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ABSTRACT
Patients with diabetes who are self-monitoring have to decide right
before each meal howmuch insulin they should take. A standard bo-
lus advisor exists, but has never actually been proven to be optimal
in any sense.We challenged this rule applying Reinforcement Learn-
ing techniques on data simulated with T1DM, an FDA-approved
simulator developped by [3] modeling the gluco-insulin interac-
tion. Results show that the optimal bolus rule is fairly different
from the standard bolus advisor, and if followed can actually avoid
hypoglycemia episodes.

CCS CONCEPTS
• Applied computing → Consumer health; • Theory of com-
putation → Reinforcement learning.

1 INTRODUCTION
Diabetes & bolus advisor. Diabetes is a major disease which re-

quires, amongst many things, patients to keep their blood glucose
(BG) levels in check. To get an idea of commonly accepted levels:
if the BG is lower than 70 mg/dL, the patient is in hypoglycemia,
if higher than 180 mg/dL, the patient is in hyperglycemia and oth-
erwise in normoglycemia, the ideal is to be around 112.5 mg/dL.
When BG is too low, the patient must take carbohydrates (CHO) to
compensate. When it is too high, the patient must take external in-
sulin in order to compensate low pancreatic activity. Insulin intake
can be done via an insulin pump which injects continuously vary-
ing amounts throughout the day. Most patients however are still
injecting punctually, most of the time prior to their meals in order
to prepare for the future CHO intake and avoid hyperglycemia.

A standard rule to follow for pre-meal self-injections of insulin
is the following piecewise linear formula : for a given measure of
blood glucose BG and an intake of carbohydrates CHO, one should
take the following bolus1 quantity :

bolus(CHO, BG) =
CHO

CIR
+

max{BG − BGtarдet , 0}
CF

(1)

in order to reach the BG target level BGtarдet . In this rule, com-
monly known as bolus advisor, coefficients CIR and CF correspond
to the carbohydrate-to-insulin ratio and the correction factor respec-
tively, both being specific to each individual and can be evaluated
by medical tests and usually are fluctuant during the day. The first
ratio in the rule compensates for CHO intake and the second ratio
compensates for excessively high BG levels.

1Bolus insulin corresponds to rapid insulin injections whereas basal insulin corre-
sponds to long-term insulin.

Related works. A lot of the research around blood glucose man-
agement for diabetes focuses on the artificial pancreas, so the case
where the patient is equipped with an insulin pump. The interested
reader can find an extensive review here [1]. For self-monitoring,
[6] worked on the best delivery of insulin drugs to facilitate BG
management. Based on a complex diabetes simulator, the authors
of [2] and [7] worked on learning adaptively coefficients (CIR, CF)
which is crucial for deployment.

Objective. Although the bolus advisor makes sense, there has
not been any study of its performance in its use for patients who
are self-monitoring. In this study, we rely on simulated data for
type-I diabetes patients and a model-free approach to actually learn
the optimal bolus function, tailoring it to meal plans. Using the
vocabulary of Reinforcement Learning, we show how to learn non
parametric policies, the function giving insulin doses based on BG
readings and auxiliary information, that outperforms the standard
advisor for a given meal pattern.

2 METHODOLOGY
The problem will be framed as a Markov Decision Process, as pre-
sented in the first subsection. The resolution technique, amodel-free
Reinforcement Learning approach, will be presented next. Finally,
we will talk about the use of the simulator available to generate the
necessary data for our experiments.

2.1 Markov Decision Process
To model the insulin intake process we consider a Markov Decision
ProcessM = (S,A,R,T)where (S,A) denote the state and action
spaces, R is the reward function and T is the transition function.

Time steps are set on meals, which follow a strict regular plan.
The state variable St contains the meal identifier ID_mealt , a cat-
egorical variable, and the BG reading BGt registered before the
meal. The action variable At contains the insulin dose INSt taken
before the meal. Based on the meal plan, we also know the amount
of CHO associated with the meal CHOt , which should simply be a
function of ID_mealt . The reward Rt received is a function of BGt ,
as represented in figure 1 which is indicative of the wellness of the
BG profile: the closer it is to 112.5 mg/dL the better.

Let us call policy any function π which maps S to A i.e. any
function which to a couple (ID_meal, BG) assigns an insulin recom-
mendation INS. Writing Π the set of policies, we ought to find π∗,
the policy maximizing cumulative rewards:

π∗ = arg max
π ∈Π

EM,π
[∑+∞

t=0 γ
tRt

]
(2)
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Figure 1: Reward function for BG levels inspired by [4],
where the authors proposed to build a function centered at
BG level 112.5 mg/dL and symmetric through reference lev-
els, shown with vertical lines.

where discount factor γ ∈ (0, 1) is chosen by the user and indicates
how much long-term rewards matter. Note that the standard bolus
advisor from equation 1 belongs to Π.

2.2 Q-Learning with function approximation
For any policy π ∈ Π and any couple (s,a) ∈ S × A, consider the
state-action value functions

Qπ (s,a)
.
= EM,π

[∑+∞
t=0 γ

tRt |S0 = s,A0 = a
]
. (3)

Because our state and action spaces are continuous, a common
approach to solve the optimization problem is to parameterize
the state-action value functions and find the optimal parameters
instead. In our case, we will consider the following linear function
approximation of Q(s,a) for s = (ID_meal, BG), a = INS:

Qᾱ (s,a)
.
=
∑B
b=1

∑B
b′=1 α

(ID_meal)
(b ,b′) ϕBGb (BG)ϕINSb′ (INS) (4)

with vector parameter ᾱ . The set of functionsϕBG andϕINS are taken
as radial basis functions, centered uniformly on their respective
grids. The scaling was made in order to have a certain percentage p
of overlap amongst neighbour functions. The number of functions
B handles the granularity of the grid.

Linear approximation scheme is widely used in the RL literature,
some details can be found in chapter 9 of [8].

Note that in our context we face the deadly triad issue [8] since
we jointly apply bootstrap, function approximation and off-policy
learning. In order to alleviate this issue, we use a frozen set ᾱ (f rozen)
to stabilize target value and apply replay memory to break temporal
dependencies between transitions. This strategy has shown good
results for instance in [5] where Deep Neural Networks were used
as function approximators for Atari game controllers.

2.3 Gluco-Insulin interactions Simulator
T1DM simulator (2008 version, accessed throughout Python imple-
mentation [9]) is described in detail in [3]. It models the glucose
and insulin dynamics taking into account

• for glucose : endogenous production, rate of appearance,
utilization and renal extraction

• for insulin : rate of appearance from the subcutaneous tissue
and insulin degradation.

The simulator takes into account physiology, a given meal scenario
and any insulin basal/bolus policy. It also provides good base values
for Carbohydrate-to-Insulin Ratio, Correction Factor and Basal Rate
for a given physiology.

Although it is built for continuous glucose monitoring, we can
use it to generate data in the self-monitoring setting. Using the
simulator, the data generated is a set alike

(BGt , CHOt , INSt )
T
t=1 (5)

with a time step of 3 minutes and where the CHO intake depends
on the user-specified meal plan and the insulin level corresponds
to the bolus insulin which is specified by the user. In our case, the
insulin component was sampled uniformly on a proper range of
values. The data is then summarized to pre-meal observations as

(ID_mealt , BGt , CHOt , INSt ,Rt )t ∈meal_times. (6)

3 NUMERICAL EXPERIMENTS
Experiment outline. We proceeded as follows :
• Step 0 : choose meal scenario of interest and virtual patient
• Step 1 : approximate optimal coefficients for the baseline
bolus advisor via grid search (policy π0)

• Step 2 : simulate a large amount of data following this meal
scenario and explore randomly the insulin intakes within
acceptable range, set using the bolus advisor with lower and
upper bounds on coefficients (CIR, CF)

• Step 3 : approximate optimal bolus from simulated data with
RL approach (policy πα ∗ )

• Step 4 : simulate validation data following policies π0 and
πα ∗ , compare policy functions and daily glycemic profiles
obtained.

Meal scenario. We chose the following meal scenario: at 6am the
person takes 50 grams of CHO for breakfast. For lunch, at 12am,
the person takes 60 grams of CHO, followed by a snack of 15 grams
at 3pm. At 8pm, for dinner, the person takes 80 grams of CHO.

Simulation details. The procedure above was applied to adults
#1, #2 and #3 from simulator T1DM. We simulated for each of
them around 8 years of data which amounts to 11680 observa-
tions (meals) each. We based our grid search for π0 from the fol-
lowing bounds : CIR ∈ [3; 30], CF ∈ [0.4; 2.8] and BGtarдet ∈

[100 mg/dL; 150 mg/dL]. For the Q-Learning algorithm, we set B =
8, giving an 8 by 8 grid of the (BG, INS) plane and we set p = 0.2
which gave, from our qualitative evaluation, satisfying result.

Based on the initial data generated, the policies were tested for
the same virtual patients (separately, each adult has his/her policy)
during 45 days, which is sufficient since the BG enters a stationary
state because meal scenario was set deterministic.
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Figure 2: Bolus advisor π0 (left) and πᾱ ∗ found byQ-Learning
with function approximation (right) for each virtual patient
(sorted by increasing number). One can observe essentially
two things from those graphs : first, it looks as if patient #1
and #2 are closer to each other than to patient #3 in terms
of physiology otherwise we would not find the result we did.
However the hope to get out a new generic rule seems dif-
ficult in this situation. Second, and this is what shows the
algorithm took into account sequentiality of the meals and
injections : themeal withmost carbs does not necessarily re-
quire most insulin, which is a fundamental difference from
the baseline advisor.
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Figure 3: Average BG profiles for the three virtual patients
(sorted increasingly by number) for each policy applied, π0
in red and πᾱ ∗ in light blue. For all adults, the algorithm ba-
sically learned to reduce insulin intake at last meal in order
to reduce nightly hypoglycemia at the cost of often minor
hyperglycemia. The changes are minor in the case of Adult
#2, but in Adult #3 and #1 it centers the BG levels around
target 112.5 mg/dL.
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Result disposition. In table 1, we included the distribution of BG
levels on test data, essentially showing that for adults #1 and #3,
policy πα lessens the BG variations outside normoglycemic range
compared to π0. In figure 2 we present jointly the two policies for
each patient, in the left column the standard bolus advisor π0 and
in the right column the RL-optimized policy πα ∗ . In figure 3 we
compare the BG average daily profiles obtained between for the
two policies (πᾱ ∗ is in blue).

BG distribution Adult #1 Adult #2 Adult #3
π0 πα ∗ π0 πα ∗ π0 πα ∗

[40 mg/dL, 70 mg/dL) .07 .00 .00 .00 .08 .00
[70 mg/dL, 112.5 mg/dL) .35 .37 .53 .58 .18 .20
[112.5 mg/dL, 180 mg/dL) .39 .47 .47 .42 .35 .35
[180 mg/dL, 350 mg/dL) .19 .16 .00 .00 .35 .39
[350 mg/dL, 600 mg/dL] .00 .00 .00 .00 .04 .06

Table 1: BG distribution for both policies and each patient.
Lecture key: for adult #1, following π0, 7% of BG readings
fell within interval [40 mg/dL, 70 mg/dL).

Policies found, figure 2. Policies πα ∗ are quite different in form
compared to π0 and their form varies with patients. Also, for a given
BG level, the recommended bolus does not necessarily increase
with CHO amount ; we tend to give more insulin at lunch rather
than at dinner, which impacts greatly the BG profile. Typically the
patient will be less at risk from nocturnal hypoglycemia which is
a well-known issue in the endocrinology community. The policy
we proposed properly took into consideration the meal scenario
in order to look at future time steps and prevent complications.
One may also note that the bolus advisors calibrated sometimes
recommend decreasing amounts of insulin with increasing BG level:
a great example of that is the lunch recommendations for adults #1
and #2 : when BG goes over 300 mg/dL the recommended insulin
level drops. This is due to the scarcity of the data collected within
this area so it should be considered as a numerical artefact.

Daily BG profile comparison, figure 3. Let us focus on Adult #1,
whose data is represented in the upper graph. The baseline re-
tained induces low BG during the night (ranging in 70 mg/dL to
100 mg/dL) whilst it stays quite higher than 112.5 mg/dL from
6am to 3pm. The policy we found (in blue) eliminates night hypo-
glycemia, traded-off for a two hours period in mild hyperglycemia
(<250 mg/dL) during dinner and a more smoothed-out afternoon.
For Adult #2, the two policies seem quite equivalent. For Adult #3,
we trade-off the night hypoglycemic section by hyperglycemia on
the three main meal times.

4 DISCUSSION
Contributions. In this work we challenge a commonly used bo-

lus advisor by relying on virtual patients data, using T1DM sim-
ulator [3] and a model-free approach from Reinforcement Learn-
ing. The policies found bring BG levels closer to reference level of
112.5 mg/dL and in two out of the three adults managed to avoid
nocturnal hypoglycemia. These first results attest that a proper
bolus advisor does need to be tailored to a patient’s physiology

(as expressed in the standard bolus advisor through personalized
coefficients (CIR, CF)), but they should also be tailored to meal
and activity plans, which is what we propose here. The code de-
veloped for those experiments is available at https://github.com/
FredericLoge/T1DM_qlearning.

Future work. We are considering four developments of this work.
First, we would like to extend the Reinforcement Learning approach
using neural networks as function approximators to take into ac-
count historical data properly. Second, instead of optimizing only
bolus insulin intake, we could jointly optimize meal and potential
activity plans so as to not stress the body with high BG variations.
Third, we would like to try different reward functions and compare
qualitatively obtained policies. Last but not least, we would like
to investigate how quickly we could learn the optimal policies we
found here, which did require years of simulated data with random-
ized insulin intakes, which is obviously unfeasible in real-life.
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