The Topological Symmetric Orbifold - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2020

The Topological Symmetric Orbifold

Résumé

We analyze topological orbifold conformal field theories on the symmetric product of a complex surface M. By exploiting the mathematics literature we show that a canonical quotient of the operator ring has structure constants given by Hurwitz numbers. This proves a conjecture in the physics literature on extremal correlators. Moreover, it allows to leverage results on the combinatorics of the symmetric group to compute more structure constants explicitly. We recall that the full orbifold chiral ring is given by a symmetric orbifold Frobenius algebra. This construction enables the computation of topological genus zero and genus one correlators, and to prove the vanishing of higher genus contributions. The efficient description of all topological correlators sets the stage for a proof of a topological AdS/CFT correspondence. Indeed, we propose a concrete mathematical incarnation of the proof, relating Gromow-Witten theory in the bulk to the cohomology of the Hilbert scheme on the boundary.
Fichier principal
Vignette du fichier
JHEP10(2020)201.pdf (470.82 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-02894397 , version 1 (22-08-2024)

Licence

Identifiants

Citer

Songyuan Li, Jan Troost. The Topological Symmetric Orbifold. Journal of High Energy Physics, 2020, 2020 (10), pp.201. ⟨10.1007/JHEP10(2020)201⟩. ⟨hal-02894397⟩
35 Consultations
3 Téléchargements

Altmetric

Partager

More