Challenging common bolus advisor for self-monitoring type-I diabetes patients using Reinforcement Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Challenging common bolus advisor for self-monitoring type-I diabetes patients using Reinforcement Learning

Résumé

Patients with diabetes who are self-monitoring have to decide right before each meal how much insulin they should take. A standard bolus advisor exists, but has never actually been proven to be optimal in any sense. We challenged this rule applying Reinforcement Learning techniques on data simulated with T1DM, an FDA-approved simulator developed by Kovatchev et al. modeling the gluco-insulin interaction. Results show that the optimal bolus rule is fairly different from the standard bolus advisor, and if followed can actually avoid hypoglycemia episodes.
Fichier principal
Vignette du fichier
main (1).pdf (863.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02903045 , version 1 (22-07-2020)

Licence

Identifiants

Citer

Frédéric Logé, Erwan Le Pennec, Habiboulaye Amadou-Boubacar. Challenging common bolus advisor for self-monitoring type-I diabetes patients using Reinforcement Learning. 2020 KDD Workshop on Applied Data Science for Healthcare, Aug 2020, San Diego, United States. ⟨hal-02903045⟩
151 Consultations
231 Téléchargements

Altmetric

Partager

More