky
components from the frequency maps. This approach is con-
ceptually simple and potentially very efficient computationally.
The input frequency maps preserve essentially all the informa-
tion present in a typically much larger initial raw data set, and
their smaller sizes make them easier to store and operate on.
For the next generation of CMB experiments, we expect to have
as many as nt ∼ O(1013 − 1015) raw measurements, but only
npix ∼ O(105 − 108) sky pixels.

The pixel-domain component separation approaches can
ensure satisfactory performance but require a sufficiently pre-
cise statistical description of the frequency maps. This has to

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A73, page 1 of 16

https://doi.org/10.1051/0004-6361/202037687
https://www.aanda.org
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0

A&A 638, A73 (2020)

be derived from the raw measurements, which we refer to here-
after as time-domain data. In practice, this is often difficult
because storage and computational cycles are limited. A gen-
eral full covariance matrix of a single frequency map contains
n2

pix ∼ O(1010 − 1016) elements, which would need to be stored
in memory. Computing these elements costs at least O(λ)O(nt)
floating point operations (flops). (Here λ is a time-domain noise
correlation length and can reach many thousands of samples.)
The full computations therefore quickly become prohibitively
expensive. This is the case even if the explicit inversion of the
covariance matrix is replaced by some iterative procedure, which
typically requires O(niter n2

pix) flops, where the number of itera-
tions, niter is usually on the order of 102. Consequently, the best
way forward in practice may be to invoke some approximations.
This is often problematic as well, however, because a successful
approximation needs to ensure sufficient accuracy to avoid intro-
ducing systematic biases in the estimated foreground parameters
and later also in the component maps.

A general solution to the problem would be to avoid relying
on the frequency maps at all and to perform all the calculation
directly on the time-domain data. This would typically require
memory on the order of O(nt) and O(p niter nt ln λ) flops. The
prefactor p is on the order of unity for a typical map-making run,
but in our case, it can vary widely between a few tens and many
thousands. This highlights the challenge faced by the proposed
approach. We note that while this is certainly very demanding, it
is not necessarily prohibitive. Some of the best optimized exist-
ing map-making codes can already perform many hundreds of
runs, for instance, as required in massive Monte Carlo simula-
tions. The proposed approach may not only be more robust, but
may be the only way forward if significant time-domain noise
correlations are present, λ � 1. This is commonly the case in
the CMB experiments, in particular, those operating from the
ground.

In this work, we explore some of the avenues that might
render this approach tractable. We first identify the main
computation-heavy step that unavoidably appears in any imple-
mentation of this technique. We then investigate how it might
be accelerated by employing better and more advanced methods
and their implementations.

The plan of this paper is as follows. In Sect. 2 we present the
component separation problem and the numerical challenges it
poses. In Sect. 3 we describe the proposed solution and in Sect. 4
the results of the numerical tests. Section 5 provides a brief sum-
mary and outlines prospects. Material that is more technical in
nature or that is added for completeness is as usual deferred to
the appendices.

2. Problem description and setting

2.1. Preliminaries

Hereafter, we consider polarized signals and assume, for sim-
plicity and definiteness, that in every sky pixel the signal is
characterized by two Stokes parameters, Q and U. Extensions
to include total intensity, I, are straightforward. Consequently,
hereafter, every considered sky map consists of two maps corre-
sponding to the two Stokes parameters. They are concatenated
in a single map vector,

v =
⌈
vq, vu

⌋
≡

[
vq
vu

]
, vq, vu ∈ R

npix . (1)

Hereafter, partial brackets, d. . . c, denote a vertical object.
Examples of the sky maps as discussed in the following are

single-frequency maps storing information about the sky signal
as observed at a given frequency, or single-component maps con-
taining information about a sky signal of some specific physical
origin. We refer to the ordering defined above as Stokes-wise
because a complete sky map of one Stokes parameter is followed
up by another. In addition, we also consider a pixel-wise order-
ing, which for single maps reads

v ≡
⌈
vq(1), vu(1), . . . , vq(npix), vu(npix)

⌋
, (2)

where the Q and U parameters of a signal in one pixel are stored
consecutively and are followed by those in another.

The goal of the component separation procedure is to esti-
mate all assumed sky component signals given multiple fre-
quency data. Therefore, we commonly deal with multiple maps
of the same type, such as multiple single-frequency maps or
multiple single-component maps. We concatenate them in a sin-
gle multifrequency or multicomponent vector. For definiteness,
in this work we fix the number of components to ncomp =
3 and consider three different sky components: CMB, dust,
and synchrotron. A multicomponent vector, s, therefore con-
tains information about the Q and U Stokes parameters of all
three components. Such a vector can be ordered in multiple
ways. Most commonly, we assume that it is ordered either in
a component-wise way, when

s ≡
⌈
scmb, sdust, ssync

⌋
=

⌈
scmb,q, scmb,u, sdust,q, sdust,u, ssync,q, ssync,u

⌋
∈ R6npix , (3)

or in a pixel-wise way, where for each pixel all Stokes parameters
follow consecutively for all considered components, that is,

s ≡
⌈
scmb,q(1), scmb,u(1), . . . , ssync,q(1), ssync,u(1), . . . (4)
scmb,q(npix), scmb,u(npix), . . . , ssync,q(npix), ssync,u(npix)

⌋
.

Multifrequency vectors can be ordered in analogous manners.
The choice of the ordering in general depends on the spe-

cific context and is obviously of key importance for the numeri-
cal implementation of the map-making or component separation
procedures. Nonetheless, mathematically, switching the ordering
from one to another is described by a linear, orthonormal, full-
rank operator, U. This operator is conceptually trivial to apply,
and its application commutes with other matrix operations such
as a matrix inversion because

(U M U t)−1 = U M−1 U t, (5)

for any invertible matrix M. Consequently, a matrix can be
inverted using one ordering, for instance, computing M−1, and
the result can later be reordered to obtain the inverse in the other
ordering scheme, that is, (U M U t)−1. For this reason, we freely
switch between the different orderings depending on the context
in the following in order to highlight specific structures of the
matrices, which may be more apparent for one choice than the
other.

2.2. Data model

As mentioned earlier, we consider a component separation pro-
cedure performed directly on the time-domain data as measured
by the instrument. Thus we do not invoke any prior explicit map-
making procedure. We therefore need to relate the time-domain
measurements directly to the component maps because these
maps are the intended outcome of the component separation pro-
cedure. We assume that for each frequency the time-domain data

A73, page 2 of 16

J. Papež et al.: Accelerating linear system solvers for time-domain component separation of CMB data

are made of sequences of consecutive observations registered by
all detectors operating at this frequency and concatenated, we
can write

df = Pβ?,f s? + nf , df , nf ∈ R
nt , f = 1, . . . , nfreq. (6)

Here s? is the unknown vector of the component amplitudes, and
the star indicates that those are their actual values. nf denotes
an (unknown) noise vector. The number of the frequency chan-
nels, nfreq, is assumed to be larger than that of the components,
ncomp, set to 3 in this work, to ensure that the problem is well
defined. The matrix Pβ?,f in Eq. (6) combines the information
about the instrument operations and the sky properties. It can be
expressed as

Pβ?,f = Pf · Mβ?,f , (7)

where Mβ?,f ∈ R
2npix×6npix is a so-called mixing matrix, and it

determines how different sky components mix at all observed
frequencies to yield the observed signal. The mixing matrix
explicitly depends on the foreground scaling parameters, which
we denote as β?, and the frequency of the observation, f . Pf ∈

Rnt×2npix is in turn a pointing matrix defining which pixel of the
sky each detector operating at a given frequency observed at
every time. While it does not explicitly depend on frequency or
scaling parameters, it therefore is in principle different for differ-
ent frequencies because it encodes pointing of detectors specific
to this frequency. This is highlighted by the subscript f . We have

Pf :
⌈
s?f,q, s

?
f,u

⌋
7→ df , Mβ?,f : s? 7→ sf ≡

⌈
s?f,q, s

?
f,u

⌋
, (8)

where s?f is a single-frequency map expressing the combined
sky signal at frequency f . The data vector, df , is time-ordered
because its elements are indexed by the time at which the mea-
surement was taken.

2.3. Component separation

The goal of the component separation procedure is to solve an
inverse problem, Eq. (6), and estimate the components, s?, given
the full data set, d (:={df}), made of data taken at all observa-
tional frequencies. This is typically solved by assuming that the
noise, nf , is Gaussian, with a zero mean and a known variance,
Nf , and writing a data likelihood,

−2 lnL(β, s; d) = (d̃ − P̃β s)> N−1 (d̃ − P̃β s) + const. (9)

Here we have dropped the star to distinguish an estimate from
the true value, and we have introduced a tilde to denote multifre-
quency objects. We have

P̃β =

Pβ,1
...

Pβ,nfreq

 =

P1 · Mβ,1

...
Pnfreq · Mβ,nfreq

 , (10)

which follows from Eq. (7), and

Ñ =

N1 0

. . .
0 Nnfreq

 , d̃ =

d1
...

dnfreq

 , (11)

which assumes no noise correlations between different fre-
quency channels. In addition, throughout this work we also
assume that while the component mixing represented by Mβ may

involve (potentially) all components, it is always done on a pixel-
by-pixel basis, so that all the elements of Mβ corresponding to
different pixels vanish. Similarly, and in agreement with assump-
tions made in map-making procedures, we assume that the noise
matrices, Nf , are block diagonal, with each block representing a
banded Toeplitz matrix.

The standard two-step component separation procedure pro-
ceeds by first estimating for each frequency band, f , a single-
frequency map, mf , and its covariance, N̂f . These are given by

mf = (P>f N−1
f Pf)−1 P>f N−1

f df , (12)

N̂f = (P>f N−1
f Pf)−1. (13)

The follow-up component separation step is then performed
assuming that the single-frequency maps yielded by the first step
can be represented as

mf = Mβ?,f s? + n̂f , (14)

where n̂f stands for a pixel-domain noise and is a Gaussian vari-
able with variance N̂f . We can therefore write the corresponding
likelihood as

− 2 ln L(β, s; {mf})

=
∑

f

(mf − Mβ,f s)> N̂−1
f (mf − Mβ,f s) + const. (15)

This procedure is equivalent to directly solving the maximum
likelihood problem defined by Eq. (9). However, it requires an
explicit calculation of N̂−1

f that for the current and forthcom-
ing experiment is typically prohibitive because of restrictions on
both the available computer memory and computational cycles.
An alternative might be solving the original problem directly
without explicitly invoking any pixel-domain objects. This is the
option we study in this work. We note here in passing that inter-
mediate approaches are also possible: for instance, one that relies
on the likelihood in Eq. (15), but does not assume that N̂−1

f is
given explicitly. Instead, it computes a product of the covariance
and a vector using an iterative procedure, which only requires
applying the inverse covariance to a vector. This is performed
using its implicit representation, Eq. (13), as is done in the
map-making solvers. On the algorithmic level, such approaches
are equivalent to solving the problem in the time domain, and
the methods considered hereafter would be applicable to that
approach as well.

To estimate β and s directly from Eq. (9), we may either max-
imize this likelihood or sample from a posterior derived from it
assuming some priors on the spectral parameters1. Alternatively,
a so-called spectral likelihood may be used (Stompor et al.
2009), where s is already either marginalized or maximized over,
that is,

2 ln Lspec(β; d̃)

= d̃> Ñ−1 P̃β (P̃>β Ñ−1 P̃β)−1 P̃>β Ñ−1 d̃ + const, (16)

which again can be either minimized or sampled from.
In both these cases, a key operation is a solution of a linear

system of equations given by

P̃>βi
Ñ−1P̃βi sβi = P̃>βi

Ñ−1d̃, (17)

1 We note that in sampling from the posterior, some priors for the sig-
nal would typically also be postulated, which would lead to a different
system of equations than the one studied in this work. We leave this case
to follow-up work.

A73, page 3 of 16

A&A 638, A73 (2020)

for a sequence of tentative values of the spectral parameters, βi.
These can be either a chain produced as a result of sampling, or a
sequence of values obtained in the course of a minimization. We
note that Eq. (17) is essentially a so-called map-making equa-
tion (e.g., Natoli et al. 2001; Szydlarski et al. 2014; Puglisi et al.
2018), but with a pointing matrix now replaced by P̃βi . We can
thus hope that as in the map-making problem, we can capitalize
on special structures of the involved matrices and very efficient
iterative solvers for solving linear systems to render the problem
feasible. We point out that in the applications considered here,
a subsequent value of the parameter β, that is, βi+1, can only be
known after the system for the current value, βi, is fully resolved.
A simultaneous computation of all systems for all values of βi
is therefore not possible, and any computational speedup has to
come from using better solvers for the linear systems and/or their
numerical implementations.

When we separate parts that are dependent and independent
of β, the system in Eq. (17) can also be written as

Mβ,1
...

Mβ,nfreq.

>

≡ Ã︷ ︸︸ ︷
P>1 N−1

1 P1 0
. . .

0 P>nfreq
N−1

nfreq
Pnfreq

≡ M̃β︷ ︸︸ ︷
Mβ,1
...

Mβ,nfreq.

 sβ
=

Mβ,1
...

Mβ,nfreq.

>

P>1 N−1
1 d1
...

P>nfreq
N−1

nfreq
dnfreq.

︸ ︷︷ ︸
= P̃>Ñ−1d̃

(18)

The approach we propose here is based on two observations.
First, our system has some essential similarities to that of the
map-making problem, we should therefore be able to capitalize
on novel iterative techniques proposed in that case. Second, we
expect that consecutive values of βi in realistic sequences should
not vary arbitrarily, and therefore subsequent linear systems (17)
should show some resemblance. Consequently, it should be pos-
sible to shorten the time to solution for the next value of βi+1 by
capitalizing on the solution for the current one, βi.

2.4. Block-diagonal preconditioner

The block-diagonal preconditioner is the most common pre-
conditioner used in the preconditioned conjugate gradient
solvers applied in the context of the CMB map-making prob-
lem (Natoli et al. 2001), which has demonstrated a very good
performance in a number of applications. It is also the basis
for the construction of more advanced preconditioners (e.g.,
Szydlarski et al. 2014). The block-diagonal preconditioner is
derived by replacing the noise covariance N−1

f in Eq. (13) by
its diagonal. In the map-making case, when pixel-wise ordering
is assumed, this leads to a block-diagonal matrix with the block-
size defined by the number of the considered Stokes parameters.
In the component separation case, this preconditioner is given
by P̃>β diag(Ñ−1) P̃β, and in the pixel-wise ordering, it is block-
diagonal. The diagonal block size is now equal to the product of
the number of Stokes parameters and the number of sky compo-
nents, that is, 6 × 6 in the specific case considered here. Conse-
quently, the preconditioner can easily be inverted in any ordering
scheme adapted.

Hereafter, we denote the β-independent part of the precondi-
tioner as B̃ := P̃> diag(Ñ−1) P̃ so that

P̃>β diag(Ñ−1) P̃β = M̃>β B̃ M̃β. (19)

By preconditioning the system (17) from the left, we obtain(
M̃>β B̃M̃β

)−1M̃>β ÃM̃β sβ =
(
M̃>β B̃M̃β

)−1M̃>β P̃>Ñd̃. (20)

To simplify the notation in the following, we define

A := M̃>β Ã M̃β, B := M̃>β B̃ M̃β, b := M̃>β P̃>Ñ d̃. (21)

2.5. Component mixing

For concreteness, we assume throughout the paper the following
component mixing scheme:

sf,q = αf,1 scmb,q + αf,2(βd) sdust,q + αf,3(βs) ssync,q, (22)
sf,u = αf,1 scmb,u + αf,2(βd) sdust,u + αf,3(βs) ssync,u,

which follows the standard assumptions that there is no Q and
U mixing, and that the scaling laws for the Stokes parameters Q
and U of each components are the same. In the component-wise
ordering, such mixing corresponds to the mixing matrix of the
form (I is the identity matrix, 2 × 2 in this case)

Mβ,f =

[
αf,1 I 0 αf,2(βd) I 0 αf,3(βs) I 0

0 αf,1 I 0 αf,2(βd) I 0 αf,3(βs) I

]
.

(23)

The coefficients αf,i encode the assumed scaling laws of the
CMB, i = 1, dust, i = 2, and synchrotron, i = 3, where the
last two depend on unknown scaling parameters, βd and βs. This
matrix can be rewritten with the help of the Kronecker product
as

Mβ,f =

[
αf,1 0 αf,2(βd) 0 αf,3(βs) 0
0 αf,1 0 αf,2(βd) 0 αf,3(βs)

]
⊗ I. (24)

Hereafter, we drop the explicit dependence of the mixing coeffi-
cients on β, denoting them simply as αf,k.

3. Solution procedure for the parametric
component separation problem

A complete solution to the component separation problem has
to successfully address two aspects. First, it needs to propose
an efficient approach to solving the sequences of linear systems
as in Eq. (20). Second, it has to combine it with an optimized
procedure for the efficient determination of the new values of
the parameters β. This study addresses the former problem and
focuses on the solution of a sequence of linear systems obtained
for some sequences of the spectral parameters. In order to pro-
vide a fair comparison of various proposed techniques, we gener-
ate a sequence {βi} beforehand and therefore, unlike in the actual
applications, in our experiments, βi+1 is in fact independent of
the results of the preceding solution. This ensures that the perfor-
mance of all the considered solvers is evaluated on the identical
sequences of linear systems.

The overall solution scheme we adapt here is then as follows:
(0) Initialize β0 and s(0)

β0
(typically s(0)

β0
:= 0), set i := 0.

(1) Given βi and the initial guess s
(0)
βi

, solve the precon-
ditioned problem, Eq. (20), deriving the current approxima-
tion s(final)

βi
.

A73, page 4 of 16

J. Papež et al.: Accelerating linear system solvers for time-domain component separation of CMB data

(2a) Determine the new parameters βi+1.
(2b) Compute a new deflation space for the system associ-

ated with βi+1 using a recycling technique (see details below).
This should not involve the value of βi+1 so that this step can be
made in parallel with (2a).

(3) Compute the initial guess s(0)
βi+1

.
(4) Set i := i + 1 and go to (1).
In the subsections below, we discuss steps (1), (2b), and (3)

in more detail.

3.1. PCG with deflation and two-level preconditioners

Although the block-diagonal preconditioner has been shown
to ensure good performance in the map-making experience,
it has been pointed out that even better performance can
often be achieved by employing so-called two-level precondi-
tioners (Szydlarski et al. 2014; Puglisi et al. 2018). Such pre-
conditioners are built from the block-diagonal preconditioner,
constituting the first level, and the second level is constructed
from a limited number of vectors that are to be deflated (i.e., sup-
pressed in the operator) in order to accelerate the convergence.
These vectors are typically taken to be approximate eigenvectors
of the system matrix corresponding to its smallest eigenvalues,
which often hamper the convergence of PCG with the block-
diagonal preconditioner.

We start from the case of deflation for the (unpreconditioned)
conjugate gradient (CG) method. CG applied to a linear sys-
tem As = b with a given initial vector s(0) and an initial resid-
ual r(0) := b −As(0) builds implicitly orthogonal (residuals) and
A-orthogonal (search directions) bases of the Krylov subspace,

K j(A, r(0)) = span{r(0),Ar(0),A2r(0), . . . ,A j−1r(0)}, (25)

and the jth CG approximation s(j) ∈ s(0) + K j(A, r(0)) is deter-
mined by the orthogonality condition on the jth residual r(j) :=
b −Ar(j),

r(j) ⊥ K j(A, r(0)). (26)

For a given set of deflation vectors, that is, the vectors to
be suppressed, we denote by U the subspace spanned by these
vectors. The deflation techniques replace the original operator
A : Rn → Rn by a deflated operator Â : (Rn \ U) → (Rn \ U).
The approximation is then sought over the augmented subspace
(see, e.g., Gaul et al. 2013),

s(j) ∈ ŝ0 +K j
(
Â, r̂(0)) ∪U, (27)

and the jth residual is required to be orthogonal to K j(Â, r̂(0)) ∪
U. This effectively prevents the solver from exploring the sub-
spaceU.

An extension of this for the PCG with the (first-level) pre-
conditioner B is straightforward because we can use the PCG
to implicitly build the Krylov subspace K j(B−1A,B−1r(0)). In
the considered application, the preconditioner B is the block-
diagonal preconditioner. There are many variants of two-level pre-
conditioners, and we summarize them briefly in Appendix B.2.
A more thorough survey can be found in Tang et al. (2009), for
example.

Each iteration of a deflated (P)CG, that is, with or without
the first level, is more costly than a single iteration of a stan-
dard (P)CG. The additional cost primarily depends on the num-
ber of deflated vectors, that is, the dimension of U, but also on
the deflation variant. Building the subspaceU typically requires

some preliminary computations, which can be as costly as solv-
ing the system (see, e.g., Szydlarski et al. 2014; Puglisi et al.
2018). Another approach, applicable to the cases when multi-
ple systems need to be solved, is to construct the vectors “on the
fly” during the solution of the systems themselves, thus hiding
the additional cost. This is the approach we detail in the next
sections.

3.2. Subspace recycling

Several constructions of the deflation space have been adapted
to solving a sequence of linear systems, for instance, those
of Saad et al. (2000), Parks et al. (2006), Kilmer & de Sturler
(2006), O’Connell et al. (2017), and Jolivet & Tournier (2016).
In this work, where the system matrix is symmetric positive def-
inite (SPD), we follow Saad et al. (2000). We build a subspace
Z ⊂ K j(Â, r̂(0)) by storing some of the vectors computed dur-
ing the previous run of (P)CG solver and determine the slowest
eigenvectors of the operator A restricted on the subspaceU∪Z.
These are taken as the deflation vectors for the next solution. The
resulting algorithm is given in Appendix C.

We can determine the subspaceZ using either the residual or
the search direction vectors forming (assuming the exact arith-
metic) the orthogonal or an Â-orthogonal basis of K j(Â, r̂(0)).
Following Saad et al. (2000), we choose here to use the search
direction vectors. We retain the first dimp search direction vec-
tors, where dimp defines the dimension of the so-called recy-
cle subspace. We use the first vectors because the orthogonality
among the computed vectors is gradually lost in CG; it is there-
fore better preserved in the initial iterations.

The techniques for approximating k eigenvectors of the oper-
ator over a given subspace are well established. Among them, we
note the Ritz and harmonic Ritz projections, which are described
in detail in Appendix B.1.1. They lead to solving a (general-
ized) eigenvalue problem of small dimension, in our case, of
dim(U) + dim(Z). While Saad et al. (2000) suggested using the
harmonic Ritz projection, we found the Ritz projection slightly
more efficient in our numerical experiments, and we therefore
include this in the full algorithm described in Appendix C.
In another difference with Saad et al. (2000), we assemble the
(small) generalized eigenvalue problem matrices in the harmonic
Ritz projection using the matrix-matrix products (see Algo-
rithm 2 in Appendix B.1.1) instead of the optimized algorithm
from (Sect. 5.1, Saad et al. 2000). This is because we expect that
the additional computational cost in our application is negligible
and we therefore opted for simplicity.

There is no general recommendation for the choice of the
number of deflation vectors, k, and the dimension of the recy-
cling subspace, dimp. Higher k may result in an increase of the
overall number of matrix-vector products (the system matrix has
to be applied to k deflation vectors before the deflated (P)CG
is started for each system) and high dimp may cause numerical
instabilities in solving the eigenvalue problems that determine
the new deflation vectors. On the other hand, the low values of k
and dimp may not speed up the process sufficiently. We test this
numerically in Sect. 4.

3.3. Effect of the eigenvalue multiplicity

One limiting factor to the efficiency of this approach, and more
generally, to the performance of any two-level preconditioner
with the deflation space estimated using standard iterative tech-
niques such as Arnoldi or Lanczos iterations, comes from a

A73, page 5 of 16

A&A 638, A73 (2020)

higher multiplicity of eigenvalues, that is, multiple eigenvectors
with the same corresponding eigenvalue. This can arise either
as a result of some symmetries in the scanning strategies in the
case of the map-making systems of equations, or as similarities
in the noise covariances of the different single-frequency maps
in the case of the component separation problem as studied here;
see Appendix A for an example. Admittedly, such symmetries
and/or similarities are not typically expected in the cases of real
data analysis, but they can arise in the cases of simulated data,
in particular if simplifying assumptions are adopted in order to
speed up and/or simplify the simulation process.

To shed light on this problem, we consider an SPD matrix A
and assume that λ is an eigenvalue with multiplicity higher than
one. This means that there exists a subspace V with dim(V) > 1
such that

Av = λv, ∀v ∈ V. (28)

Let w be an arbitrary vector used to initiate the construction of a
Krylov subspace and wV its projection onto V , that is,

w = wV + w′, wV ∈ V, w′ ⊥ V. (29)

Then

A`w = A`wV + A`w′ = λ`wV + A`w′, A`w′ ⊥ V. (30)

Therefore, the jth Krylov subspace satisfies

K j(A, w) = span{w, Aw, A2w, . . . , A j−1w} (31)

= span{wV } ∪ span{w′, Aw′, A2w′, . . . , A j−1w′},

and the intersection of K j(A, w) and V is at most a one-
dimensional subspace spanned by wV ,

K j(A, w) ∩ V = span{wV }. (32)

Consequently, methods based on the Krylov subspace
approximation, therefore including Lanczos and Arnoldi itera-
tions (see Appendix B.1.2 for more details), can recover one vec-
tor at most from the subspace spanned by multiple eigenvectors
with the same eigenvalue. This may not be sufficient to allow for
a construction of an efficient two-level preconditioner, however,
in particular if the eigenvalue with many corresponding eigen-
vectors happens to be small: with the single precomputed vec-
tor we can only deflate a one-dimensional subspace of the entire
multidimensional space as spanned by all these eigenvectors, and
the remainder may continue hampering the convergence.

This problem can be overcome by using a more advanced
eigenvalue solver that can detect and handle the higher multiplic-
ity of eigenvalues. An efficient implementation of such a solver
is for instance provided by the ARPACK library (Lehoucq et al.
1998). In this case, the preconditioner may need to be precom-
puted with the help of such advanced routines, instead of con-
structing it on the fly as proposed here. If the presence of the
eigenvalue multiplicity and the corresponding eigenvectors is
known ahead of time, these vectors can be accomodated in the
on-the-fly procedure proposed here. This is indeed the case we
have encountered in one of the test cases discussed below.

We point out that the multiplicity of the eigenvalues is in
principle advantageous for the standard (P)CG. In exact arith-
metic, the effect of the whole subspace might be then eliminated
at the cost of a single iteration. This fact is often used in the
analysis of preconditioning methods based on preconditioners
shifting some, possibly many, eigenvalues to the same value.

Last but not least, we emphasize that an eigenvalue multiplic-
ity implies neither any indistinguishability of the corresponding

eigenvectors nor a presence of degenerate modes in the solution,
at least as long as the eigenvalue is not (numerically) zero. If the
eigenvalue is not zero, the multiplicity only tells us that compo-
nents of the right-hand side of the linear system that belong to the
subspace spanned by the corresponding eigenvectors are merely
weighted by the inverse system matrix in exactly the same way.

3.4. Choice of the initial guess

The simplest and standard way to solve the sequence is to run the
PCG method with the initial guess set to zero. However, some
evidence exists showing that at least in the map-making case,
this may not always be the best choice (Papež et al. 2018), in par-
ticular in cases with high signal-to-noise ratios. In the case of a
sequence of linear systems, all the systems involve the same ini-
tial data set with the same signal and noise content. Even in data
with a low signal-to-noise ratio, it may therefore be expected that
adapting the initial guess following previous results may speed
the process up in an interesting way. Consequently, we explore
here two alternatives and show by numerical experiments that
they are indeed much more efficient.

3.4.1. Previous solution as the initial guess

A natural idea is to run the PCG for the (new) problem
corresponding to βi+1 starting with the computed approxima-
tion s(final)

βi
,

s
(0)
βi+1

:= s
(final)
βi

. (33)

This can be in particular efficient when the parameters βi and
βi+1 do not significantly differ and it is expected that so do sβi

and sβi+1 .

3.4.2. Adapted previous solution as the new initial guess

Equation (33) can be further adapted by capitalizing on the
particular structure of the mixing matrix. To start, we rewrite
Eq. (17) as

M̃>β
(
ÃM̃β sβ − P̃>Ñ−1d̃

)
= 0. (34)

If the matrix M̃β were square (and nonsingular), then

M̃β sβ = Ã−1P̃>Ñ−1d̃ (35)

would be the vector independent of β. The solution sβ might then
be interpreted as the coefficients with respect to the basis given
by the columns of M̃β. Therefore we would have

sβ̄ = (M̃β̄)
−1M̃β sβ (36)

for arbitrary β̄ (for which M̃β̄ is nonsingular).
In our case, matrix M̃β is rectangular of size 2 nfreq npix×6 npix

and has full column rank. When the number of frequencies nfreq
is not significantly higher than 3, we can generalize the above
idea and use as the initial guess for the new system the vector

s
(0)
βi+1

:= (M̃βi+1)†M̃βi s
(final)
βi

, (37)

where M† is the (Moore–Penrose) pseudo-inverse of M,

M† ≡
(
M>M

)−1M>. (38)

A73, page 6 of 16

J. Papež et al.: Accelerating linear system solvers for time-domain component separation of CMB data

We recall our assumption that M is of full column rank. Clearly,
for βi+1 = βi,

(M̃βi+1)†M̃βi = I holds, and therefore (M̃βi+1)†M̃βi sβi = sβi .

(39)

Finally, we note that the computation of the vector in Eq. (37)
is very cheap because of the Kronecker structure (24) of the
matrices M̃β. Writing M̃β = Kβ ⊗ I, we obtain

(M̃βi+1)†M̃βi =
(
(K>βi+1

Kβi+1)−1K>βi+1
Kβi

)
⊗ I, (40)

in other words, only the matrices of size 2 nfreq × 6 need to be
handled, and the cost of the proposed adaptation is nearly negli-
gible.

4. Numerical experiments

4.1. Simulated data

For our numerical tests we use a simulated data set composed
of time-ordered multifrequency observations with a correlated,
“1/f”, noise. The characteristics of this data set are as follows.

4.1.1. Pointing matrix

We adopt the simple scanning strategy used in Papež et al.
(2018). The entire time-ordered data set is composed of O(108)
measurements per frequency and divided into four consecu-
tive subsets. The pointing is assumed to be the same for each
frequency. The underlying sky is pixelized using the Healpix
pixelization scheme (Górski et al. 2005) with the resolution
parameter nside set to 1024. The scan consists of repetitive scan-
ning of a rectangular patch made of 256 pixel rows and columns.
The scanning is either horizontal, that is, along the pixel rows,
for the first and third subset, or vertical, that is, along the pixel
columns for the second and fourth subset. During a single left-to-
right, or bottom-up sweep, each sky pixel is sampled only once,
and the direction of the polarizer, ϕt, is fixed for each of the four
subsets and is equal, with respect to the sky, to 0, π/4, π/2, and,
3π/4.

The sky signal contribution to every measurement is mod-
eled as

dc(t) = Q?
c (p(t)) cos 2ϕt + U?

c (p(t)) sin 2ϕt, (41)

where p(t) denotes the pixel observed at time t, we do not
include the total intensity, and Qc and Uc stand for Q and U
Stokes parameters of the combined, CMB + foregrounds, sky
signal observed at frequency νc.

4.1.2. Sky maps

We assume six frequency channels that approximately corre-
spond to those accessible for a ground-based experiment. These
are

νc ∈
{
30, 40, 90, 150, 220, 270

}
GHz. (42)

The sky signal is composed of emissions from three sources:
CMB, dust, and synchrotron. The CMB signal is simulated using
the current best-fit CMB model (Planck Collaboration XIII
2016), while we use the so-called COMMANDER tem-
plates (Planck Collaboration X 2016) to model the dust and syn-
chrotron signals that we scale to our reference frequency, νref =
150 GHz, using Planck’s fiducial laws.

For the scaling laws we take a blackbody for the CMB com-
ponent (TCMB = 2.7525 K), a power law for the synchrotron, and
a modified blackbody for the dust, therefore

Ssync(ν, β?s) = νβ
?
s (43)

Sdust(ν, β?d ,T
?
d) =

(
hν

kT?
d

)β?d
B(ν,T?

d), (44)

where the star distinguishes the true values of the parameters,

β? ≡
[
β?s , β

?
d ,T

?
d
]

=
[
− 3.1, 1.59, 19.6 K

]
, (45)

and B(ν,T) denotes a blackbody at temperature, T . The simu-
lated maps are expressed in thermodynamic units and are given
by

Q?
p (ν) = Qcmb, ?

p + ΓRJ(ν)
[Sdust(ν, β?d ,T

?
d)

Sdust(νref , β
?
d ,T

?
d)

Qdust, ?
p (νref)

+
Ssync(ν, β?s)
Ssync(νref)

Qsync, ?
p (νref , β

?
s)

]
(46)

for each frequency ν = νc and each observed sky pixel p.
An analogous formula holds for the Stokes U parameter. Here,
ΓRJ(ν) stands for a conversion factor from Rayleigh-Jeans to
thermodynamic units. This expression is consistent with Eq. (24)
upon a suitable definition of the coefficients α.

In our numerical experiments, we fix the dust tempera-
ture, Td, to its true value and assume that only the spectral
indices, β = [βs, βd], are determined from the data. We assume
that these are estimated by maximizing the spectral likelihood,
Eq. (16), using a truncated Newton maximization procedure. We
use this approach to generate a single sequence of {βi}, which,
as explained in Sect. 3, we adopt consistently in all our runs.
The sequence is made of 26 values and is shown in Fig. 1. In
Appendix D we show for completeness the results of a similar
test, but performed for a sequence of β derived by sampling of
the spectral likelihood. The main conclusions derived in these
two examples are consistent.

4.1.3. Noise

We assume a correlated noise in the time domain with a spectrum
given by

P(f) = σ2
rms

(
1 +

fknee

f

)
, (47)

where f is the time-domain frequency. The values of fknee
adopted here are different for different frequency channels and
taken to be such that there are strong noise correlations within
a single sweep. They span the range from 0.5 up to 3 Hz from
the lowest to the highest frequency channel, respectively. The
noise is apodized at very low frequencies, so that the noise power
is finite. σ2

rms is taken to be about 30 µK per sample, reflect-
ing the fact that each measurement effectively corresponds to
the combined measurement of many modern detectors operat-
ing at the same frequency. This leads to sky maps with a noise
σQ/U

rms ∼ 2−3 µK per pixel.

4.2. Multiplicity of the eigenvalues as a result of the
particular scanning strategy

In this section we address the issue of multiple eigenvectors with
the same eigenvalues, which we have identified in our numerical

A73, page 7 of 16

A&A 638, A73 (2020)

★ 	

Fig. 1. Sequence of the spectral parameters βi = [βi,s, βi,d] used in our experiments and derived from the maximization of the spectral like-
lihood, Eq. (16). The panels in clockwise order show consecutive zooms on the sequence that converged on the likelihood peak values of
β = [−3.006, 1.584], slightly off the true values marked by the blue solid point in the top left panel and given by Eq. (45) (with Td fixed in
our test cases). The sequence was generated as described at the end of Sect. 4.1.2.

tests. In agreement with Sect. 3.3, these were found to have sig-
nificant effect on the performance of the proposed solvers. We
show here how they can be traced back to the specific scanning
strategy adopted in our simulations. We then describe corrective
measures we included in order to minimize their effect and to
ensure that our results are indeed representative of more typi-
cal cases. These considerations are given here for completeness
and as a potentially useful example. However, as the proposed
measures may not be necessary in most of the cases of realis-
tic data, this section can be skipped without affecting the further
reading.

We denote two pointing matrices for two horizontal scans as
P0 and Pπ/2 and two pointing matrices for two vertical scans as
Pπ/4 and P3π/4, where the subscript stands for the polarizer angle
in the sky coordinates. They are related as

Pπ/2 = P0 R2(π/4), (48)
P3π/4 = Pπ/4 R2(π/4),

where R is a 12 npix-by-12 npix block-diagonal matrix with each
diagonal block equal to a 2-by-2 spin-2 rotation matrix for each
pixel of the six frequency maps. While this is clearly a result of
the simplifying assumption made in the simulations, this exam-
ple may be of interest also in more realistic circumstances where
certain relations of this sort may happen to be fulfilled approxi-
mately following from some common but inexact symmetries of
typically adopted scans. We therefore briefly explore the conse-
quences of this here.

In the case at hand, we can represent the total pointing
matrix as

P̃ =

P0

Pπ/4
Pπ/2
P3π/4

 =

P−π/4

P0
Pπ/4
Pπ/2

 Rπ/4 =

P3π/4

P0
Pπ/4
Pπ/2

 Rπ/4 = P̃′ Rπ/4,

(49)

given that all four scan subsets observe exactly the same sky.
When in addition the noise covariance for each of the four

scan subsets is exactly the same, we have

P̃> Ñ−1 P̃ = P̃′> Ñ−1 P̃′ = R>π/4 P̃> Ñ−1 P̃Rπ/4. (50)

We note that this holds if the noise properties vary from one
frequency channel to another, as is indeed the case in our simu-
lations.

If now v is an eigenvector of the matrix Ã = P̃> Ñ−1 P̃ with a
corresponding eigenvalue, λv, then

Ã v = P̃> Ñ−1 P̃ v = R>π/4 P̃> Ñ−1 P̃ Rπ/4 v = λv v, (51)

and therefore,

ÃRπ/4 v = P̃> Ñ−1 P̃ Rπ/4 v = λv Rπ/4 v. (52)

This means that also Rπ/4 v is an eigenvector of the matrix A with
the same eigenvalue, λv. Because this reasoning applies as much
to the matrix A as the matrix B = P̃> diag Ñ−1 P̃, we have

P̃> Ñ−1 P̃ v = λ′v P̃> diag Ñ−1 P̃ v (53)

P̃> Ñ−1 P̃ (Rπ/4 v) = λ′v P̃> diag Ñ−1 P̃ (Rπ/4 v).

A73, page 8 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=1

J. Papež et al.: Accelerating linear system solvers for time-domain component separation of CMB data

In general, this does not yet imply that the component separation
system matrix preconditioned with the block-diagonal precondi-
tioner, Eq. (21), given by

B−1 A = (M̃>β B̃ M̃β)−1(M̃>β Ã M̃β), (54)

has two eigenvectors corresponding to the same eigenvalue
related by the rotation operator acting in the component space.
This is the case when the subspace spanned by v and Rπ/4 v is
contained in the subspace spanned by the columns of the mixing
matrix, M̃β. Otherwise, the preconditioned system matrix may
have a single (when these two subspaces merely intersect) or
no corresponding eigenvectors (when these two subspaces are
disjoint). Which of these situations is actually realized is case
dependent and in general also depends on the value of β.

We found that in our numerical experiments the eigen-
value multiplicity of the preconditioned system matrix due to
the assumed scan symmetries was sufficiently common that we
opted to account for it explicitly in our analysis. Consequently,
we use the subspace recycling to approximate one of the eigen-
vectors, and we compute the other by applying the rotation oper-
ator. We then use both vectors to construct the deflation operator.
Given that Rπ/4 = −R−π/4, there is no ambiguity because we do
not know a priori which of the two vectors we estimate directly
through the subspace recycling, and this approach leads to the
same deflation space, regardless of the rotation that is applied.
This technique has led to a significant speed-up in the cases stud-
ied below.

4.3. Results

We compare the convergence using the relative norm of the jth
residual,

‖M̃>β P̃>Ñd̃ − M̃>β ÃM̃β s
(j)
β ‖

‖M̃>β P̃>Ñd̃‖
· (55)

The iterations for each system are stopped when this value drops
below tolerance TOL = 10−8, but we always perform at least one
iteration.

We first show that the systems corresponding to different βs
from the sequence are indeed “close to each other” in the sense
that they display a similar behavior during the solution process.
We illustrate this by showing the convergence of PCG with zero
initial guess in Fig. 2. We find that all the convergence curves are
indeed very similar, even for the initial elements of the sequence
where the values of β parameters continue to change quite sig-
nificantly.

We can therefore focus on the “true” system corresponding
to β = β? in order to investigate the improvement caused by
deflating the eigenvectors corresponding to the smallest eigen-
values of the system matrix. This is depicted in Fig. 3. Here,
the eigenvectors are computed using the ARPACK eigensolver
(Lehoucq et al. 1998), and as expected, we find that significant
improvement is achieved by the deflation.

Then, we illustrate the effect of the deflation space built by
recycling. To do this, we first consider six systems and start the
iterations always with zero initial guess, s(0) = 0. The result for
k = 10 eigenvectors approximated using the dimension of the
subspace, dimp = 100, is given in Fig. 4.

In Fig. 5 we compare the convergence of the full sequence
of the 26 systems using the techniques of setting the initial guess
proposed in Eqs. (33) and (37) and using subspace recycling.
We recall that standard PCG with zero initial vector takes more

Fig. 2. Convergence of PCG with zero initial guess and block-Jacobi
preconditioner for all 26 systems in the sequence shown in Fig. 1.

Fig. 3. Convergence of PCG with the deflation applied to 2, 6, and 10
slowest eigenvectors for the true system with β = β?.

Fig. 4. Convergence of deflated PCG with the deflation subspace build
by recycling. Here we consider the first six systems from the sequence
and start the iterations always with zero initial guess. k = 10 eigenvec-
tors are approximated using dimp = 100.

than 6000 iterations; cf. Fig. 2. Although the subspace recycling
variant requires 25 × 10 matrix-vector products2 more than the
PCG with block-Jacobi preconditioner for any choice of the ini-
tial guess, it still provides an interesting increase in speed.

We also compare the time required by one iteration of the
PCG with a deflation with the time required by a standard PCG
iteration. In Table 1 we list the relative times of a single iter-
ation of a deflated PCG with 2, 6, and 10 deflation vectors in
our experiments (taking an average from five runs, each with
ten iterations). The small and negligible overhead introduced
by the two-level preconditioner indicates that most of the time
in the code is spent on the standard map-making operations,

2 It is necessary to apply the matrix to deflation vectors at the begin-
ning of the deflated PCG to build the projection matrices, see Algo-
rithm 1 in Appendix C.

A73, page 9 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=3
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=4

A&A 638, A73 (2020)

Fig. 5. Comparison of the PCG with different choices of initial guess (as in Eqs. (33) and (37)) and the PCG with the subspace recycling (together
with the choice of the initial guess as in Eq. (37)). For the recycling we consider k = 10 eigenvectors approximated using dimp = 100.

Table 1. Timings of a single deflated PCG iteration with 2, 6, and 10
deflation vectors.

PCG PCG + defl(2) PCG + defl(6) PCG + defl(10)

1 1.0001 1.0013 1.0019

Notes. The timings are relative with respect to a single iteration of the
standard (nondeflated) PCG. The table gives the average from five runs,
each with ten iterations.

such as (de)projection operators and noise weighting (e.g.,
Cantalupo et al. 2010). We emphasize that these timings depend
on the implementation and the hardware on which it is executed.
For massively parallel codes, the cost of a deflated PCG iteration
compared to a standard PCG iteration may increase somewhat,
but we expect that the proposed algorithm should nevertheless
still be offering an attractive increase in speed.

As noted above, the performance of the PCG with the defla-
tion space built by recycling is affected by the number of the
deflation vectors, k, and the dimension of the recycling subspace,
dimp. There is no general recommendation for their choice.
Higher k may result in an increase of the overall number of
matrix-vector products (the system matrix has to be applied to
k deflation vectors before the deflated PCG is started for each
system) and high dimp may cause numerical instabilities in solv-
ing the eigenvalue problems that determine the new deflation
vectors. On the other hand, the low values of k and dimp may not
increase the speed sufficiently. We compare the convergence of
PCG with some choices of k and dimp in Fig. 6 and in Table 2.
The deflation clearly has a small effect for small dimp, that is,
when the eigenvectors are not approximated accurately.

5. Conclusions and further perspectives
We have presented a procedure for efficiently solving a sequence
of linear systems arising from the CMB parametric component
separation problem. Two main novelties are the proposed choice
of the initial vectors and the recycling technique used to deter-
mine the deflation space. Motivated by our simulated data, we
also emphasized and elaborated on the role of the multiplicity of

the eigenvalues, in particular in the context of their effect on the
performance of two-level preconditioners.

The overall speed-up factor we obtained, ∼5−7, is signifi-
cant. The bulk of the improvement comes from reusing the solu-
tion of an earlier system as the initial guess of the next solution
– a simple but not trivial observation owing to the fact that this is
the same data set being used in all the solutions. However, other
proposed amendments provide a significant additional perfor-
mance boost on the order of ∼2. This is particularly significant
in the case of the sampling-based application. Further improve-
ments and optimizations are clearly possible. For instance, the
number of required matrix-vector products can be decreased by
not using the two-level preconditioner for all the systems. As
the experiments showed, when two consecutive system solutions
are very similar, the PCG with the diagonal preconditioner and a
proper initial guess (e.g., as proposed in Sect. 3.4.2) can already
be sufficient for convergence in a few iterations.

We emphasize that in practice, we will be only able to cap-
italize on this type of approach when they are implemented in
a form of highly efficient high-performance massively parallel
numerical algorithms and codes. We leave a full demonstration
of this to future work, noting here only that many of the relevant
techniques have been studied in the past and recent literature,
showing that this should indeed be feasible (e.g., Cantalupo et al.
2010; Sudarsan et al. 2011; Szydlarski et al. 2014; Papež et al.
2018; Seljebotn et al. 2019).

The techniques we presented, rendered in the form of effi-
cient high-performance codes, should allow for the efficient
maximization of the data likelihood or the posterior distributions
in the component separation problems and produce reliable sky
component estimates for at least some of the forthcoming data
sets. However, in the cases of sampling algorithms, when many
thousand linear systems may need to be solved, this still remains
to be demonstrated, and further improvements will likely be
required. They will depend in general on specific details of the
employed sampling technique, however, and we leave them here
as future work.

The techniques discussed here can also be used in other prob-
lems in CMB data analysis that require solving a sequence of
linear systems. In particular, they should be directly relevant
for applications that estimate instrumental parameters, which

A73, page 10 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=5

J. Papež et al.: Accelerating linear system solvers for time-domain component separation of CMB data

Fig. 6. Comparison of the PCG with different choices of k and dimp for the first ten systems in the sequence. The initial guess is the same as in
Eq. (37). The iteration counts are also listed in Table 2. Because the convergence for the first system is independent of dimp and k, the x-axis is
depicted starting from the iteration 200.

Table 2. Number of PCG iterations and matrix-vector products
(MatVecs) for different choices of k and dimp for the first ten systems in
the sequence.

dimp k #iterations #MatVecs
Deflation Total

20 6 933 54 987
50 6 783 54 837
100 6 708 54 762
20 10 867 90 957
50 10 775 90 865
100 10 612 90 702

Notes. The initial guess is the same as in Eq. (37).

commonly have to be included in more realistic data models and
estimated from the data.

The codes used in this work are available from a GitHub
repository3.

Acknowledgements. We thank Olivier Tissot for insightful discussions and
Dominic Beck and Josquin Errard for their help with numerical experiments.
The first two authors’ work was supported by the NLAFET project as part
of European Union’s Horizon 2020 research and innovation program under
grant 671633. This work was also supported in part by the French National
Research Agency (ANR) contract ANR-17-C23-0002-01 (project B3DCMB).
This research used resources of the National Energy Research Scientific Com-
puting Center (NERSC), a DOE Office of Science User Facility supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

References
Brandt, W. N., Lawrence, C. R., Readhead, A. C. S., Pakianathan, J. N., & Fiola,

T. M. 1994, ApJ, 424, 1
Calvetti, D., Reichel, L., & Sorensen, D. C. 1994, Electron. Trans. Numer. Anal.,

2, 1
Cantalupo, C. M., Borrill, J. D., Jaffe, A. H., Kisner, T. S., & Stompor, R. 2010,

ApJS, 187, 212

3 https://github.com/B3Dcmb/Accelerated-PCS-solvers

Dostál, Z. 1988, Int. J. Comput. Math., 23, 315
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008, ApJ, 676, 10
Gaul, A., Gutknecht, M. H., Liesen, J., & Nabben, R. 2013, SIAM J. Matrix

Anal. Appl., 34, 495
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Grigori, L., Stompor, R., & Szydlarski, M. 2012, SC 2012: Proceedings of

the International Conference on High Performance Computing, Networking,
Storage and Analysis, 1

Hestenes, M. R., & Stiefel., E., 1952, J. Res. Natl. Bureau Stand., 49, 409
Jolivet, P., & Tournier, P. H. 2016, Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, SC ’16
(Piscataway, NJ, USA: IEEE Press), 17:1

Kilmer, M. E., & de Sturler, E. 2006, SIAM J. Sci. Comput., 27, 2140
Lehoucq, R. B., Sorensen, D. C., & Yang, C. 1998, Software, Environments, and

Tools. ARPACK Users’ Guide (Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM)), 6, xvi+142

Morgan, R. B. 1995, SIAM J. Matrix Anal. Appl., 16, 1154
Natoli, P., de Gasperis, G., Gheller, C., & Vittorio, N. 2001, A&A, 372, 346
Nicolaides, R. 1987, SIAM J. Numer. Anal., 24, 355
O’Connell, M., Kilmer, M. E., de Sturler, E., & Gugercin, S. 2017, SIAM J. Sci.

Comput., 39, B272
Paige, C. C., Parlett, B. N., & van der Vorst, H. A. 1995, Numer. Linear Algebra

Appl., 2, 115
Papež, J., Grigori, L., & Stompor, R. 2018, A&A, 620, A59
Parks, M. L., de Sturler, E., Mackey, G., Johnson, D. D., & Maiti, S. 2006, SIAM

J. Sci. Comput., 28, 1651
Planck Collaboration X. 2016, A&A, 594, A10
Planck Collaboration XIII. 2016, A&A, 594, A13
Puglisi, G., Poletti, D., Fabbian, G., et al. 2018, A&A, 618, A62
Saad, Y., & Schultz, M. H. 1986, SIAM J. Sci. Stat. Comput., 7, 856
Saad, Y., Yeung, M., Erhel, J., & Guyomarc’h, F. 2000, SIAM J. Sci. Comput.,

21, 1909
Seljebotn, D. S., Bærland, T., Eriksen, H. K., Mardal, K. A., & Wehus, I. K.

2019, A&A, 627, A98
Sleijpen, G. L. G., & Van der Vorst, H. A. 2000, SIAM Rev., 42, 267
Sorensen, D. C. 1992, SIAM J. Matrix Anal. Appl., 13, 357
Sorensen, D. C. 2002, Acta Numer., 11, 519
Stewart, G. W. 2001/02, SIAM J. Matrix Anal. Appl., 23, 601
Stompor, R., Leach, S., Stivoli, F., & Baccigalupi, C. 2009, MNRAS, 392,

216
Sudarsan, R., Borrill, J., Cantalupo, C., et al. 2011, Proceedings of the

International Conference on Supercomputing, ICS ’11 (New York, NY, USA:
Association for Computing Machinery), 305

Szydlarski, M., Grigori, L., & Stompor, R. 2014, A&A, 572, A39
Tang, J. M., Nabben, R., Vuik, C., & Erlangga, Y. A. 2009, J. Sci. Comput., 39,

340
Wu, G. 2017, SIAM J. Matrix Anal. Appl., 38, 118
Wu, K., & Simon, H. 2000, SIAM J. Matrix Anal. Appl., 22, 602

A73, page 11 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=6
http://linker.aanda.org/10.1051/0004-6361/202037687/1
http://linker.aanda.org/10.1051/0004-6361/202037687/2
http://linker.aanda.org/10.1051/0004-6361/202037687/2
http://linker.aanda.org/10.1051/0004-6361/202037687/3
https://github.com/B3Dcmb/Accelerated-PCS-solvers
http://linker.aanda.org/10.1051/0004-6361/202037687/4
http://linker.aanda.org/10.1051/0004-6361/202037687/5
http://linker.aanda.org/10.1051/0004-6361/202037687/6
http://linker.aanda.org/10.1051/0004-6361/202037687/6
http://linker.aanda.org/10.1051/0004-6361/202037687/7
http://linker.aanda.org/10.1051/0004-6361/202037687/8
http://linker.aanda.org/10.1051/0004-6361/202037687/8
http://linker.aanda.org/10.1051/0004-6361/202037687/8
http://linker.aanda.org/10.1051/0004-6361/202037687/9
http://linker.aanda.org/10.1051/0004-6361/202037687/10
http://linker.aanda.org/10.1051/0004-6361/202037687/10
http://linker.aanda.org/10.1051/0004-6361/202037687/11
http://linker.aanda.org/10.1051/0004-6361/202037687/12
http://linker.aanda.org/10.1051/0004-6361/202037687/12
http://linker.aanda.org/10.1051/0004-6361/202037687/13
http://linker.aanda.org/10.1051/0004-6361/202037687/14
http://linker.aanda.org/10.1051/0004-6361/202037687/15
http://linker.aanda.org/10.1051/0004-6361/202037687/16
http://linker.aanda.org/10.1051/0004-6361/202037687/16
http://linker.aanda.org/10.1051/0004-6361/202037687/17
http://linker.aanda.org/10.1051/0004-6361/202037687/17
http://linker.aanda.org/10.1051/0004-6361/202037687/18
http://linker.aanda.org/10.1051/0004-6361/202037687/19
http://linker.aanda.org/10.1051/0004-6361/202037687/19
http://linker.aanda.org/10.1051/0004-6361/202037687/20
http://linker.aanda.org/10.1051/0004-6361/202037687/21
http://linker.aanda.org/10.1051/0004-6361/202037687/22
http://linker.aanda.org/10.1051/0004-6361/202037687/23
http://linker.aanda.org/10.1051/0004-6361/202037687/24
http://linker.aanda.org/10.1051/0004-6361/202037687/24
http://linker.aanda.org/10.1051/0004-6361/202037687/25
http://linker.aanda.org/10.1051/0004-6361/202037687/26
http://linker.aanda.org/10.1051/0004-6361/202037687/27
http://linker.aanda.org/10.1051/0004-6361/202037687/28
http://linker.aanda.org/10.1051/0004-6361/202037687/29
http://linker.aanda.org/10.1051/0004-6361/202037687/30
http://linker.aanda.org/10.1051/0004-6361/202037687/30
http://linker.aanda.org/10.1051/0004-6361/202037687/31
http://linker.aanda.org/10.1051/0004-6361/202037687/31
http://linker.aanda.org/10.1051/0004-6361/202037687/32
http://linker.aanda.org/10.1051/0004-6361/202037687/33
http://linker.aanda.org/10.1051/0004-6361/202037687/33
http://linker.aanda.org/10.1051/0004-6361/202037687/34
http://linker.aanda.org/10.1051/0004-6361/202037687/35

A&A 638, A73 (2020)

Appendix A: Eigenvalue multiplicity in the
component separation problem. A worked
example

Fig. A.1. Same as Fig. 5 for the simplified setting of Appendix A. Comparison of the PCG with different choices of the initial guess (as in Eqs. (33)
and (37)) and the deflated PCG with 2 × 3 vectors.

In this section we discuss the eigenvector and eigenvalue
structure of the preconditioned matrix defined in Eq. (20) in the
context of eigenvalue multiplicity in some specific setup that in
particular assumes that the pointing matrix is the same for each
frequency and that the noise has the same covariance (up to a
scaling factor) for each frequency, that is,

Pf = P, Nf = N, f = 1, . . . , nfreq.. (A.1)

While these requirements are not very likely to be strictly
realized in any actual data set, they can be fulfilled approxi-
mately, leading to near multiplicities of the eigenvalues. If these
are not accounted for, they may be as harmful to the action of the
preconditioner as the exact multiplicities. Moreover, this worked
example demonstrates that the component separation problem is
in general expected to be more affected by this type of effect than
the standard map-making solver, for instance, therefore empha-
sizing that due diligence is necessary in this former application.

First, let (λi, vi) = (λi,
⌈
vi,q, vi,u

⌋
) be an eigenpair of the map-

making matrix, that is, there holds

P>N−1P vi = λiP> diag(N−1) P vi. (A.2)

We note that

M̃β dvi, 0, 0c = M̃β

vi,q
vi,u
0
...
0

 =

α1,1 vi,q
α1,1 vi,u

...
αnfreq,1 vi,q
αnfreq,1 vi,u

=

α1,1 vi
...

αnfreq,1 vi

 (A.3)

because of the form of the mixing we assumed in Eq. (22). Con-
sequently, using Eq. (A.2),

ÃM̃β dvi, 0, 0c =

α1,1 P>N−1P vi

...
αnfreq,1 P>N−1P vi

=

α1,1 λiP> diag(N−1)P vi

...
αnfreq,1λiP> diag(N−1)P vi

 = λiB̃M̃β dvi, 0, 0c .

(A.4)

Because the matrix M̃>β ÃM̃β is assumed to be nonsingular
(equivalently, because M̃β is of full column rank), we can multi-
ply this equation from the left by M̃>β showing that (λi, dvi, 0, 0c)
is the eigenpair of the matrix (M̃>β B̃M̃β)−1M̃>β ÃM̃β. We can pro-
ceed analogously for the vectors d0, vi, 0c and d0, 0, vic, with
replacing in Eq. (A.3) α f ,1 by α f ,2 and α f ,3, respectively.

There are 2 npix eigenpairs for (P> diag(N−1)P)−1(P>N−1P).
As we showed above, each of them generates three eigenpairs
(with the same eigenvalue) of (M̃t

βB̃M̃β)−1M̃>β ÃM̃β. This gives
together 6 npix eigenpairs, in other words, we have described the
full spectrum of the preconditioned system matrix in Eq. (20).

Finally, we remark that all the eigenpairs of the precon-
ditioned matrix in the simplified setting are independent of
the parameters β. In this case, we suggest using a specialized
eigensolver (e.g., ARPACK, Lehoucq et al. 1998) to compute
the eigenpairs from Eq. (A.2), build the triplets of eigenvectors
dvi, 0, 0c, d0, vi, 0c, and d0, 0, vic, and then use the deflated PCG
with these vectors.

Figure A.1 is the same as Fig. 5, but for the simplified setting.
Here two triplets of the eigenvectors are constructed following
the procedure described above.

A73, page 12 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=7

J. Papež et al.: Accelerating linear system solvers for time-domain component separation of CMB data

Appendix B: Ingredients of the proposed procedure

We present in this section two ingredients of the proposed pro-
cedure in more detail. Namely, we discuss approaches for esti-
mating the eigenpairs from the computed basis of the Krylov
subspace and approaches for combining the deflation of the
approximate eigenvectors with another preconditioner. To facil-
itate presentation, we simplify the notation in this section.

B.1. Approximating the eigenvalues using Krylov subspace
methods

We present first the Rayleigh–Ritz approximation, which is used
in the Arnoldi and Lanczos algorithms to approximate the eigen-
values of a general nonsingular or, respectively, a hermitian
matrix. Then, we recall the Arnoldi and Lanczos algorithms, and
finally, we briefly comment on their restarted variants.

The methods discussed below do not represent an exhaus-
tive overview of methods for approximating several eigenvalues
and the associated eigenvectors. The omitted methods include
the Jacobi–Davidson method (Sleijpen & Van der Vorst 2000),
for example, which proved to be particularly efficient for approx-
imating the inner part of the spectrum. For a survey of the meth-
ods and a list of references, see Sorensen (2002), for instance.

B.1.1. Ritz value and harmonic Ritz value approximations

For a subspace S ⊂ Cn, we call y ∈ S a Ritz vector of A with
Ritz value θ if

Ay − θy ⊥ S. (B.1)

When a (computed) basis V j of S is used and y = V jw is set, the
above relation is equivalent to solving

V>j AV jw = θV>j V jw. (B.2)

Ritz values are known to approximate the extreme eigenval-
ues of A well. When an approximation to the interior eigenval-
ues is required, it can be preferable to compute the harmonic
Ritz values. The term harmonic Ritz values was introduced
in Paige et al. (1995), where references to previous works using
this approximation can be found. Following Parks et al. (2006),
we define harmonic Ritz values as the Ritz values of A−1 with
respect to the space AS,

ỹ ∈ AS, A−1ỹ − µ̃ỹ ⊥ AS. (B.3)

We call θ̃ ≡ 1/µ̃ a harmonic Ritz value and ỹ a harmonic Ritz
vector. When V j is a basis of S and ỹ = V jw̃, this relation can be
represented as

V>j A>V jw̃ = µ̃V>j A>AV jw̃⇐⇒ V>j A>AV jw̃ = θ̃V>j A>V jw̃.

(B.4)

For the properties of the harmonic Ritz value approximations
and the relationship with the iteration polynomial in MINRES
method, see Paige et al. (1995).

Remark 1. There are various presentations and definitions in the
literature of the harmonic (Rayleigh–)Ritz procedure; it is often
introduced to approximate eigenvalues close to a target τ ∈ C.
For example, Wu (2017) prescribes the procedure by

ỹ ∈ S, Aỹ − θ̃ỹ ⊥ (A − τI)S, (B.5)

where I is the identity matrix. With ỹ = V jw̃, this corresponds to
the generalized eigenvalue problem

V>j (A − τI)>(A − τI)V jw̃ =
(̃
θ − τ

)(
V>j (A − τI)>V j

)
w̃, (B.6)

which becomes for τ = 0 exactly the right-hand side equality in
Eq. (B.4).

We note that harmonic Ritz approximation is also often used
in the Krylov subspace recycling methods to approximate the
smallest (in magnitude) eigenvalues and the associated eigen-
vectors.

Finally, we comment on the (harmonic) Ritz approximation in
the case when we wish to compute the eigenvalues of the matrix A
preconditioned from the left by M. In the general case, when
only A and M are assumed to be nonsingular, the Ritz and har-
monic Ritz approximation are applied as above by just replac-
ing in the formulas A by M−1A. When the matrix A is hermitian
and the preconditioner M is SPD, there is also another option.
First, we note that the matrix M−1A is not hermitian, but is self-
adjoint with respect to the inner product induced by M, that is,

(v,M−1Aw)M = (M−1Av, w)M , ∀v, w, (B.7)

where (v, w)M ≡ v
>Mw. This allows in the definition of Ritz and

harmonic Ritz approximation replacing A by M−1A and the stan-
dard inner product by the inner product induced by the matrix M,
giving

y ∈ S, M−1Ay − θy ⊥M S (B.8)

or

ỹ ∈ M−1AS, (M−1A)−1ỹ − µ̃ỹ ⊥M M−1AS (B.9)

respectively. The corresponding algebraic problems with y =
V jw and ỹ = V jw̃ are

V>j AV jw = θV>j MV jw, (B.10)

and

V>j A>M−1AV jw̃ = (1/µ̃)V>j A>V jw̃, (B.11)

respectively. The problems above involve hermitian matrices
only.

B.1.2. Arnoldi and Lanczos methods

Arnoldi and Lanczos algorithms for approximating the eigen-
values of a general nonsingular or a hermitian matrix are
based on a Ritz approximation with setting S = K j(A, v1) =

span(v1, Av1, . . . , A j−1v1), the jth Krylov subspace. The methods
compute an orthogonal basis V j of S such that

AV j = V jT j + βv j+1e>j , (B.12)

where e j is the last column vector of the identity matrix (of
size j) and V>j V j = I, V>j v j+1 = 0. Consequently, the eigenvalue
problem in Eq. (B.2) corresponding to the Ritz approximation
reads

T jw = θw. (B.13)

The matrix T j is available during the iterations. The standard use
of the Arnoldi and Lanczos method for eigenvalue approxima-
tion consists of solving the above problem and setting the pairs
(θ,V jw) as the computed approximations.

The Ritz approximation can be replaced by the harmonic
Ritz approximation. Then, the matrices in Eq. (B.4) become

V>j A>AV j = T>j T j + β2e je>j , V>j A>V j = T>j . (B.14)

A73, page 13 of 16

A&A 638, A73 (2020)

Remark 2. The Lanczos algorithm is a variant of the Arnoldi
algorithm for a hermitian A. The matrix T j = V>j AV j, which is
in the Arnoldi method upper Hessenberg, is then also hermitian.
Consequently, it is tridiagonal, which means that in each step
of the Lanczos method, we orthogonalize the new vector only
against the two previous vectors. This ensures that the computa-
tional cost of each iteration is fixed, and only when the eigenval-
ues are to be approximated, storing three vectors v j−1, v j and v j+1
is sufficient instead of handling the full matrix V j. The assump-
tion on exact arithmetic is crucial here, however. In finite preci-
sion computations, the global orthogonality is typically quickly
lost, which can cause several stability issues.

As noted above, an orthonormal basis V j of S is advanta-
geous for the Ritz approximation. For the harmonic Ritz approx-
imation applied to an SPD matrix A, an A-orthonormal basis can
instead be constructed, which ensures that the matrix V>j A>V j =

V>j AV j on the right-hand side of Eq. (B.4) is equal to the iden-
tity. An A-orthonormal basis of a Krylov subspace can be con-
structed within the iterations of conjugate gradient method using
the search direction vectors.

The Arnoldi method can also be applied to the precondi-
tioned matrix M−1A to compute an orthonormal basis V j of the
associated Krylov subspace K j(M−1A,M−1v1), giving

M−1AV j = V jT j + βv j+1e>j , V>j V j = I, V>j v j+1 = 0. (B.15)

For a hermitian A and an SPD preconditioner M, we can apply
the Lanczos method following the comment made above, using
the matrix M−1A and the inner product (·, ·)M induced by M
instead of the standard euclidean (·, ·), giving

M−1AV j = V jT j + βv j+1e>j , V>j MV j = I, V>j Mv j+1 = 0.
(B.16)

The computed basis V j is therefore M-orthonormal.

B.1.3. Restarted variants

The number of iterations necessary to converge is not a priori
known in Arnoldi and Lanczos algorithms, and it can in general
be very high. High iteration counts require a large memory to
store the basis vectors, and when a full reorthogonalization is
used, a high computational effort because of the growing cost of
the reorthogonalization in each step. The idea behind implicitly
restarted variants is to limit the dimension of the search space S.
This means that the iterations are stopped after a (fixed) num-
ber of steps, the dimension of the search space is reduced while
maintaining its (Krylov) structure, and the Arnoldi/Lanczos iter-
ations are resumed.

Several restarted variants are described in the literature (a
detailed description is beyond the scope of this paper, how-
ever): the implicitly restarted Arnoldi (IRA, Sorensen 1992),
the implicitly restarted Lanczos (IRL, Calvetti et al. 1994),
or the Krylov–Schur method (Stewart 2001/02; Wu & Simon
2000).

The estimation of the spectrum of A is possible within the
GMRES, MINRES, and CG iterations (applied to solve a sys-
tem with A) because they are based on Arnoldi (GMRES and
MINRES) or Lanczos (CG) algorithms. In contrast, a com-
bination of restarted variants with solving a linear algebraic
system is, to the best of our knowledge, not described in the
literature.

B.2. Deflation and two-level preconditioners

In this section we first discuss a deflation preconditioner for
Krylov subspace methods that can be regarded as eliminating
the effect of several (given) vectors from the operator or, equiva-
lently, augmenting by these vectors the space in which we search
for an approximation. Then we describe a combination of the
deflation preconditioner with another preconditioner that is com-
monly used in practice.

The Krylov subspace methods (in particular CG, Hestenes
1952, and GMRES, Saad & Schultz 1986) are well-known for
their minimization (optimal) properties over the consecutively
built Krylov subspace,

K j(A, v) = span{v, Av, A2v, . . . , A j−1v}. (B.17)

A question then arises: given some other subspace U, can we
modify the methods such that they have the same optimal prop-
erties over the union of K j(A, v) and U (which is often called
an augmented Krylov subspace)? The answer is positive and the
implementation differs according to the method: it is straightfor-
ward for GMRES and requires more attention for CG. Hereafter,
we denote by I the identity matrix and by Z the basis ofU.

The deflation in GMRES method is often (see, e.g., GCROT
by Morgan 1995) considered as a remedy to overcome the
difficulties caused by restarts: for computational and memory
restrictions, only a fixed number of GMRES iterations is typi-
cally performed, giving an approximation that is then used as the
initial vector for a new GMRES run. In GCROT, several vectors
are saved and used to augment the Krylov subspace built after the
restart. The GMRES method with the deflation was used to solve
a sequence of linear algebraic systems in Parks et al. (2006), for
example.

The augmentation of the Krylov subspace in CG is more del-
icate because the original CG method can only be applied to an
SPD matrix. The first such algorithm was proposed in Nicolaides
(1987) and Dostál (1988). We note that it includes the construc-
tion of the conjugate projector

Pc.proj. = Z(Z>AZ)−1Z>A, (B.18)

and in each iteration, the computation of the preconditioned
search direction qi = (I − Pc.proj.) pi and of the vector Aqi. The
latter can be avoided at the price of storing Z and AZ and per-
forming additional multiplication with AZ. In both variants, the
cost of a single iteration is higher than the cost of one standard
CG iteration.

The combination of a preconditioner with a deflation is
widely studied in the literature and therefore we present this only
briefly; more details and an extensive list of references can be
found in the review paper by Tang et al. (2009), for instance.
The preconditioner stemming from the combination of a (typi-
cally relatively simple) traditional preconditioner with the defla-
tion is called a two-level preconditioner. As shown in Tang et al.
(2009), this shows an analogy with multilevel (multigrid) and
domain decomposition methods. While the traditional precon-
ditioner aims at removing the effect of the largest (in magni-
tude) eigenvalues, the deflation (projection-type preconditioner)
is intended to remove the effect of the smallest eigenvalues.
Common choices for the traditional preconditioner are block
Jacobi, (restricted) additive Schwarz method, and incomplete
LU or Cholesky factorizations. In many applications, two-level
preconditioners proved to be efficient in the CMB data analysis
(see, e.g., Grigori et al. 2012; Szydlarski et al. 2014).

We now present the combination of the traditional and
projection-type (deflation) preconditioners following the discus-
sion and notation of Tang et al. (2009). Hereafter, we assume

A73, page 14 of 16

J. Papež et al.: Accelerating linear system solvers for time-domain component separation of CMB data

that the system matrix A and the traditional preconditioner M
are SPD. We note that some of the preconditionersP� mentioned
below are not symmetric. However, their properties allow us to
use them (with possible modification of the initial vector) as left
preconditioners in PCG; see Tang et al. (2009) for details.

Let the deflation space span the columns of the matrix Z. We
denote

P ≡ I − AQ, Q ≡ Z
(
Z>AZ

)−1Z>. (B.19)

Two-level preconditioners based on the deflation are given as

PDEF1 ≡ M−1P, PDEF2 ≡ P>M−1. (B.20)

Other preconditioners can be determined using the additive com-
bination of two (SPD) preconditioners C1, C2 as

Padd ≡ C1 + C2, (B.21)

or, using the multiplicative combination of the preconditioners,
as

Pmult ≡ C1 + C2 −C2AC1. (B.22)

Three variants of two-level preconditioners are derived by
choosing aan dditive or multiplicative combination and setting
C1 = M−1, C2 = Q, or C1 = Q, C2 = M−1. Other precondition-
ers can be derived using the multiplicative combination of three
SPD matrices (see Tang et al. 2009).

The variants of the two-level preconditioner mentioned
above differ in the implementation cost and also in the numer-
ical stability; see Tang et al. (2009). The variant PDEF1, which is
often used in the procedures for solving the sequences of linear
systems (see, e.g., Saad et al. 2000), was found to be cheap but
less robust, especially with respect to the accuracy of solving the
coarse problem with the matrix Z>AZ and with respect to the
demanded accuracy. The conclusion drawn in Tang et al. (2009)
is that “A-DEF2 seems to be the best and most robust method,
considering the theory, numerical experiments, and the compu-
tational cost”. Therefore the preconditioner PA−DEF2,

PA−DEF2 ≡ M−1 + Q − QAM−1 = P>M−1 + Q, (B.23)

is of interest, in particular in the cases where the dimension of
the deflation space (equal to the number of columns in Z) is high
and/or the matrix M−1A is ill-conditioned.

As noted in Saad et al. (2000), the gradual loss of orthogo-
nality of the computed residuals with respect to the columns of Z
can cause stagnation, divergence, or erratic behaviour of errors
within the iterations (see also the comment in Tang et al. 2009).
The suggested remedy in this case consists of reorthogonalizing
the computed residuals as

r j := Wr j, W ≡ I − Z(Z>Z)−1Z>. (B.24)

However, no such instabilities were observed in our experiments,
and the results depicted throughout the paper are for the standard
(non-reorthogonalized) variant.

Appendix C: Full algorithm

In this section we provide the pseudo-codes for the deflated PCG
(Algorithm 1), the subspace recycling (Algorithm 2), and for the
full procedure (Algorithm 3) proposed in this paper and used in
the numerical experiments in Sect. 4.

Algorithm 1 deflated PCG (variant “def1”)
function deflPCG(A, B, b, s(0), Z, dimp, jmax)

Q = Z(Z>AZ)−1Z> . in practice, we save AZ to use later
r(0) = (I −AQ)(b −As(0)) . with saved AZ, QA and AQ

can be computed without applying A
p(0) = r(0)

r̃(0) = B−1r(0)

for j = 0, . . . , jmax do
w(j) = (I −AQ)(Ap(j))
if j ≤ dimp then

save (I − QA)p(j) into Z̃ . in practice, we also
save w(j) to avoid computing AZ̃ later

end if
γ(j) = (̃r(j), r(j))/(p(j),w(j))
s(j+1) = s(j) + γ(j)p(j)

r(j+1) = r(j) − γ(j)w(j)

check the stopping criterion
r̃(j+1) = B−1r(j+1)

δ(j) = (̃r(j+1), r(j+1))/(̃r(j), r(j))
p(j+1) = r̃(j+1) + δ(j)p(j)

end for
s(final) := Qb + (I − QA)s(j)

return s(final); Z̃
. to be efficient, we also return AZ and the vectors {w(j)}

end function

Algorithm 2 subspace recycling (variant “ritz”)
function SubspRec(A, B, U, k)

F = U>BU
G = U>AU . in practice, we reuse AU saved during the

deflated PCG
solve the generalized eigenvalue problem GY =

diag(λi)FY
take k smallest λi and the respective columns of Y , Yk

return Z = UYk

end function

A73, page 15 of 16

A&A 638, A73 (2020)

Algorithm 3 full algorithm of the procedure

Require: β0, s(0)
β0

Require: k, dimp

set Z := []

for i = 0, . . . , imax do
assembly the system matrix A, right-hand side b, and the

preconditioner B corresponding to βi

if i > 0 then s(0)
βi

= (M̃βi)
†s

(0)
βi

deflPCG(A, B, b, s(0)
βi

, Z, dimp, jmax) −→ (s(final)
βi

, Z̃)

check the stopping criterion for βi, exit if i = imax

s
(0)
βi+1

= M̃βis
(final)
βi

(determine βi+1) . considered here as a black box

SubspRec(A, B, U = [Z, Z̃], k) −→ Z

end for

Appendix D: Results for an alternative sequence of
mixing parameters from a Monte Carlo sampling

In this section we provide results for a sequence of spectral
parameters generated by a Monte Carlo sampling algorithm.
In realistic circumstances, these sequences may contain up to
many thousand samples, but for computational efficiency, we
here restrict ourselves to a subsequence made of merely 30 ele-
ments. We use them in order to demonstrate the performance of
the proposed approach on a sequence with realistic properties but
sufficiently different than those of the sequences encountered in
the likelihood maximization process. We emphasize that it is not
yet our purpose here to validate the method on the actual appli-
cation, and more work is needed to achieve this goal, see Sect. 5.

Fig. D.1. Plot of a sequence of the spectral parameters βi = [βi,s, βi,d]
drawn through a Monte Carlo sampling technique and used as an alter-
native test case in the numerical experiments described in Appendix D.

Table D.1. Number of matrix-vector products (MatVecs) for different
techniques as in Fig. D.2.

#MatVecs
Iteration Deflation Total

s
(0)
βi+1

as in (33) 4010 0 4010

s
(0)
βi+1

as in (37) 1768 0 1768

Recycle + s
(0)
βi+1

as in (37) 1228 290 1518

The sequence is depicted in Fig. D.1. It was produced using the
publicly available software fgbuster4 and indeed shows qual-
itatively a very different behavior than that of our standard case
displayed in Fig. 1.

In Fig. D.2 and in Table D.1, we compare the results obtained
in this case by applying the various techniques discussed and
proposed in this work.

Fig. D.2. Comparison of the PCG with different choices of initial guess (as in Eqs. (33) and (37)) and the PCG with the subspace recycling
(together with the choice of the initial guess as in Eq. (37)). For the recycling, we consider k = 10 eigenvectors approximated using dimp = 100.
The convergence for the whole sequence when the initial guess is as in Eq. (33) (the yellow line) requires 4010 iterations.

4 fgbuster: https://github.com/fgbuster

A73, page 16 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=8
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037687&pdf_id=9
https://github.com/fgbuster

	Context and motivation
	Problem description and setting
	Preliminaries
	Data model
	Component separation
	Block-diagonal preconditioner
	Component mixing

	Solution procedure for the parametric component separation problem
	PCG with deflation and two-level preconditioners
	Subspace recycling
	Effect of the eigenvalue multiplicity
	Choice of the initial guess
	Previous solution as the initial guess
	Adapted previous solution as the new initial guess

	Numerical experiments
	Simulated data
	Pointing matrix
	Sky maps
	Noise

	Multiplicity of the eigenvalues as a result of the particular scanning strategy
	Results

	Conclusions and further perspectives
	References
	Eigenvalue multiplicity in the component separation problem. A worked example
	Ingredients of the proposed procedure
	Approximating the eigenvalues using Krylov subspace methods
	Ritz value and harmonic Ritz value approximations
	Arnoldi and Lanczos methods
	Restarted variants

	Deflation and two-level preconditioners

	Full algorithm
	Results for an alternative sequence of mixing parameters from a Monte Carlo sampling

