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FINITE VOLUMES FOR THE STEFAN-MAXWELL CROSS-DIFFUSION SYSTEM

The aim of this work is to propose a provably convergent finite volume scheme for the so-called Stefan-Maxwell model, which describes the evolution of the composition of a multi-component mixture and reads as a cross-diffusion system. The scheme proposed here relies on a two-point flux approximation, and preserves at the discrete level some fundamental theoretical properties of the continuous models, namely the non-negativity of the solutions, the conservation of mass and the preservation of the volume-filling constraints. In addition, the scheme satisfies a discrete entropy-entropy dissipation relation, very close to the relation which holds at the continuous level. In this article, we present this scheme together with its numerical analysis, and finally illustrate its behaviour with some numerical results.

In particular,

) corresponding to the initial profile u 0 ∈ L ∞ (Ω; A) is a pair (u, J) such that u ∈ L ∞ (Q T ; A)∩L 2 ((0, T ); H 1 (Ω)) n

The Stefan-Maxwell model

The aim of this section is to present the so-called Stefan-Maxwell model, which is introduced in Section 1.1. Its key mathematical properties are summarized in Section 1.2. In particular, an entropy-entropy dissipation inequality holds for this system and is formally derived in Section 1.3.

1.1. Presentation of the model. The Maxwell-Stefan equations describe the evolution of the composition of a multicomponent mixture via diffusive transport [START_REF] Maxwell | IV. on the dynamical theory of gases[END_REF][START_REF] Stefan | Ueber das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemischen[END_REF]. This model is used in various applications like sedimentation, dialysis, electrolysis, ion exchange, ultrafiltration, and respiratory airways [START_REF] Wesselingh | Mass transfer in multicomponent mixtures[END_REF].

We are interested in the evolution of the composition of a mixture of n ∈ N * species, which is described by the volume fractions u = (u 1 , • • • , u n ), where u i denotes the volume fraction of the i th species for all 1 ≤ i ≤ n. The spatial domain occupied by the mixture is represented by an open, connected, bounded, and polyhedral subset Ω of R d . Let T > 0 denote some arbitrary final time.

For all 1 ≤ i = j ≤ n, let c ij = c ji > 0 be some positive real numbers. The coefficient c ij can be interpreted as the inverse of the inter-species diffusion coefficient between the i th and j th species. For all v := (v 1 , • • • , v n ) ∈ R n + , we denote by A(v) := (A ij (v)) 1≤i,j≤n the matrix defined by [START_REF] Ait | Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer[END_REF] A ii (v) :=

1≤j =i≤n c ij v j , A ij (v) := -c ij v i .
In the Stefan-Maxwell model, the evolution of the composition of the mixture is prescribed by the following system of partial differential equations:

(2)

∂ t u i + divJ i = 0, ∀1 ≤ i ≤ n, 1
where the set of fluxes J := (J i ) 1≤i≤n is solution to the set of equations

∇u i + n j=1 A ij (u)J j = 0, ∀1 ≤ i ≤ n, (3) 
n i=1 J i = 0. (4) 
For any vectors v := (v i ) 1≤i≤n , w := (w i ) 1≤i≤n ∈ R n , we denote by v, w := n i=1 v i w i the canonical scalar product of v, w in R n , while the canonical scalar product of vectors F, G ∈ R d is denoted by F • G. Equations ( 3) and (4) can then be rewritten in the more compact form ∇u + A(u)J = 0, (5) 1, J = 0, [START_REF] Barrett | Finite element approximation of a nonlinear cross-diffusion population model[END_REF] where 1 := (1, 1, • • • , 1) ∈ R n . We refer the reader to Appendix A of [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF] and [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF] for the derivation of the model ( 2)-( 3)-(4).

The system is complemented with no-flux boundary conditions [START_REF] Bessemoulin-Chatard | A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme[END_REF] J i • ν = 0 on ∂Ω, for all 1 ≤ i ≤ n, and a measurable initial condition

u 0 = (u 0 1 , • • • , u 0 n ) which satisfies (8) ∀1 ≤ i ≤ n, u 0 i ≥ 0 and n i=1 u 0 i = 1 in Ω.
In other words, denoting by

A := v ∈ R n + , 1, v = 1 ,
we assume that u 0 ∈ L ∞ (Ω; A). Let us also assume in addition that (9)

∀1 ≤ i ≤ n, M i := Ω u 0 i > 0,
i.e. that each of the different species is initially present in the mixture. We denote by M = (M i ) 1≤i≤n ∈ (R * + ) the vector of masses. Since u 0 ∈ L ∞ (Ω; A), one has 1, M = m Ω where m Ω stands for the Lebesgue measure of Ω.

The mathematical analysis of the Stefan-Maxwell model is quite recent [START_REF] Giovangigli | Multicomponent flow modeling[END_REF][START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF][START_REF] Boudin | A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations[END_REF][START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF]. The first existence result of global weak solutions to the Stefan-Maxwell problem for general initial data and number of chemical species was proved in [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF].

Motivated by the results of [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF], we introduce here the notion of weak solution to the Stefan-Maxwell system of equations, which is used in our analysis. In what follows, we denote by Q T = (0, T ) × Ω, and by

V λ = v = (v 1 , . . . , v n ) i v i = 1, v = λ , λ ∈ R.
and ∇ √ u ∈ L 2 (Q T ) n×d , such that J ∈ L 2 (Q T ; (V 0 ) d ) satisfies [START_REF] Aznaran | Finite element methods for multicomponent convection-diffusion[END_REF], and such that, for all φ ∈ C ∞ c ([0, T ) × Ω) n , (10)

Q T u, ∂ t φ + Ω u 0 , φ(0, •) + Q T n i=1 J i • ∇φ i = 0.
To the best of our knowledge, the uniqueness of weak solutions are still an open problem. However, such weak solutions are unique provided one strong solution exists due to some recent weak-strong uniqueness result [START_REF] Huo | Weak-strong uniqueness for Maxwell-Stefan systems[END_REF]. Let us finally mention the partial regularity result [START_REF] Braukhoff | Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure[END_REF] which shows that the weak solutions are regular up to a small set.

1.2. Key mathematical properties of the model. In this section, we exhibit some key mathematical properties of the model, which were proved in [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF], and that we wish to preserve at the discrete level in the numerical scheme.

First, the total mass of each species is conserved, i.e, for all 1 ≤ i ≤ n and t > 0,

Ω u i (t, x) dx = Ω u 0 i (x) dx. (11) 
This follows directly from the local conservation property (2) and the no-flux boundary conditions across ∂Ω. Second, the volume fractions remain non-negative, i.e.,

∀1 ≤ i ≤ n, u i (t, x) ≥ 0, for almost all (t, x) ∈ Q T . (12) 
Third, the condition (4) together with (2) implies that ∂ t 1, u = 0. Therefore, the volume filling property [START_REF] Bessemoulin-Chatard | Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit[END_REF] satisfied by the initial condition is satisfied for all t > 0:

(13) n i=1 u i (t, x) = 1 for almost all (t, x) ∈ Q T . In particular, u ∈ L ∞ (Q T ; A).
Lastly, an entropy-entropy dissipation relation, which is formally derived in Section 1.3, holds for this system, so that the functional

E : L ∞ (Ω, A) → R u := (u 1 , • • • , u n ) → Ω n i=1 u i log u i is a Lyapunov function for the Stefan-Maxwell system. More precisely, it holds that (14) d dt E(u(t)) + α 2 Ω n i=1 |∇ √ u i | 2 + c * 2 Ω n i=1 |J i | 2 ≤ 0,
for some positive constants α, c * > 0 whose definitions are made precise in the next section.

1.3. Continuous entropy estimate. We formally derive here the entropy-entropy dissipation inequality [START_REF] Braukhoff | Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure[END_REF] which holds for the continuous system and was rigorously proved in [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF]. For the formal calculations to hold, we make the simplifying assumption in this Section that the solution u to the Stefan-Maxwell model satisfies

(15) ∀1 ≤ i ≤ n, u i (t, x) > 0 and n i=1 u i (t, x) = 1 a.e. in Q T ,
and that the solution enjoys enough regularity to justify the calculations.

To present the entropy-entropy dissipation inequality which holds for the Stefan-Maxwell model, we need to introduce some additional notation. Denote by

c * = min 1≤i =j≤n c ij > 0, then for all 1 ≤ i = j ≤ n, we define c ij := c ij -c * and c := max 1≤i =j≤n c ij .
Let us point out that c ij ≥ 0 for all 1 ≤ i = j ≤ n (and thus c ≥ 0).

Let I denote the n × n identity matrix. For all v ∈ R n , we introduce A(v) := (A ij (v)) 1≤i,j≤n and C(v) := (C ij (v)) 1≤i,j≤n the matrices respectively defined as follows: for all 1 ≤ i, j ≤ n,

(16) A ii (v) := 1≤j =i≤n c ij v j , A ij (v) := -c ij v i and C ij (v) := v i .

It then holds that for all

v := (v 1 , • • • , v n ) ∈ (R + ) n , (17) 
A(v) = c * 1, v I -c * C(v) + A(v). In particular, if u ∈ R n + satisfies 1, u = 1, then (18) 
A(u) = c * I -c * C(u) + A(u).
One easily deduces from the particular form ( 16) of the matrix

A(v) that (19) Span{v} ⊂ Ker(A(v)), Ran(A(v)) ⊂ V 0 , ∀v ∈ R n .
It has been established in [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF] that equalities instead of mere inclusions hold in [START_REF] Cancès | Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations[END_REF] if one replaces A(v) by A(v) and one considers v with positive components, i.e., [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF])

Span{v} = Ker(A(v)), Ran(A(v)) = V 0 , ∀v ∈ R * + n .
This property is intensively used in the convergence study of [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF]. Provided [START_REF] Cancès | Energy stable numerical methods for porous media flow type problems[END_REF] holds, [START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF] shows that there exists a unique solution J(t, x) to ( 5)-( 6) for almost all (t, x) ∈ (0, T ) × Ω, since ∇u ∈ (V 0 ) d . Besides, using [START_REF] Cancès | A convergent entropy diminishing finite volume scheme for a cross-diffusion system[END_REF], it holds that J is a solution to ( 5)-( 6) if and only if it is the unique solution to

∇u + c * J + A(u)J = 0, ∀1 ≤ i ≤ n, (21) 
1, J = 0, [START_REF] Chainais-Hillairet | Entropy method and asymptotic behaviours of finite volume schemes[END_REF] since 1, u = 1 and since the condition 1, J = 0 implies that C(u)J = 0.

For all v := (v 1 , • • • , v n ) ∈ (R * + ) n , we denote by M (v) := diag(v 1 , • • • , v n ) the n × n diagonal matrix whose i th diagonal entry is given by v i for all 1 ≤ i ≤ n.
Then, the following lemma, which is central in our analysis, holds.

Lemma 1.2. Let v := (v 1 , • • • , v n ) ∈ (R * + ) n , such that 1, v ≤ 1. Then, it holds that B(v) := M -1 (v)A(v) is a symmetric semi-definite non-negative matrix such that (23) M -1 (v)A(v) ≤ 2cM -1 (v),
in the sense of symmetric matrices.

Proof.

Let v := (v 1 , • • • , v n ) ∈ (R * + ) n and B(v) := M -1 (v)A(v). Denoting by B ij (v) 1≤i,j≤n the different components of B(v), a direct calculation shows that for all 1 ≤ i, j ≤ n, B ij (v) := -c ij if i = j and B ii (v) = 1≤j =i≤n c ij v j v i ,
hence the symmetry of the matrix B(v). Let ξ := (ξ i ) 1≤i≤n ∈ R n . Using the fact that c ij = c ji for all 1 ≤ i = j ≤ n, it holds that

ξ T B(v)ξ = 1≤j =i≤n c ij v j v i ξ 2 i -ξ i ξ j = 1 2 1≤j =i≤n c ij v j v i ξ 2 i + v i v j ξ 2 j -2ξ i ξ j = 1 2 1≤j =i≤n c ij v j v i ξ i - v i v j ξ j 2 ≥ 0.
Hence the non-negativity of the matrix B(v). Using now the elementary inequality (a -b) 2 ≤ 2a 2 + 2b 2 together with the fact that 1, v ≤ 1 for all 1 ≤ i ≤ n, we obtain that

ξ T B(v)ξ = 1 2 1≤j =i≤n c ij v j v i ξ i - v i v j ξ j 2 ≤ 1≤j =i≤n c ij v j v i ξ 2 i + v i v j ξ 2 j ≤ c 1≤j =i≤n 1 v i ξ 2 i + 1 v j ξ 2 j ≤ 2cξ T M -1 (v)ξ.
Hence the desired result.

We are now in position to write the (formal) entropy-entropy dissipation inequality which holds on the continuous level for the Stefan-Maxwell model. For all 1 ≤ i ≤ n, let w i = log u i and w = (w i ) 1≤i≤n . Then, it holds that ∇u = M (u)∇w which implies that [START_REF] Deimling | Nonlinear functional analysis[END_REF] ∇w

= -M -1 (u)A(u)J = -c * M -1 (u) + M -1 (u)A(u) J. Since M -1 (u) is symmetric definite positive while M -1 (u)A(u) is symmetric non- negative, it holds that c * M -1 (u) + M -1 (u)A(u) is an invertible matrix so that J = -c * M -1 (u) + M -1 (u)A(u) -1 ∇w. This yields that (25) d dt E(u(t)) = Ω n i=1 ∂ t u i w i (2) = - Ω n i=1 divJ i w i (7) 
= Ω J • ∇w.

Using [START_REF] Deimling | Nonlinear functional analysis[END_REF], the last term in the above equality can be rewritten of two different manners:

Ω J • ∇w = - Ω J • c * M -1 (u) + M -1 (u)A(u) J (26) = - Ω ∇w • c * M -1 (u) + M -1 (u)A(u) -1 ∇w. ( 27 
)
Define the matrix [START_REF] Eymard | Finite volume methods[END_REF] B(v

) := c * M -1 (v) + M -1 (v)A(v) , ∀v = (v i ) 1≤i≤n ∈ (R * + ) n . It follows from Lemma 1.2 that the two inequalities (29) B(v) ≥ c * M -1 (v) ≥ c * I, B(v) -1 ≥ 1 c * + 2c M (v), ∀v ∈ (0, 1] n ,
hold in the sense of symmetric matrices. Therefore, we obtain from ( 26)-( 27) that ( 30)

Ω J • ∇w ≥ - 1 2(c * + 2c) Ω ∇w • M (u)∇w - c 2 Ω |J| 2 .
The first term of the right-hand side can be rewritten by noticing that

∇w • M (u)∇w = n i=1 u i ∇ log(u i ) • ∇ log(u i ) = 4 n i=1 |∇ √ u i | 2 .
As a consequence, we finally deduce from ( 25) and ( 30) that

d dt E(u(t)) ≤ - 1 2 α Ω n i=1 |∇ √ u i | 2 - 1 2 c * Ω |J| 2 , with (31) α : 
= 4 c * + 2c > 0.
This entropy-entropy dissipation inequality is similar to [START_REF] Braukhoff | Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure[END_REF].

Remark 1.3. Since the entropy E is bounded on L ∞ (Q T ; A) -it takes its values in [-m Ω log(n), 0] -integrating (14) over t ∈ (0, T ) yields

Q T ∇ √ u 2 + Q T |J| 2 ≤ C.
Moreover, since u is uniformly bounded between 0 and 1, one has

Q T ∇ √ u 2 ≥ 1 4 Q T |∇u| 2 ,
so that one gets a control over the L 2 (0, T ; H 1 (Ω)) norm of u and on the L 2 (Q T ) norm of J. This motivates the weak formulation used in Definition 1.1.

1.4. Contributions and positionning of the paper. The goal of this paper is to build and analyze a numerical scheme preserving the properties discussed in the previous section, namely:

• the non-negativity of the concentrations;

• the conservation of mass;

• the preservation of the volume filling constraint;

• the entropy-entropy dissipation relation [START_REF] Braukhoff | Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure[END_REF]. The scheme proposed here relies on two-point flux approximation (TPFA) finite volumes [START_REF] Eymard | Finite volume methods[END_REF][START_REF] Eymard | TP or not TP, that is the question[END_REF] and builds on similar ideas as the one introduced in [START_REF] Cancès | A convergent entropy diminishing finite volume scheme for a cross-diffusion system[END_REF] for another family of cross-diffusion systems.

TPFA finite volumes is popular to approximate conservation laws. Unsurprisingly, schemes entering this family of methods have been proposed for the Stefan-Maxwell diffusion problem in [START_REF] Stockie | A finite volume method for multicomponent gas transport in a porous fuel cell electrode[END_REF][START_REF] Boudin | A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations[END_REF][START_REF] Peerenboom | Mass conservative finite volume discretization of the continuity equations in multi-component mixtures[END_REF]. Those schemes yield satisfactory numerical outputs but there is no theoretical guarantee of their convergence so far.

Besides, a finite element scheme is proposed and analysed in [START_REF] Jüngel | Convergence of an implicit Euler Galerkin scheme for Poisson-Maxwell-Stefan systems[END_REF] for the more complex case where the chemical species are ions inducing a self-consistent electrical potential. The analysis carried out in [START_REF] Jüngel | Convergence of an implicit Euler Galerkin scheme for Poisson-Maxwell-Stefan systems[END_REF] relies on the very strong assumption that integrals of non-polynomial functions can be computed exactly.

Convergence proofs for finite volume approximations of cross-diffusion systems have been proposed in [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF][START_REF] Ait | Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer[END_REF][START_REF] José | Convergence of a finite volume scheme for a system of interacting species with cross-diffusion[END_REF][START_REF] Cancès | Finite-volume scheme for a degenerate cross-diffusion model motivated from ion transport[END_REF][START_REF] Cancès | A convergent entropy diminishing finite volume scheme for a cross-diffusion system[END_REF][START_REF] Jüngel | A convergent structure-preserving finite-volume scheme for the Shigesada-Kawasaki-Teramoto population system[END_REF][START_REF] Daus | Convergence of a finite-volume scheme for a degeneratesingular cross-diffusion system for biofilms[END_REF][START_REF] Murakawa | A linear finite volume method for nonlinear cross-diffusion systems[END_REF][START_REF] Gerstenmayer | Comparison of a finite-element and finite-volume scheme for a degenerate cross-diffusion system for ion transport[END_REF][START_REF] Gaudeul | Entropy and convergence analysis for two finite volume schemes for a Nernst-Planck-Poisson system with ion volume constraints[END_REF]. Most of the above contributions rely on the entropy-stability of the schemes, which is exploited thanks to the so-called discrete entropy method [START_REF] Chainais-Hillairet | Entropy method and asymptotic behaviours of finite volume schemes[END_REF]. This approach is a transposition to the discrete setting of the boundedness-by-entropy method exposed in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF][START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]. The design of entropy stable numerical schemes for diffusion type equations has received an important attention in the last years. Let us mention the contributions [START_REF] Bessemoulin-Chatard | A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme[END_REF][START_REF] Bessemoulin-Chatard | A finite volume scheme for a Keller-Segel model with additional cross-diffusion[END_REF][START_REF] Bessemoulin-Chatard | Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit[END_REF][START_REF] Cancès | Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations[END_REF][START_REF] Cancès | Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure[END_REF][START_REF] Cancès | Energy stable numerical methods for porous media flow type problems[END_REF][START_REF] Kou | Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow[END_REF][START_REF] Sun | A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials[END_REF][START_REF] Almeida | Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations[END_REF][START_REF] Sun | An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems[END_REF][START_REF] Shen | A new class of efficient and robust energy stable schemes for gradient flows[END_REF][START_REF] Cancès | A numerical analysis focused comparison of several finite volume schemes for a unipolar degenerated drift-diffusion model[END_REF], this list being non-exhaustive. We mention in particular the recent work [START_REF] Huo | An energy stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system[END_REF] where the authors propose an energy stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system, but a convergence analysis of the scheme proposed therein seems out of reach because of the explicit in time treatment of the mobility matrix B.

Let us also mention that finite element methods are also used for the simulation of cross-diffusion systems. We refer the reader to [START_REF] Frittelli | Lumped finite elements for reaction-cross-diffusion systems on stationary surfaces[END_REF][START_REF] Barrett | Finite element approximation of a nonlinear cross-diffusion population model[END_REF][START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF] for more details. We would like to highlight the work [START_REF] Braukhoff | An entropy structure preserving space-time formulation for cross-diffusion systems: analysis and Galerkin discretization[END_REF] where the authors propose a space-time Galerkin method which preserves the entropy structure of cross-diffusion systems, including the Stefan-Maxwell system under consideration, as well as the contribution [START_REF] Van-Brunt | Augmented saddle-point formulation of the steady-state Stefan-Maxwell diffusion problem[END_REF] where steady states are computed thanks to finite elements. The coupling with compressible Stokes equation is addressed in [START_REF] Aznaran | Finite element methods for multicomponent convection-diffusion[END_REF].

The scheme is presented in Section 2. Our main results are gathered in Section 2.3. Preliminary estimates and existence of a solution to the discretized scheme are proved in Section 3. Convergence of the discretized solution to a weak solution of the continuous model is proved in Section 4. Finally, numerical tests illustrating the behaviour of the method are presented in Section 5.

2. The finite-volume scheme 2.1. Discretization of (0, T ) × Ω. As already mentioned, our scheme relies on TPFA finite volumes. As explained in [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF][START_REF] Eymard | TP or not TP, that is the question[END_REF][START_REF] Gärtner | Why do we need Voronoi cells and Delaunay meshes?[END_REF], this approach appears to be very efficient as soon as the continuous problem to be solved numerically is isotropic and one has the freedom to choose a suitable mesh fulfilling the so-called orthogonality condition [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh[END_REF][START_REF] Eymard | Finite volume methods[END_REF]. We recall here the definition of such a mesh. Definition 2.1. An admissible mesh of Ω is a triplet (T , E, (x K ) K∈T ) such that the following conditions are fulfilled.

(i) Each control volume (or cell) K ∈ T is non-empty, open, polyhedral and convex. We assume that

K ∩ L = ∅ if K, L ∈ T with K = L, while K∈T K = Ω. (ii) Each face σ ∈ E is closed and is contained in a hyperplane of R d , with positive (d -1)-dimensional Hausdorff (or Lebesgue) measure denoted by m σ = H d-1 (σ) > 0. We assume that H d-1 (σ ∩ σ ) = 0 for σ, σ ∈ E unless σ = σ .
For all K ∈ T , we assume that there exists a subset E K of E such that ∂K = σ∈E K σ. Moreover, we suppose that K∈T E K = E. Given two distinct control volumes K, L ∈ T , the intersection K ∩ L either reduces to a single face σ ∈ E denoted by K|L, or its (d -1)-dimensional Hausdorff measure is 0. (iii) The cell-centers (x K ) K∈T satisfy x K ∈ K, and are such that, if K, L ∈ T share a face K|L, then the vector x L -x K is orthogonal to K|L.

We denote by m K the d-dimensional Lebesgue measure of the control volume K. The set of the faces is partitioned into two subsets: the set E int of the interior faces defined by

E int = {σ ∈ E | σ = K|L for some K, L ∈ T },
and the set E ext = E \ E int of the exterior faces defined by

E ext = {σ ∈ E | σ ⊂ ∂Ω}.
For a given control volume K ∈ T , we also define

E K,int = E K ∩ E int (respectively E K,ext = E K ∩ E ext )
the set of its faces that belong to E int (respectively E ext ). For such a face σ ∈ E K,int , we may write σ = K|L, meaning that σ = K ∩ L, where L ∈ T .

Given σ = K|L ∈ E int , we let d σ = |x K -x L | and τ σ = mσ dσ . We also define d Kσ = dist(x K , σ) and τ Kσ = mσ d Kσ . Moreover, for all K ∈ T and all σ = K|L ∈ E K,int , we denote by ν Kσ = x L -x K dσ , the unitary normal to σ outward with respect to K. The half-diamond cell ∆ Kσ associated to K and σ is defined as the convex hull of x K and σ, and we define the diamond cells ∆ σ = ∆ Kσ ∪ ∆ Lσ for σ = K|L. Then it follows from the an elementary geometrical property that the (d-dimensional) Lebesgue measures of ∆ σ (resp. ∆ Kσ ) are given by ( 32)

m ∆σ = m σ d σ d , m ∆ Kσ = m σ d Kσ d ,
We finally introduce the size h T and the regularity ζ T (which is assumed to be positive) of a discretization (T , E, (x K ) K∈T ) of Ω by setting

h T = max K∈T diam(K) and ζ T = min K∈T min σ∈E K,int d(x K , σ) d σ .
Concerning the time discretization of (0, T ), we consider P T ∈ N * and an increasing infinite family of times 0 = t 0 < t 1 < • • • < t P T = T . We denote by ∆t p = t p -t p-1 for p ∈ {1, • • • , P T }, by ∆t = (∆t p ) 1≤p≤P T , and by h T = max 1≤p≤P T ∆t p . In what follows, we will use boldface notation for mesh-indexed families, typically for elements of

R T , R E , (R T ) n , (R E ) n , (R T ) P T , (R E ) P T or even (R T ) n×P T and
(R E ) n×P T . One naturally defines discrete L 2 scalar products on R T and R d×E by setting

u, v T = K∈T m K u K v K , u = (u K ) K∈T , v = (v K ) K∈T ∈ R T and F , G E = σ∈Eint m ∆σ F Kσ • G Kσ , F = (F Kσ ) σ∈E , G = (G Kσ ) σ∈E ∈ R d×E .
Remark that the above definition of •, • E does not depend on the choice of the element K ∈ T such that σ ∈ E K,int for internal edges.

2.2. Numerical scheme. The initial data u 0 ∈ L ∞ (Ω; A) is discretized into

u 0 = u 0 i 1≤i≤n ∈ (R T ) n = u 0 i,K K∈T ,1≤i≤n , by setting (33) u 0 i,K = 1 m K K u 0 i (x) dx, ∀K ∈ T , 1 ≤ i ≤ n. Assume that u p-1 = u p-1 i,K K∈T ,1≤i≤n
is given for some p ≥ 1, then we have to define how to compute the discrete volume fractions

u p = u p i,K K∈T ,1≤i≤n
and the discrete fluxes

J p = J p i,Kσ σ∈E,1≤i≤n
.

First, we introduce some notation. Given any discrete scalar field v = (v K ) K∈T ∈ R T , we define for all cell K ∈ T and interface σ ∈ E K the mirror value v Kσ of v K across σ by setting:

v Kσ = v L if σ = K|L ∈ E int , v K if σ ∈ E ext .
We also define the oriented and absolute jumps of v across any edge by

D Kσ v = v Kσ -v K , and D σ v = |D Kσ v|, ∀K ∈ T , ∀σ ∈ E K .
Note that in the above definition, for all σ ∈ E, the definition of D σ v does not depend on the choice of the element K ∈ T such that σ ∈ E K .

For all 1 ≤ i ≤ n, we also introduce some edge values u p i,σ of the volume fraction u i for all σ ∈ E. For any K ∈ T such that σ ∈ E K , the definition of u p i,σ makes use of the values u p i,K and u p i,Kσ but is independent of the choice of K. As in [START_REF] Cancès | A convergent entropy diminishing finite volume scheme for a cross-diffusion system[END_REF], the edge volume fraction u p i,σ is defined through a logarithmic mean as follows (34a)

u p i,σ =      0 if min(u p i,K , u p i,Kσ ) ≤ 0, u p i,K if 0 ≤ u p i,K = u p i,Kσ , u p i,K -u p i,Kσ log(u p i,K )-log(u p i,Kσ )
otherwise.

We also denote by u p σ := u p i,σ 1≤i≤n . This choice for the edge concentration is crucial for the preservation at the discrete level of a discrete entropy-entropy dissipation inequality similar to [START_REF] Braukhoff | Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure[END_REF] on the continuous level. Setting u p i,σ = 0 when u p i,K or u p i,Kσ take negative values allows to extend in a continuous way the logarithmic mean to the whole R 2 . Moreover, this seemingly non-consistent choice allows to establish the positivity of the volume fractions by a simple contradiction argument, cf. Lemma 3.1 below. Therefore, this situation never occurs in practice, so that u p i,σ is a genuine logarithmic mean. The conservation laws are discretized in a conservative way with a time discretization relying on the backward Euler scheme:

(34b) m K u p i,K -u p-1 i,K ∆t p + σ∈E K m σ J p i,Kσ = 0, ∀K ∈ T , ∀1 ≤ i ≤ n.
The relation between the fluxes and the variations of the volume fractions across the edges relies on formula [START_REF] José | Convergence of a finite volume scheme for a system of interacting species with cross-diffusion[END_REF] rather that on [START_REF] Aznaran | Finite element methods for multicomponent convection-diffusion[END_REF]. This trick takes its inspiration in [START_REF] Cancès | A convergent entropy diminishing finite volume scheme for a cross-diffusion system[END_REF], and appears to be crucial in what follows for the derivation of the discrete counterpart of the entropy-entropy dissipation estimate [START_REF] Braukhoff | Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure[END_REF]. More precisely, the discrete fluxes J p Kσ := J p i,Kσ 1≤i≤n are solution to the following set of equations:

for all K ∈ T and σ ∈ E K,int ,

1 d σ D Kσ u p i + c * J p i,Kσ + 1≤j≤n A ij (u p σ )J p j,Kσ = 0, ∀1 ≤ i ≤ n,
which rewrites in a more compact form as

(34c) 1 d σ D Kσ u p + c * J p Kσ + A(u p σ )J p Kσ = 0.
The discrete counterpart to the no-flux boundary condition ( 7) is naturally

(34d) J p Kσ = 0, ∀σ ∈ E K,ext , K ∈ T , 1 ≤ p ≤ P T .
Notice that Formula (34c) yields conservative fluxes, i.e., [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh[END_REF] J p Kσ + J p Lσ = 0, ∀σ = K|L ∈ E int , 1 ≤ p ≤ P T . Remark 2.2. We stress on the fact here that we do not impose the constraint J p Kσ ∈ V 0 for all K ∈ T , σ ∈ E K , and 1 ≤ p ≤ P T . Indeed, (34c) can be rewritten equivalently as

1 d σ D Kσ u p + c * I + A(u p σ ) J p Kσ = 0,
and the matrix c * I + A(u p σ ) differs in general from A(u p σ ) since u p σ does not belong to V 1 in general. As a consequence, Ker c * I + A(u p σ ) may not be of dimension 1. Actually, we will see in Lemma 3.1 and Lemma 3.2 that for any u p-1 in

A T = v ∈ (R T + ) n (v i,K ) 1≤i≤n ∈ A for all K ∈ T ,
then any solution u p to the scheme presented above also belongs to A T and that there exists a unique set of fluxes (J p Kσ ) K∈T ,σ∈E K satisfying (34c)-(34d), and that J p Kσ necessarily belongs to V 0 . 2.3. Main results and organisation. We gather the main results of our paper in this section. Our first theorem concerns the existence of a discrete solution for a given mesh, and the preservation of the structural properties listed in Section 1.2.

In order to obtain a discrete counterpart of the entropy-entropy dissipation inequality [START_REF] Braukhoff | Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure[END_REF], we need to introduce the discrete entropy functional

E T : (R T + ) n → R, which is defined by (36) E T (v) = n i=1 K∈T m K v i,K log(v i,K ), ∀v = (v i ) 1≤i≤n ∈ (R T + ) n .
Note that the functional E T is uniformly bounded on the set A T . More precisely, there holds

(37) -m Ω log(n) ≤ E T (v) ≤ 0, ∀v ∈ A T .
Denote by 1 T = (1, . . . , 1) ∈ R T , then the following theorem holds:

Theorem 2.3. Let (T , E, (x K ) K∈T ) be an admissible mesh and let u 0 be defined by [START_REF] Giovangigli | Multicomponent flow modeling[END_REF] from an initial condition u 0 ∈ L ∞ (Ω; A) satisfying the nondegeneracy assumption [START_REF] Bessemoulin-Chatard | A finite volume scheme for a Keller-Segel model with additional cross-diffusion[END_REF]. Then, for all 1 ≤ p ≤ P T , the nonlinear system of equations ( 34) has (at least) a (strictly) positive solution u p ∈ A T . This solution u p satisfies u p , 1 T T = M and the corresponding fluxes J p = (J p Kσ ) σ∈E are uniquely determined by (34c)-(34d) and belong to (V 0 ) E , i.e. n i=1 J p i,Kσ = 0 for all σ ∈ E. Moreover, the following entropy-entropy dissipation estimate holds:

(38) E T (u p )+∆t p σ=K|L∈Eint c * 2 m σ d σ |J p Kσ | 2 + α 2 τ σ D Kσ √ u p 2 ≤ E T (u p-1 ).
The proof of Theorem 2.3 will be the purpose of Section 3.

From an iterated discrete solution (u, J ) = (u p , J p ) 1≤p≤P T to the scheme (34), we define for all 1 ≤ i ≤ n, the piecewise constant approximate volume fractions u i,T ,∆t : Q T → (0, 1) defined almost everywhere by [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF] u i,T ,∆t (t,

x) = u n i,K if (t, x) ∈ (t p-1 , t p ] × K.
Since u p ∈ A T , then u T ,∆t = (u i,T ,∆t ) 1≤i≤n belongs to L ∞ (Q T ; A). We also define approximate fluxes J E,∆t = (J i,E,∆t ) 1≤i≤n : Q T → (V 0 ) d from the discrete fluxes J p by setting ( 40)

J E,∆t (t, x) = d J p Kσ ν Kσ if (t, x) ∈ (t p-1 , t p ] × ∆ σ .
We are now in position to present our second main result, which concerns the convergence of the scheme as the discretisation parameters tend to 0. In what follows, let (T m , E m , (x K ) K∈Tm ) m≥1 and (∆t m ) m≥1 be sequences of admissible discretisations of Ω and (0, T ) respectively. We assume that [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF] h Tm -→ m→∞ 0, h Tm -→ m→∞ 0, while inf

m≥1 ζ Tm = ζ * > 0.
Then, the following theorem holds:

Theorem 2.4. Let (T m , E m , (x K ) K∈Tm ) m≥1 and (∆t m ) m≥1 be sequences of admissible discretisations of Ω and (0, T ) respectively fulfilling condition [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF]. Let (u m , J m ) m = (u p , J p ) 1≤p≤P T ,m m≥1 be a corresponding sequence of discrete solutions to [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF], from which a sequence of approximate solutions (u Tm,∆tm , J Em,∆tm ) m≥1 is reconstructed thanks to (39)- [START_REF] Jüngel | Convergence of an implicit Euler Galerkin scheme for Poisson-Maxwell-Stefan systems[END_REF]. Then there exists a weak solution (u, J) to (2)-( 5)-( 6) in the sense of Definition 1.1 such that, up to a upsequence, u Tm,∆tm -→ m→+∞ u a.e. in Q T , and J Em,∆tm m→+∞ J weakly in L 2 ((0, T ) × Ω) d×n .

The proof of Theorem 2.4 is the purpose of Section 4. It is based on compactness arguments that are deduced from the a priori estimates established in Theorem 2.3.

Our third and last main result is about the long time behavior of the scheme. Since the finite time horizon T is arbitrary in the above statement, we can consider the situation when T = +∞ and study the long time behavior of the scheme. At the continuous level, it is shown in [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF] that

u(t, •) -u ∞ L 1 (Ω) n ≤ Ce -λt , ∀ t > 0,
where u ∞ = (u ∞ i ) 1≤i≤n is the constant in space state with same mass as u 0 , that is u ∞ i = M i /m Ω , M i being defined by [START_REF] Bessemoulin-Chatard | A finite volume scheme for a Keller-Segel model with additional cross-diffusion[END_REF], where C only depends on Ω and of the number of species n, and where λ only depends on Ω and on α defined by [START_REF] Gaudeul | Entropy and convergence analysis for two finite volume schemes for a Nernst-Planck-Poisson system with ion volume constraints[END_REF]. This result has a the following discrete counterpart. Theorem 2.5. There exists C only depending on Ω and of the number of species n, and λ only depending on Ω and on α such that

(42) u T ,∆t (t, •) -u ∞ L 1 (Ω) n ≤ Ce -λt , ∀ t > 0,
The proof of Theorem 2.5 is not difficult once all the material for the proofs of Theorems 2.3 and 2.4 has been introduced. We provide in Section 5.2 some numerical evidence for Theorem 2.5 as well as a sketch of its proof.

Numerical analysis on a fixed grid

This section is devoted to the proof of Theorem 2.3.

3.1.

A priori estimates. The first lemma shows the non-negativity and the mass conservation of the solution to [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF], together with the uniqueness of associated fluxes.

Lemma 3.1. Given u p-1 ∈ A T satisfying (43) 1 T , u p-1 T = M ∈ R * + n ,
then any solution u p to (34) satisfies 1 T , u p T = M and is positive in the sense that u p i,K > 0 for all K ∈ T and all 1 ≤ i ≤ n. Besides, for any solution u p to (34), there exists a unique set of fluxes J p satisfying (34c)-(34d).

Proof. Let u p be a solution to [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF] and let 1 ≤ i ≤ n. Let us first prove that the total volume of each species is conserved, so that 1 T , u p T = M . Summing equation (34b) over K ∈ T gives

1 T , u p T -1 T , u p-1 T = -∆t p σ=K|L∈Eint m σ (J p Kσ + J p Lσ ) -∆t p σ∈Eext m σ J p Kσ .
Then it follows directly from the local conservativity of the scheme [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh[END_REF] and from the discrete no-flux boundary condition (34d) that

1 T , u p T = 1 T , u p-1 T = M.
Let us now prove that u p is positive. Let 1 ≤ i ≤ n. We consider a cell K ∈ T where u p i reaches its minimum, i.e. such that u p i,K ≤ u p i,L for all L ∈ T . Assume for contradiction that u p i,K ≤ 0. Let us recall again equation (34b), which implies that

(44) m K u p i,K -u p-1 i,K ∆t p = - σ∈E K m σ J p i,Kσ .
On the one hand, the term on the left-hand side is non-positive since u p-1 i,K ≥ 0 ≥ u p i,K . On the other hand, the specific choice (34a) for the edge volume fractions implies that u p i,σ = 0 for all σ ∈ E K . Therefore, A ij (u p σ ) = 0 for all 1 ≤ j = i ≤ n. As a consequence, relation (34c) reduces to

1 d σ D Kσ u p i +   c * + 1≤j =i≤n c ij u p j,σ   J p i,Kσ = 0.
Since D Kσ u p i ≥ 0 and u p j,σ ≥ 0, c ij ≥ 0 for all 1 ≤ j ≤ n, we obtain that J p i,Kσ ≤ 0 for all σ ∈ E K . Using [START_REF] Leray | Topologie et équations fonctionnelles[END_REF], this yields that J p i,Kσ = τ σ D Kσ u p i = 0 for all σ ∈ E K .

As a consequence, u p i,K = u p i,L for all L ∈ T such that σ = K|L ∈ E K . Iterating this argument and since Ω is connected, we thus obtain that u p i,L = u p i,K ≤ 0 for all L ∈ T . This implies that u p i , 1 T T ≤ 0 which contradicts the property 1 T , u p i T = M i > 0 we just established. Thus, u p is positive. As a consequence, for all σ ∈ E int and all 1 ≤ i ≤ n, u p i,σ > 0. The fact that there exists a unique J p associated to u p via (34c)-(34d) is then a consequence of Lemma 1.2. Indeed, for all K ∈ T and all σ ∈ E K,int , noticing that D Kσ u p = M (u p σ )D Kσ log(u p ) due to the specific choice (34a) for u p σ , we can rewrite equivalently (34c) as

1 d σ M (u p σ )D Kσ log(u p ) + c * I + A(u p σ ) J p Kσ = 0.
The positivity of u p σ implies the inversibility of matrix M (u p σ ). As a consequence, it holds that ( 45)

1 d σ D Kσ log(u p ) + c * M (u p σ ) -1 + M (u p σ ) -1 A(u p σ ) J p Kσ = 0.
Moreover, thanks to Lemma 1.2, the matrix

B(u p σ ) = c * M (u p σ ) -1 + M (u p σ ) -1 A(u p σ
) is symmetric positive definite, and the only solution J p Kσ to ( 45) is given by ( 46)

J p Kσ = - 1 d σ B(u p σ ) -1 D Kσ log(u p ).
Hence the desired result.

The next lemma shows that the total discrete flux vanishes across all edges and that the volume filling constraint is automatically satisfied without being enforced. Lemma 3.2. Given u p-1 ∈ A T satisfying (43), any solution (u p , J p ) to (34) belongs to A T × (V 0 ) E .

Proof. Since u p-1 ∈ A T satisfies (43), u p-1 is nonnegative, and using Lemma 3.1, any corresponding solution u p to (34) is then positive.

Let us define w p-1 = (w p-1 K ) K∈T := 1, u p-1 and analogously w p = 1, u p , and let us denote by G p σK := 1, J p Kσ for all K ∈ T and σ ∈ E K . Summing equations (34b

) for i = 1, • • • , n, we obtain that m K w p K -w p-1 K ∆t p = - σ∈E K m σ G p Kσ .
In addition, summing (34c) over i provides that for all σ = K|L ∈ E int ,

0 = 1 d σ D Kσ w p + c * G p Kσ + 1, A(u p σ )J p Kσ (19) = 1 d σ D Kσ w p + c * G p Kσ .
Thus, w is solution to the classical backward Euler TPFA scheme for the heat equation with diffusion coefficient 1 c * . This scheme is well-posed and w p = w p-1 = 1 T is its unique solution, which implies that u ∈ A T . Moreover, the fluxes G p Kσ are all equal to zero, so that J Kσ ∈ (V 0 ) E . Remark 3.3. A direct consequence of Lemma 3.1 is that the edge volume fractions originally defined by (34a) are genuine logarithmic means of the surrounding cell volume fractions. Since the logarithmic mean is smaller than the arithmetic one, one readily checks that

(47) 1, u p σ ≤ 1, ∀σ ∈ E int , ∀p ≥ 1.
The last statement of this section is devoted to the entropy entropy-dissipation estimate [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF].

Lemma 3.4. Given u p-1 ∈ A T , any solution (u p , J p ) ∈ A T × (V 0 ) E to (34) satisfies (48) E T (u p ) + ∆t p σ=K|L∈Eint c * 2 m σ d σ |J p Kσ | 2 + α 2 τ σ D Kσ √ u p 2 ≤ E T (u p-1 ).
Proof. Multiplying equation (34b) by ∆t p log(u p i,K ) (which makes sense since u p is positive owing to Lemma 3.1), and summing over all the cells and species leads to ( 49)

T 1 + T 2 = 0,
where we have set

T 1 = K∈T n i=1 u p i,K log(u p i,K ) -u p-1 i,K log(u p i,K ) m K , T 2 =∆t p n i=1 K∈T σ∈E K m σ J p i,Kσ log(u p i,K ).
On the one hand, using the convexity of the function R + x → x log x, it holds that

u p i,K -u p-1 i,K + u p i,K log(u p i,K ) -u p-1 i,K log(u p i,K ) ≥ u p i,K log(u p i,K ) -u p-1 i,K log(u p-1 i,K ), which implies, together with Lemma 3.2, that (50) 
T 1 ≥ E T (u p ) -E T (u p-1 ).

On the other hand, the conservativity of the fluxes [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh[END_REF] and the discrete no-flux boundary condition (34d) allow to reorganise the term T 2 as

T 2 = -∆t p σ=K|L∈Eint m σ J p Kσ , D Kσ log(u p ) .
Bearing in mind the expression [START_REF] Murakawa | A linear finite volume method for nonlinear cross-diffusion systems[END_REF] of the fluxes,

-J p Kσ , D Kσ log(u p ) = d σ 2 J p Kσ , B(u p σ )J p Kσ + 1 2d σ D Kσ log(u p ), B(u p σ ) -1 D Kσ log(u p ) .
Then estimates (29) provide that

J p Kσ , B(u p σ )J p Kσ ≥ c * |J Kσ | 2
and, recalling the definition (31) of α,

D Kσ log(u p ), B(u p σ ) -1 D Kσ log(u p ) ≥ α 4 D Kσ log(u p ), M (u p σ )D Kσ log(u p ) .
Thanks to the particular choice (34a) for u p σ , the right-hand side rewrites

D Kσ log(u p ), M (u p σ )D Kσ log(u p ) = D Kσ log(u p ), D Kσ u p ≥ 4 D Kσ √ u p 2 ,
the last inequality being a consequence of the elementary inequality

(a -b)(log(a) -log(b)) ≥ 4( √ a - √ b) 2
holding for any positive a, b. Summing up, we have

(51) T 2 ≥ ∆t p σ=K|L∈Eint c * 2 m σ d σ |J p Kσ | 2 + α 2 τ σ D Kσ √ u p 2 .
To conclude the proof, it only remains to incorporate ( 50) and ( 51) in (49).

3.2.

Existence of discrete solutions. The purpose of this section is to prove the existence of a solution to [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF].

Proposition 3.5. Given u p-1 ∈ A T satisfying (43), then there exists at least one solution (u p , J p ) ∈ A T × (V 0 ) E to the scheme [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF].

Proof. The proof relies on a topological degree argument [START_REF] Leray | Topologie et équations fonctionnelles[END_REF][START_REF] Deimling | Nonlinear functional analysis[END_REF]. The idea is to transform continuously our complex nonlinear system into a linear system while guaranteeing that enough a priori estimates controlling the solution remain valid all along the homotopy. We sketch the main ideas of the proof, making the homotopy explicit.

For λ ∈ [0, 1], we look for u (λ) , J (λ) ∈ R n×T × R n×E solution to the algebraic system [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF] where the matrix A(u p σ ) is replaced by λA(u

σ ). Our system [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF] corresponds to the case λ = 1, whereas the case λ = 0 corresponds to the usual TPFA finite volume scheme for n decoupled heat equations all with the same diffusion coefficient 1 c * . Mimicking the calculations presented in Section 3.1, one shows that whatever λ ∈ [0, 1], any corresponding solution u (λ) , J (λ) lies in A T × (V 0 ) E , and u (λ) is positive. Moreover, the entropy -entropy dissipation estimate and the uniform bound [START_REF] Huo | Weak-strong uniqueness for Maxwell-Stefan systems[END_REF] on the entropy ensure that

J (λ) 2 E ≤
2m Ω log n c * ∆t p =: K.

where

J (λ) 2 E = σ=K|L∈Eint m σ d σ |J (λ) Kσ | 2 .
Fixing η > 0, we define the relatively compact open sets

A T η = u ∈ (R T ) n inf v∈A T u -v < η
and

(V 0 ) E η = J ∈ (R E ) n J 2 E < K 1/2 + η and inf F ∈(V0) E J -F < η .
The a priori estimates ensure that no solution u (λ) , J (λ) of the modified scheme can cross the boundary of the open set A T η × (V 0 ) E η . The topological degree associated to the modified scheme and A T η × (V 0 ) E η is constant with respect to λ, and takes the value +1 for λ = 0 since the system is linear and invertible with positive determinant. So it is also equal to 1 for λ = 1, ensuring the existence of a solution to the nonlinear problem [START_REF] Gurusamy | Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion[END_REF].

The proof of Theorem 2.3 is now complete. whence the existence of some

G ∈ L 2 (Q T ) such that (61) ∇ Em,∆tm u m -→ m→+∞ G weakly in L 2 (Q T ) n×d .
On the other hand, u Tm,∆tm belongs to the bounded subset L ∞ (Q T ; A) of L ∞ (Q T ) n for all m ≥ 1. Therefore, up to a subsequence, u Tm,∆tm converges in the L ∞ (Q T ) nweak star sense towards some u, which takes its values in A since both the positivity and the sum to 1 property are stable when passing to the limit in this topology.

To conclude this proof, it remains to check that the convergence of u Tm,∆tm towards u holds point-wise, and to identify F and G as ∇ √ u and ∇u respectively. These properties are provided all at once by the nonlinear discrete Aubin-Simon lemma [START_REF] Andreianov | A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs[END_REF]Theorem 3.9]. As already established in [START_REF] Andreianov | A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs[END_REF], this theorem applies naturally in the TPFA finite volume context. The only point to be checked is a discrete L 2 (0, T ; H -1 (Ω)) estimate on the time increments of u Tm,∆tm . More precisely, for

φ ∈ C ∞ c ((0, T ) × Ω; R n ), one defines φ = φ p i,K ∈ R n×P T ,m ×Tm by φ p i,K = 1 ∆t p m K tp tp-1 K φ i (t, x)dxdt.
It follows from (34b)-(34d)-( 35) that

P T ,m p=1 K∈Tm m K (u p K -u p-1 K ), φ p K = P T ,m p=1 ∆t p σ∈Eint,m m σ J p Kσ , D Kσ φ p .
Applying Cauchy-Schwarz inequality leads to

P T ,m p=1 K∈Tm m K (u p K -u p-1 K ), φ p K ≤   P T ,m p=1 ∆t p σ∈Eint,m m σ d σ |J p Kσ | 2   1/2   P T ,m p=1 ∆t p σ∈Eint,m τ σ |D σ φ p | 2   1/2
.

The discrete L 2 (Q T ) d estimate on the fluxes (58) shows that the first term in the right-hand side is bounded, whereas the second term is the discrete L 2 (0, T ; H 1 (Ω)) semi-norm of φ. A straightforward generalisation of [START_REF] Eymard | Finite volume methods[END_REF]Lemma 9.4] shows that

P T ,m p=1 ∆t p σ∈Eint,m τ σ |D σ φ p | 2 ≤ C ∇φ 2 L 2 (Q T ) d
for some C only depending on the regularity factor ζ * . Therefore,

P T ,m p=1 K∈Tm m K (u p K -u p-1 K ), φ p K ≤ C ∇φ L 2 (Q T ) d ≤ C ∇φ L ∞ (Q T ) d ,
which is exactly the condition required to apply [4, Theorem 3.9], which provides ( 54)-( 55)-(56) all at once, concluding the proof of Proposition 4.1.

For all m ≥ 1, we introduce the diamond cell based reconstruction u Em,∆tm of the volume fractions defined by

u Em,∆tm (t, x) = u p σ if (t, x) ∈ (t p-1 , t p ] × ∆ σ , σ ∈ E m , 1 ≤ p ≤ P T,m ,
where the u p σ are given by (34a). The following lemma shows that both reconstructions u Em,∆tm and u Tm,∆tm share the same limit u. The proof is omitted there since it is similar to the one of [START_REF] Cancès | A convergent entropy diminishing finite volume scheme for a cross-diffusion system[END_REF]Lemma 4.4]. Lemma 4.2. Let u be as in Proposition 4.1 then, up to a subsequence, u Em,∆tm converges in L r (Q T ), 1 ≤ r < +∞ towards u as m tends to +∞.

4.2.

Convergence towards a weak solution. Our last statement to conclude the proof of Theorem 2.4 consists in identifying the limit values (u, J) of the approximate solutions as weak solutions to the Stefan-Maxwell cross-diffusion system. Proposition 4.1. Let (u, J) be as in Proposition 4.1 then (u, J) is a weak solution to (2)-( 5)-( 6) in the sense of Definition 1.1.

Proof. One has already established in Proposition 4.1 that the limit values (u, J) lie in the right functional spaces. It only remains to check that (2), ( 7) and ( 21) hold in the distributional sense.

Equation (34c) implies that

(62) ∇ Em,∆tm u m + c * I + A(u Em,∆tm ) J Em,∆tm = 0, ∀m ≥ 1. Since v → A(v) is continuous, it follows from Lemma 4.2 that A(u Em,∆tm ) tends to A(u) in L 2 (Q T ) n×n .
Then thanks to the convergence properties (56)-( 57), one can pass to the weak limit in (62) to recover that [START_REF] José | Convergence of a finite volume scheme for a system of interacting species with cross-diffusion[END_REF] 

holds in L 1 (Q T ) n×d , thus also in L 2 (Q T ) n×d .
Concerning equations ( 2) and ( 7), we establish them in the distributional sense [START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF] for some 1 ≤ i ≤ N and summing over K ∈ T m and 1 ≤ p ≤ P T,m gives after reorganisation that (63)

. Let φ ∈ C ∞ c ([0, T ) × Ω), then for m ≥ 1, define φ m = (φ p K ) K∈Tm,1≤p≤P
Q T u i,Tm,∆tm ∂ t φ + Ω u 0 i φ(0, •) + Q T J i,Em,∆tm • ∇φ = R 1,m (φ) + R 2,m (φ) + R 3,m (φ),
where we have set

R 1,m (φ) = P T ,m p=1 K∈Tm m K u p i,K φ p K -φ p-1 K - 1 m K tp tp-1 K ∂ t φ , R 2,m (φ) = K∈Tm m K u 0 i,K φ 0 K - 1 m K K φ(0, •) , R 3,m (φ) = P T ,m p=1 ∆t p σ∈Em m σ d σ J p i,Kσ 1 d σ D Kσ φ p-1 m - 1 m ∆σ ∆t p tp tp-1 ∇φ • ν Kσ .
It follows from the regularity of φ that

φ p K -φ p-1 K - 1 m K tp tp-1 K ∂ t φ ≤ C∆t p (h Tm + h Tm ), so that, using that 0 ≤ u p i,K ≤ 1, we obtain that (64) |R 1,m (φ)| ≤ C(h Tm + h Tm ) -→ m→+∞ 0.
Similarly, one shows that

(65) |R 2,m (φ)| ≤ Ch Tm -→ m→+∞ 0.
Finally, the orthogonality condition on the mesh, namely point (iii) of Definition (2.1), ensures that

1 d σ D Kσ φ p-1 m - 1 m ∆σ ∆t p tp tp-1 ∇φ • ν Kσ ≤ C(h Tm + h Tm ). Therefore, |R 3,m (φ)| ≤ C(h Tm + h Tm ) J i,Em,∆tm L 1 (Q T ) d -→ m→+∞ 0 since J i,Em,∆tm L 1 (Q T ) d can be controlled thanks to the Cauchy-Schwarz inequality by T 1/2 m 1/2 Ω J i,Em,∆tm L 2 (Q T ) d
which is bounded thanks to (59). Then in view of the convergence in L 1 (Q T ) of u i,Tm,∆tm towards u i and of the weak convergence in L 2 (Q T ) d of J i,Em,∆tm towards J i , one can pass to the limit in (63) to recover that

Q T u i ∂ t φ + Ω u 0 i φ(0, •) + Q T J i • ∇φ = 0.
The weak formulation ( 10) is then recovered by summing over i.

Numerical results

The aim of this section is to collect some numerical results obtained with the numerical scheme presented in the preceding sections. The numerical scheme has been implemented using Julia and the different codes used to produce the numerical tests presented below can be found at [START_REF] Ehrlacher | Finite volume scheme for the Stefan-Maxwell model[END_REF] (10.5281/zenodo.3934286) . The nonlinear system is solved thanks to a modified Newton algorithm with stopping criterion u p,k+1 -u p,k ∞ < 10 -12 where the superscript k refers to the iteration of the Newton method. The obtained solution, denoted by u p-2/3 is then projected onto A by setting:

(66) u p-1/3 = max(u p-2/3 , 10 -12 ) then u p i,K = u p-1/3 i,K n i=1 u p-1/3 i,K . 5.1.
Convergence under grid refinement. We first present some numerical results obtained on a one-dimensional test case, in order to illustrate the rate of convergence of the method with respect to the spatial discretization parameter. Here, Ω = (0, 1), and we consider a system composed of three different species (n = 3). Two different initial conditions u 0 are considered:

• a smooth initial profile defined for x ∈ (0, 1) by (67)

u 0 1 (x) = u 0 2 (x) = 1 4 + 1 4 cos(πx);
• a non-smooth initial profile defined for x ∈ (0, 1) by

(68) u 0 1 (x) = 1 [3/8,5/8] (x), u 0 2 (x) = 1 (1/8,3/8) (x) + 1 (5/8,7/8) (x),
where 1 E denotes the characteristic function of the set E ⊂ [0, 1], and where u 0 3 is deduced from u 0 1 and u 0 2 by the relation u 0 3 = 1 -u 0 1 -u 0 2 . The time step is chosen to be constant and equal to ∆t = 10 -5 and final time as T = 0.5. The spatial mesh is chosen to be a uniform grid of the interval (0, 1) containing N subintervals.

The values of the cross-diffusion coefficients are chosen to be We numerically observe that the error decays like O 1 N 2 , in other words, showing that the scheme is second order accurate in space. 5.2. Two-dimensional test case. We present here a two-dimensional test case. The number of species is kept to be n = 3 and the values of the cross-diffusion coefficients are now given by The spatial domain Ω = (0, 1) 2 is discretized using a cartesian uniform grid containing 70 cells in each direction. Time step is chosen to be ∆t = 10 -5 . Figure 2 (respectively Figure 3 and Figure 4) shows the values of the concentration profiles u 1 , u 2 , u 3 at time t = 0 (respectively t 1 = 8.5 10 -5 and t 2 = 1 10 -3 ). Since the initial concentration profiles vanish on some parts of the domain, the projection step (66) plays an important role. A bare Newton-Raphson algorithm would produce undershoots of magnitude 0.03 for the first time step ∆t 1 = 5.10 -6 .

Since the coefficients c 12 and c 13 are much smaller than c 23 , the initial interfaces between the different species are easily diffused for early times. Recall that c ij is an inverse diffusion coefficient. On Figure 4, one clearly sees that species 2 and 3 have difficulties to interdiffuse due to the high value of c 23 , so that the species 2 remains essentially confined in a region where u 3 is small.

Our last figure is there to highlight both the decay of the discrete entropy and the exponential convergence towards equilibrium of the approximate solution. The exponential convergence in the continuous case was established in [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF] thanks to a Logarithmic Sobolev inequality. A discrete counterpart of this inequality has been proved in [START_REF] Bessemoulin-Chatard | A finite volume scheme for a Keller-Segel model with additional cross-diffusion[END_REF], allowing to show the exponential convergence of the approximate solution towards the constant in space equilibrium following the lines of [START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF]. We omit the proof here and rather provide a numerical evidence.

Define u ∞ := (u ∞ i,K ) i,K ∈ (R T ) n by 

u ∞ i,K = 1 m Ω M i , ∀1 ≤ i ≤ n, ∀K ∈ T ,

c 12 =

 12 c 21 = 0.2, c 13 = c 31 = 1.0, c 23 = c 32 = 0.1, c * = 0.1.

Figure 1

 1 Figure 1 illustrates the evolution of the L 1 in time and space error of the approximate discrete solution as a function of N (which is computed in comparison with an approximate solution computed on a very fine grid with N ref = 10 4 cells).

Figure 1 .

 1 Figure 1. Evolution of the L 1 space time error of the approximate solution as a function of the spatial discretization parameter.

  (69) c 12 = c 21 = 0.1, c 13 = c 31 = 0.2, c 23 = c 32 = 2, c * = 0.1.

Figure 2 .

 2 Figure 2. Initial profiles of the volume fractions.

Figure 3 .

 3 Figure 3. Profiles of the volume fractions at t 1 = 8.5 10 -5 .

Figure 4 .=

 4 Figure 4. Profiles of the volume fractions at t 2 = 1 10 -3 .

Figure 5 Figure 5 .

 55 Figure 5. Evolution of the relative entropy H T (u p |u ∞ ) as a function of time.

Acknowledgements. The authors acknowledge support from project COMODO (ANR-19-CE46-0002). CC also acknowledges support from Labex CEMPI (ANR-11-LABX-0007-01).

Proof of Theorem 2.4

We consider here a sequence (T m , E m , (x K ) K∈Tm ) m≥1 of admissible space discretizations with h Tm going to 0 as m tends to +∞, while the regularity ζ Tm remains uniformly bounded from below by a positive constant ζ * . We also consider a sequence (∆t m ) m≥1 = (∆t p,m ) 1≤p≤P T ,m m≥1 of admissible time discretizations such that h T,m goes to 0 as m goes to infinity.

From the discrete solutions (u m , J m ), m ≥ 1, the existence of which being guaranteed by Theorem 2.3, we reconstruct the piecewise constant functions u Tm,∆tm ∈ L ∞ (Q T ; A) and J Em,∆tm ∈ L 2 (Q T ; V 0 ) d thanks to formulas [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF] and [START_REF] Jüngel | Convergence of an implicit Euler Galerkin scheme for Poisson-Maxwell-Stefan systems[END_REF]. In the convergence analysis, we also need the weakly consistent piecewise constant gradient reconstruction operators ∇ Em and ∇ Em,∆tm defined for m ≥ 1 and v ∈ R Tm (52)

4.1. Compactness on approximate reconstructions. The next proposition is the main result of this section.

such that, up to a subsequence, the following convergence properties hold:

Proof. Summing (38) over p ∈ {1, . . . , P T,m } and using the bound ( 37) on E T provides (58)

Recalling the elementary geometrical relation dm ∆σ = m σ d σ and the definitions (40) of J Em,∆tm and ( 52)-( 53), one obtains that

for some C not depending on m. As a straightforward consequence, there exists J, F ∈ L 2 (Q T ) n×d such that (57) holds, as well as

The fact that J ∈ L 2 (Q T ; V 0 ) d results from the stability of linear space V 0 for the weak convergence. Moreover, since 0 ≤ u n K ≤ 1, then D σ u p m ≤ 2D σ √ u p m for all σ ∈ E int,m and all 1 ≤ p ≤ P T,m . Therefore, we deduce from (59) that