Finite Volumes for the Stefan-Maxwell Cross-Diffusion System - Archive ouverte HAL
Article Dans Une Revue IMA Journal of Numerical Analysis Année : 2023

Finite Volumes for the Stefan-Maxwell Cross-Diffusion System

Résumé

The aim of this work is to propose a provably convergent finite volume scheme for the so-called Stefan-Maxwell model, which describes the evolution of the composition of a multi-component mixture and reads as a cross-diffusion system. The scheme proposed here relies on a two-point flux approximation, and preserves at the discrete level some fundamental theoretical properties of the continuous models, namely the non-negativity of the solutions, the conservation of mass and the preservation of the volume-filling constraints. In addition, the scheme satisfies a discrete entropy-entropy dissi-pation relation, very close to the relation which holds at the continuous level. In this article, we present this scheme together with its numerical analysis, and finally illustrate its behaviour with some numerical results.
Fichier principal
Vignette du fichier
CEM_StefanMaxwell_revised.pdf (706.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02902672 , version 1 (20-07-2020)
hal-02902672 , version 2 (09-01-2023)

Licence

Identifiants

Citer

Clément Cancès, Virginie Ehrlacher, Laurent Monasse. Finite Volumes for the Stefan-Maxwell Cross-Diffusion System. IMA Journal of Numerical Analysis, In press, ⟨10.1093/imanum/drad032⟩. ⟨hal-02902672v2⟩
380 Consultations
395 Téléchargements

Altmetric

Partager

More