Benchmark for Kitchen20, a Daily Life Dataset for Audio-based Human Action Recognition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Benchmark for Kitchen20, a Daily Life Dataset for Audio-based Human Action Recognition

Résumé

This paper introduces a new raw-audio, environmental, kitchen-related, non-vocal dataset to fill what we consider as a gap in the context of audio datasets. Our so-called Kitchen20 dataset is compared to other datasets such as ESC-50 and shown that both datasets can be merged together in what we call ESC-70. A human quantitative appreciation of the audio samples contained in Kitchen20 is provided as well as several machine learning benchmarks on both Kitchen20 and ESC-70.
Fichier principal
Vignette du fichier
moreaux_26254.pdf (315.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02901596 , version 1 (17-07-2020)

Identifiants

Citer

Marc Moreaux, Michael Garcia-Ortiz, Isabelle Ferrané, Frédéric Lerasle. Benchmark for Kitchen20, a Daily Life Dataset for Audio-based Human Action Recognition. International Workshop on Content-Based Multimedia Indexing (CBMI 2019), Sep 2019, Dublin, Ireland. pp.19079115, ⟨10.1109/CBMI.2019.8877429⟩. ⟨hal-02901596⟩
138 Consultations
371 Téléchargements

Altmetric

Partager

More