Seq2SeqPy: A Lightweight and Customizable Toolkit for Neural Sequence-to-Sequence Modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Seq2SeqPy: A Lightweight and Customizable Toolkit for Neural Sequence-to-Sequence Modeling

Résumé

We present Seq2SeqPy a lightweight toolkit for sequence-to-sequence modeling that prioritizes simplicity and ability to customize the standard architectures easily. The toolkit supports several known models such as Recurrent Neural Networks, Pointer Generator Networks, and transformer model. We evaluate the toolkit on two datasets and we show that the toolkit performs similarly or even better than a very widely used sequence-to-sequence toolkit.
Fichier principal
Vignette du fichier
2020.lrec-1.882.pdf (239.69 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02895652 , version 1 (10-07-2020)

Identifiants

  • HAL Id : hal-02895652 , version 1

Citer

Raheel Qader, François Portet, Cyril Labbé. Seq2SeqPy: A Lightweight and Customizable Toolkit for Neural Sequence-to-Sequence Modeling. LREC 2020, May 2020, Marseille, France. pp.7140-7144. ⟨hal-02895652⟩
106 Consultations
116 Téléchargements

Partager

More