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1 Introduction

The symmetric product orbifold conformal field theory on a two-dimensional complex sur-

face M plays an important role in the anti-de Sitter/conformal field theory correspondence

in three bulk dimensions [1]. It is a partly solvable theory that may lie in the moduli space

of the conformal field theory dual to string theory in AdS3 × S3 ×M . This incarnation of

the holographic correspondence has seen a successful comparison of correlation functions

at infinite central charge [2, 3]. Moreover, at maximal bulk curvature, a broad matching

of the spectrum and correlation functions has been achieved [4, 5].

It is natural to ask whether the agreement of the correlators can be extended to finite

central charge. A number of boundary correlators have been computed at finite central

charge [6–8], but the bulk calculations seem hard to perform. Naively, one would need

to get a reasonable handle on (at least) genus one correlation functions in interacting as

well as non-compact conformal field theories. This task would require significant technical

advances.

A related question is whether there is a topologically twisted version of this corre-

spondence where both bulk and boundary correlation functions simplify, and where one

may hope that the sum over intermediate states necessary in bulk loop calculations sig-

nificantly truncates. In principle, the twist of the boundary conformal field theory is

well-understood [9–11], but a detailed description of the resulting theory is lacking in the

physics literature, despite the fact that sharp insights were obtained [12, 13]. Twisting the

bulk theory is the subject of ongoing research [12, 14–17].

In this paper, we further explore what is known about the correlators of the topologi-

cally twisted symmetric product conformal field theory. To understand the answer to this

question, we reformulate both the results that are present on this problem in the mathe-

matics literature, as well as the results in the physics literature. While the two have been

rather convincingly matched where it concerns the spectrum of the topological conformal

field theory, they have developed largely independently in as far as the structure constants

of the ring of operators are concerned. Thus, we wish to simplify and connect these results

such that they may shine light on both the mathematical as well as the physical side of the

problem. We believe that the efficient mathematical description of the operator ring of the

boundary theory also provides a scheme for the bulk analysis, and therefore for a proof of

a topological subsector of an AdS/CFT correspondence.

The plan of the paper is as follows. In section 2, we review a large number of results

on the cohomology ring of the Hilbert scheme of points on the complex plane C2. We

point out that the ring is a canonical quotient ring of the chiral ring of the symmetric

orbifold conformal field theory on (quasi-projective) compact complex surfaces M . As such

it captures part of the full orbifold chiral ring structure associated to compact surfaces

M . Indeed, we argue that the quotient ring codes a subset of extremal correlators and

use it to prove their conjectured form. Since the quotient ring structure is captured by

permutation group combinatorics, the latter mathematical domain provides new explicit

expressions for symmetric orbifold correlators. In section 3, we extend our review of the

mathematics literature to the cohomology ring of the Hilbert scheme of points on the
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(quasi-projective) complex surfaces M . The ring is described by a (symmetric orbifold)

Frobenius algebra that can be constructed on the basis of the cohomology ring of M

combined with permutation group combinatorics. This gives a compact description of the

chiral ring of the topologically twisted symmetric orbifold conformal field theory Symn(M)

of the manifold M . We compute a few correlators using the mathematical formalism and

match them onto the known physical correlators. The large n behaviour as well as the

nature of loop corrections in the topological theory are clarified using further theorems,

and new classes of correlation functions are computed. We conclude in section 4 with

a summary and comments on how these insights may lead to a proof of a topological

AdS/CFT correspondence. Importantly, we propose a mathematical incarnation of the

proof that includes deformation parameters, relating Gromow-Witten theory in the bulk

to the quantum cohomology of the Hilbert scheme. Appendix A contains a technical bridge

to the physics literature.

2 The complex plane

A standard example of a symmetric product space in the mathematics literature is the

symmetric product of the two-dimensional complex plane M = C2, or more precisely,

the Hilbert scheme of points on the complex plane. An underlying reason is that the

Hilbert scheme of points is both non-trivial and non-singular for two-dimensional complex

surfaces [18–20]. A thorough understanding of this space [21–27] has lead to significant

progress both in describing the cohomology of Hilbert schemes of points on generic complex

surfaces, as well as their cohomology rings [28–32]. See e.g. [33] for an introduction. On the

physics side of this domain, the discussion of the Hilbert scheme of points on the complex

plane C2 is largely absent in the two-dimensional conformal field theory literature (although

it is present in the literature on moduli spaces of instantons) since the more standard set-up

is to study conformal field theories with a discrete spectrum, which requires the complex

target space M to be compact. The compact surfaces K3 as well as T 4 are omnipresent

in string theory compactifications, and the corresponding physical conformal field theories

are well-studied. These studies have been extended to their symmetric orbifold products.

In this first section, we wish to bridge the gap between the standard model in mathematics,

namely the Hilbert scheme of points on the complex plane C2 and the topologically twisted

symmetric orbifold conformal field theory on the complex plane C2.

Thus, we start out with a mathematical description of the cohomology of the Hilbert

scheme of points on the plane, and the cohomology ring. Next, we define the symmetric

orbifold conformal field theory, the operators in the twisted version of the theory, the

cohomology, as well as the operator product of two cohomology elements. The conclusion

will be that the two rings naturally match. Along the way, we will have learned a dictionary,

as well as various subtleties that arise when discussing non-compact models. Moreover, the

isomorphism permits us to obtain a large number of new results on the physical model.

2.1 The Hilbert scheme of points on the complex plane

We recall the definition of the Hilbert scheme of points on the plane C2 and its relation

to the symmetric orbifold space. We review the calculation of its cohomology as well as

– 3 –
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the cup product in the cohomology ring. See [23, 33] for pedagogical introductions to the

Hilbert scheme of points.

2.1.1 The Hilbert scheme

The Hilbert scheme of points Hilbn(C2) on the complex plane is the space of ideals of

co-dimension n in the space of polynomials C[x, y] [18]. The co-dimension one ideals are

seen to be parameterized by the two-plane itself. The co-dimension two ideals correspond

to either two distinct points or coinciding points together with an orientation. In general,

the Hilbert scheme of points corresponds to a cover of the orbifold space (C2)n/Sn where

Sn is the group that permutes the n copies of the complex two-plane. The projection is

the Hilbert-Chow morphism. An important point is that the cover is regular when one

studies the Hilbert scheme of points of a complex surface M [19]. The extra orientation

data captured by the ideals of the polynomial ring desingularize the orbifold variety, and

at the same time, correspond to the twisted sectors of the conformal field theory which

is also regular when defined in accord with the axioms of two-dimensional conformal field

theory [31, 32, 34, 35]. It is often handy to treat the Hilbert schemes for all values of n

simultaneously. Physically, this is akin to studying a second quantized string theory [36].

2.1.2 The cohomology

The final result for the cohomology of the Hilbert scheme of points on the complex two-

plane is simple [22, 23, 33, 37]. One method to compute the cohomology is to introduce a

perfect Morse function that projects contributions to the cohomology to the fixed points

under a C∗×C∗ two-torus action that multiplies the variables (x, y) by a non-zero complex

number each [23]. The points of the Hilbert scheme that are invariant under the action are

the monomial ideals, namely those ideals that are generated by monomials xayb. When

we divide the polynomial ring by the monomial ideal we find a vector space that has a

basis of monomials that we can capture in a Young diagram. For a given value of n, we

choose a partition [λ] = [1m12m2 . . . ] = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) of n =
∑

i=1 imi with

length l(λ) =
∑

imi. The corresponding Young diagram is given by putting λ1 boxes

on the bottom row, λ2 boxes on the second row and so on. The corresponding basis of

the ring divided by the ideal is given by monomials xpyq where (p, q) take values in the

set Mλ = {(p, q) ∈ N2 : 0 ≤ q < λp+1}. The contribution of a given fixed point to the

cohomology is determined by the character of the torus action on the tangent space to the

fixed point [23, 33]. After a calculation [23, 37], one finds that each fixed point partition

µ ` n contributes to the Poincaré polynomial P (t) as:

P (t)((C2)[n]) =
∑
µ`n

t2(n−l(µ)) , (2.1)

where the power of t keeps track of the degree of the cohomology elements. When we sum

the Poincaré polynomials of all Hilbert schemes over n with dummy variable q to the power

n, then we find the generator of Poincaré polynomials [23]

P (t, q) =
∑
n≥0

qnPt((C)[n]) =

∞∏
m=1

1

1− t2m−2qm
. (2.2)
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We have b2i
(
(C2)[n]

)
= p(n, n − i) [22], namely the number of partitions of n into n − i

parts. Indeed, when we expand the denominator in the generating function (2.2), we need

to match the sum of the powers of q to the number of copies n. Thus, we count partitions

of n. Moreover, the power of t is twice the power of q, except that we subtract two for

each factor and therefore in total twice the length of the partition as in equation (2.1).

2.1.3 The cup product

While the Betti numbers of the Hilbert scheme have been known for quite some time, the

algebraic geometric understanding of the cohomology as a Fock space is more recent [23, 24].

This insight was further exploited to describe the ring structure constants of the cohomology

ring [25–27] in elementary terms. The final result of the algebraic geometric analyses is as

follows [26].

To each partition µ, one associates a conjugacy class of permutations [π] which has

cycle lengths given by the partition µ. We equip the space of functions on the permutations

Sn with a convolution product ∗:

(f ∗ g)(π) =
∑
σ∈Sn

f(πσ−1)g(σ) , (2.3)

that is inherited by the space of functions on the conjugacy classes. Moreover, each per-

mutation π is assigned a degree |π| which is equal to the minimal number of transpositions

necessary to build it. For example, a single cycle permutation of length k has degree k− 1.

The ring structure of the cohomology is then described as follows. Associate a function

on the conjugacy class to each cohomology class. Convolute the functions, under the con-

dition that a term contributes if and only if the degrees of the permutations add. That

convolution product on the class functions gives the structure constants in the cohomology

ring of the Hilbert scheme of points on the plane [26].

A first example. We will compute many structure constants in the following, and we

start with a simple example. We denote the functions on the permutations in terms of

the value the function f takes at a given permutation times that permutation: f =∑
π∈Sn f(π)π. A first basic observation about the convolution product (2.3) is that if

f = π1 and g = π2, then the convolution product at π1π2 equals one, and is zero otherwise.

Consider a class function χ[λ] on a conjugacy class [λ]:

χ[λ] =
∑
π∈[λ]

π . (2.4)

We wish to partially compute the convolution product of class functions χ[n1] ∗ χ[n2]. In

particular, we calculate a coefficient of interest, namely (χ[n1] ∗ χ[n]
)(χ[n1+n2−1]) where we

have dropped the cycles of length 1 in the partition for the time being. We have chosen an

example that satisfies the requirement that the degrees of the permutations add.

Firstly, note that we have n!/((n − n1)!n1!) × n1!/n1 = n!/((n − n1)!n1) n1-cycles.

This is because we choose n1 out of n elements, and then decide on their order. However,

cyclically reordering them gives the same n1-cycle, hence the final division by the factor n1.

– 5 –
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For a given n1-cycle, to obtain a (n1 + n2 − 1)-cycle, it is clear that we must have exactly

one element in common between the n1-cycle and the n2-cycle. Thus, out of n2 elements

in the n2-cycle, we pick one to be one out of n1, and n2 − 1 random out of the remaining

n − n1. We can choose to put the element that we chose out of the first n1 first in the

n2-cycle, and we then have (n2 − 1)! inequivalent orderings for the other elements. Thus,

we had n1×(n−n1)!/((n−n1−n2+1)!(n2−1)!)×(n2−1)! = n1×(n−n1)!/(n−n1−n2+1)!

options. Multiplying our options, we obtain a total of n!/(n− n1 − n2 + 1)! (n1 + n2 − 1)-

cycles. Since there are a total of n!/((n− n1 − n2 + 1)!(n1 + n2 − 1)) (n1 + n2 − 1)-cycles,

each of those cycles obtains a coefficient n1 + n2 − 1. We can write the final result in the

self-evident notation:

[1n−n1n1] ∗ [1n−n2n2] = (n1 + n2 − 1)[1n−n1−n2+1n1 + n2 − 1] + . . . (2.5)

Thus, the structure constant for the multiplication of the corresponding cohomology ele-

ments is n1 + n2 − 1, since the degrees of the permutations add. Calculating the structure

constant is an exercise in combinatorics. We have performed a simple such exercise and

will encounter more intricate examples in due course.

2.2 The topological conformal field theory

In the previous subsection, we have reviewed the mathematical description of the coho-

mology ring of the Hilbert scheme of points on the complex plane. In this subsection, we

want to describe the relation between the mathematics and the topological conformal field

theory on the symmetric orbifold of the complex plane. The Hilbert-Chow projection of

the Hilbert scheme of points maps the Hilbert scheme onto the symmetric orbifold space.

The latter can be thought off as the target space of the symmetric orbifold conformal field

theory. However, the conformal field theory, similarly to the scheme, desingularizes the

target space [31, 32]. Twisted sectors are necessarily added to the theory and they capture

new directions in the configuration space that render the theory consistent [34, 35].

2.2.1 The conformal field theory

Let us describe the field content of the seed conformal field theory on C2. We consider

a N = (4, 4) supersymmetric conformal field theory in two dimensions with four real

scalars Xi and four Majorana fermions ψi. The complex scalars X = (X1 + iX2)/
√

2

and Y = (X3 + iX4)/
√

2 parameterize the complex two-plane C2. The fermions ψ±X =

(ψ1 ± iψ2)/
√

2 and ψ±Y = (ψ3 ± iψ4)/
√

2 live in the tangent bundle. The (left and right)

fermions can be bosonized: ψ±X = e±iHX and ψ±Y = e±iHY . The theory enjoys a N = 4

superconformal symmetry in both the left- and right-moving sector with central charge

c = 6. The symmetry of the seed and orbifold theory is directly related to the hyperkähler

geometry of the target space.

The superconformal field theory has a continuous spectrum and the target space is

non-compact. By picking a complex structure (or a preferred N = 2 superconformal

subalgebra), we can define a chiral ring of operators. The superconformal generators of the

– 6 –
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N = 2 superconformal algebra can be chosen to be — see e.g. [38]:

G+ = i
√

2(ψ+
X∂X + ψ+

Y ∂Y )

G− = i
√

2(ψ−X∂X̄ + ψ−Y ∂Ȳ ) . (2.6)

When we compute the chiral ring cohomology, we need to decide in which space we com-

pute it. Let us consider the space of polynomials in the scalar as well as the fermion fields.

We moreover concentrate on chiral primaries such that we need to consider polynomial

combinations of these fields only, and not their derivatives. Note that the operators X̄,Ȳ

and ψ−X,Y are not annihilated by the cohomological operator
∮
G+, while the operators

ψ+
X,Y are exact. Thus, we are left with an operator ring of chiral primaries generated by

the complex fields X,Y . These operators have non-singular operator products — the loga-

rithmic singularity that condemns these operators to play a marginal role in the description

of the conformal field theory cancels in all calculations inside the ring. The chiral operator

ring that we defined coincides with the polynomial ring C[X,Y ] which was the starting

point for the description of the Hilbert scheme.

The de Rham cohomology of the complex plane, on the other hand, is concentrated in

degree zero, and it is of dimension one. The cohomology coincides with the cohomology of

the N = 1 superconformal generator:∮
G =

∮
δijψ

i∂Xj , (2.7)

along with its right-moving counterpart. The charge
∮
G acts as the differential operator

d on differential forms represented as polynomials in the ψi differentials, depending on

coefficients which are functions of the coordinates Xi. Thus, the
∮
G cohomology can be

represented by the unit operator 1 only.1

The symmetric product conformal field theory SymN (C2) is defined by taking the

tensor product of n copies of the N = (4, 4) conformal field theory and dividing by the

symmetric group Sn that permutes the copies. There is a list of definitions and prescrip-

tions that determines the spectrum and correlation functions of the conformal field theory

uniquely [34, 35]. We wish to explain why the topologically twisted orbifold conformal

field theory gives rise to the same cohomology ring as the de Rham cohomology ring of the

Hilbert scheme of points equipped with the cup product.

2.2.2 The cohomology

Firstly, we want to match the operators that span the cohomology rings. The relevant

operators have been described in the literature in great detail [8]. The single cycle elements

of the cohomology ring of the Hilbert scheme map onto certain elements of the chiral ring

in the orbifold twisted sectors. They are denoted as the operators σ−−(n1) in [8] and can be

described in terms of the twist operators τ(n1) of the lowest conformal dimension

h(τ(n1)) =
c

24

(
n1 −

1

n1

)
(2.8)

1We note that for the non-compact manifold at hand, the de Rham and the Dolbeault cohomology do

not coincide.
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in the single cycle twisted sector, combined with an exponential in the bosonized fermions:

σ−−(n1) = e
i
∑n1
I=1

n1−1
2n1

(HI
X+HI

Y )
τ(n1) . (2.9)

The fermions give total U(1)R charge q = n1 − 1 to the operator which is of conformal

dimension

h =
1

4

(
n1 −

1

n1

)
+
n1

4

(n1 − 1)2

n2
1

=
n1 − 1

2
=
q

2
, (2.10)

and similarly in the right-moving sector. We have assumed that n1 out of n copies of

the symmetric product are involved in the operator. Permutations that consist of multiple

cycles correspond to non-singular multiplications of operators σ−−(ni)
. We still need to render

the operator gauge invariant by conjugating with permutations. For each given permutation

conjugacy class, we have precisely one chiral-chiral ring element of the type we discussed.

These represent the cohomology elements one to one. While other chiral primaries exist,

they will be trivial in de Rham cohomology, similarly to what we saw above for the seed

theory. Indeed, if the original (de Rham) cohomology contains a single identity operator,

the second quantized string perspective of [36] or the mathematics result [28] shows that

the de Rham cohomology of the symmetric product conformal field theory is captured by

the Poincaré polynomial (2.2). The crucial question becomes whether the operator product

of these operators in the chiral ring agrees with the cup product of cohomology elements

described in subsection 2.1.3.

2.2.3 The chiral ring

In the chiral ring, the product of operators can only be non-zero when R-charge conservation

is satisfied. Moreover, two operators that are in twisted sectors labelled by the permutations

π1 and π2 respectively, produce an operator in the twisted sector labelled by π1π2. Consider

for starters two operators in twisted sectors corresponding to permutations that consist of

a single cycle π1 = (n1) and π2 = (n2). Their R-charges are n1 − 1 and n2 − 1. Thus, if

they produce a third operator with a single cycle, it must have length n1 + n2 − 1. The

operator product coefficient of the operators σ−−(ni)
was computed in [8] and equals

|C−−−n1,n2,n1+n2−1|
2 =

n1 + n2 − 1

n1n2
(2.11)

If we normalize

σ(ni) = niσ
−−
(ni)

, (2.12)

the operator product produces precisely the corresponding operator σ(n1+n2−1) with pre-

factor equal to one. This fact should be compared to the basic observation above equa-

tion (2.4). Finally, we note that to preserve R-charge we can allow for at most zero or

one elements to overlap when taking the product of individual cycles. When we have zero

overlap, the product is trivial. When we have an overlap of one, the product is as above.

Next, consider the generic case of a product of operators σ1 = σ(n1
1)σ(n1

2)σ(n1
3) . . . with

σ2 = σ(n2
1)σ(n2

2) . . . . The U(1)R charge of the initial operators is
∑

i(n
a
i − 1). This is

the total number of transpositions in the initial twisted sector permutation labels. Charge

– 8 –
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conservation guarantees that the total number of transpositions is conserved in the operator

product expansion. Moreover, permutations that label twisted sectors compose (uniquely),

matching the basic observation above equation (2.4). Finally, gauge invariant operators

are conjugation invariant and therefore correspond to class functions on the permutation

group. Thus, we reproduce the convolution product (2.3) with the additional requirement

of degree conservation from the product of the chiral ring operators in the symmetric

orbifold conformal field theory. This is in full accord with an alternative route, which

is to mathematically abstract [31, 32] the cohomology coded in orbifold conformal field

theory [34, 35], to then prove that it is equivalent to the Hilbert scheme cohomology [30].

2.3 A Plethora of results on the cohomology ring

We have established that calculations in the cohomology ring of the symmetric orbifold

conformal field theory on the complex two-plane C2 reduce to calculations in the symmetric

group Sn. The latter can be notoriously hard, and it is a domain of mathematics in

itself to push the frontiers of what we can concretely compute in permutation groups and

which combinatorics we can compactly count. We believe it is useful to review a bit of

combinatorial knowledge relevant to the cohomology ring structure constants. We start

by recalling what is known about the connection coefficients (i.e. structure constants) of

conjugacy classes in general, and then restrict to the case where they satisfy the additive

degree condition or equivalently, R-charge conservation.2

2.3.1 The product of conjugacy classes of S3 and S4

The permutation group of one element is trivial. The permutation group of two elements

S2 = Z2 has two elements, each in its conjugacy class, and these trivially compose. Only

the composition (12)(12) = 1 violates the degree condition.

The first slightly non-trivial case is the permutation group S3. It contains 3! = 6

elements, and three conjugacy classes denoted [13], [12], [3] in terms of partitions of three.

The first has one element, the second three, and the third two. The multiplication table

for S3 is

Element () (1 2) (2 3) (1 3) (1 2 3) (1 3 2)

() () (1 2) (2 3) (1 3) (1 2 3) (1 3 2)

(1 2) (1 2) () (1 2 3) (1 3 2) (2 3) (1 3)

(2 3) (2 3) (1 3 2) () (1 2 3) (1 3) (1 2)

(1 3) (1 3) (1 2 3) (1 3 2) () (1 2) (2 3)

(1 2 3) (1 2 3) (1 3) (1 2) (2 3) (1 3 2) ()

(1 3 2) (1 3 2) (2 3) (1 3) (1 2) () (1 2 3)

where we act first with the column element, and then with the row element. The convolu-

tion algebra on conjugacy classes is

2One reason for discussing the combinatorics more generally is that the other connection coefficients are

relevant to models beyond the complex two-plane C2 on which we concentrate in this section.
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Conj. Class [()] [(12)] [(123)]

[()] [()] [(12)] [(123)]

[(12)] [(12)] 3[()] + 3[(123)] 2[(12)]

[(123)] [(123)] 2[(12)] 2[()] + [(123)]

As an example, consider the conjugacy class of transpositions [(12)] and compose it with

the conjugacy class of transpositions [(12)]. The conjugacy classes contain three elements

each, and we convolute their sums. We obtain nine terms, three of which are the identity,

and six of which are cyclic permutations of order three (of which there are two). This

result is indicated in the third row, third column of the table.

In the symmetric group S4, one has permutations that are the product of two inde-

pendent non-trivial cycles.3 The multiplication table for S4 already becomes a bit cum-

bersome. We can still easily list the five conjugacy classes in partition or cycle notation:

[14] = [()], [122] = [(12)], [22] = [(12)(34)], [13] = [(123)], [4] = [(1234)]. These have 1, 6, 3, 8

and 6 elements respectively. Their convolution algebra is:

Conj. Class [()] [(12)] [(12)(34)] [(123)] [(1234)]

[()] [()] [(12)] [(12)(34)] [(123)] [(1234)]

[(12)] [(12)] 6 [()]+ 2 [(12)(34)]+3 [(123)] . . . . . . . . .

[(12)(34)] [(12)(34)] [(12)]+2 [(1234)] . . . . . . . . .

[(123)] [(123)] 4[(12)]+4 [(1234)] . . . . . . . . .

[(1234)] [(1234)] 4 [(12)(34)]+3 [(123)] . . . . . . . . .

where the remaining entries in the table are still fairly straightforward to compute. Indeed,

these data have been compiled in appendix I.B of [39] for Sn≤8. They can also be reproduced

using the symbolic manipulation program GAP [40]. Each coefficient in these tables that

satisfies the degree condition is a finite n structure constant of the cohomology ring.

2.3.2 The independence of the order of the group

Importantly, when we take a particular perspective, the structure constants are independent

of the order of the permutation group, as long as the order is large enough [41]. Let

us illustrate this theorem on a simple example. We have class convolution formulas for

n = 2, 3, 4, 5, 6:

[2] ∗ [2] = 1[12]

[12] ∗ [12] = 3[13] + 3[3]

[122] ∗ [122] = 6[14] + 2[22] + 3[13]

[132] ∗ [132] = 10[15] + 2[122] + 3[123]

[142] ∗ [142] = 15[16] + 2[1222] + 3[133] . (2.13)

3We used that 2 + 2 = 4.
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Consider the renormalized class sums:

A[λ] =

(
n− r +m1(λ)

m1(λ)

)
[λ] , (2.14)

where we first pick a value n for the group Sn in which we embed our partitions of the

positive integer r by adding 1’s as necessary. The original partition of the integer r has

m1(λ) 1’s to start with. Consider the left hand side of (2.13). Our original partition is

[2] and r = 2. Since m1(λ) = 0, we do not renormalize the left hand side characters at

all. On the right hand side, we need to renormalize. For instance, when we embed the [12]

partition into the [13] partition, we need to pick 2 out of 3 − 2 + 2 = 3 elements, and we

pick up a factor of 3. For the next lines, we need to pick two out of 4,5,6 et cetera. For

the other terms, the renormalization factors are trivial. We see that when we write:

A[2] ∗A[2] = A[12]

A[12] ∗A[12] = A[13] + 3A[3]

A[122] ∗A[122] = A[14] + 2A[22] + 3A[13]

A[132] ∗A[132] = A[15] + 2A[122] + 3A[123]

A[142] ∗A[142] = A[16] + 2A[1222] + 3A[133] , (2.15)

the structure constants stabilize at the order which is the sum of the orders of the original

partitions (namely four). This is generically true [41], and it shows that the convolution of

symmetric group class functions is independent of the order of the group (at finite order,

as long as it is large). Thus, taking the large n limit on the formulas for these renormalized

structure constants is trivial — they do not depend on n at large n.

2.3.3 Partially general results

While there is no general closed form expression that is an efficient rewriting of the original

combinatorial problem of determining the multiplication of conjugacy classes, there are

partially general and compact results for the connection coefficients.4 Especially regarding

single cycle permutations and transpositions, there are more compact formulas. Let us for

instance mention that the multiplication of the n-cycle conjugacy class with any conjugacy

class has a reasonably compact expression [43]. Here we concentrate on the top connection

coefficients, namely those connection coefficients that satisfy the R-charge conservation

condition:

n− l(π1) + n− l(π2) = n− l(π3) (2.16)

where l(πi) is still the length of the permutation πi which equals the number of cycles that

make up the permutation (or the number of parts of the corresponding partition). When the

structure constant labels satisfy this condition, the connection coefficients in the symmetric

group are called top coefficients (since the condition (2.16) is extremal). Determining the

top connection coefficients of the symmetric group is a hard and interesting problem about

which many partial results are known.

4See e.g. the introduction of [42] for an overview.
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Let us review such a result. Suppose we have two conjugacy classes labelled by [π1,2],

and we wish to know the structure constant multiplying [π3], then we denote the num-

ber c
[π3]
[π1][π2]. This number is symmetric in the lower indices and satisfies the property

hπ3c
[π3]
[π1][π2] = hπ2c

[π2]
[π1][π3] where hπi is the number of elements in the conjugacy class [πi].

In [44–46], the top connection coefficients for two permutations that multiply into a sin-

gle cycle were determined. Let the permutation conjugacy classes [π1] = [1i12i2 . . . ] and

[π2] = [1k1 . . . ] correspond to two partitions of n = n3 of lengths l1 = l(π1) = i1 + i2 + . . .

and l2 = l(π2) = k1 + k2 + . . . . With the degree restriction l1 + l2 = n3 + 1 we have the

top connection coefficient

c
[(n3)]
[π1],[π2] = n3

(l1 − 1)!(l2 − 1)!

i1!i2! . . . k1!k2! . . .
. (2.17)

This result has a direct connection to two-coloured plane rooted-trees on n3 edges [46] and

has been further understood using Lagrange’s inversion theorem and Macdonald’s theory

of symmetric functions in [47]. It gives an idea of the power of combinatorial theorems in

the context of computing structure constants of the cohomology ring.

For illustration purposes, we apply the result (2.17) to our favorite case once more,

namely [πi] = [(ni)] with n3 = n. We find the partition i1 = n−n1 and in1 = 1 with length

l1 = n−n1 +1 and similarly the partition k1 = n−n2, kn2 = 1 with length l2 = n−n2 +1.

We obtain once more the structure constant (2.5):

c
[(n3)]
[(n1)],[(n2)] = n1 + n2 − 1 , (2.18)

but now as a very simple example of a much more general formula. We stress that combi-

natorics theorems like (2.17) provide new results on operator product expansions of chiral

operators in symmetric orbifold conformal field theories. The underlying maps to e.g.

rooted trees or cacti [46] provide an efficient diagrammatics for the operator product ex-

pansions.

2.4 The interaction

It is interesting to delve a little deeper into how the isomorphism between the Hilbert

scheme cohomology ring and the degree preserving convolution ring of class functions on the

symmetric group is established [26, 27]. In both rings one can identify a basic building block

for the product which is the multiplication by the conjugacy class of transpositions (or its

appropriate algebraic geometric dual). In fact, there is an interesting graded poset structure

on the space of conjugacy classes of Sn which can be used to compute structure constants of

the ring [45]. We reach the next level in the poset by composing with transpositions. (See

figure 2 of [45] for a neat illustration.) This structure played a role in the construction of a

differential operator that cuts and joins cycles through multiplication by transpositions [42].

Firstly, one associates polynomials to conjugacy classes of permutations

Φ(π) = p[π] (2.19)
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where pλ = pλ1 . . . pλi is a product of power sum symmetric functions5 associated to a

partition λ equal to the cycle distribution [π] of the permutation π. We then have a

differential operator Hint which satisfies [42]:

Φ([1n−22] ∗ π) = HintΦ(π) (2.20)

for all permutations π. The differential operator Hint equals [42]:

Hint =
1

2

∑
i,j≥1

ijpi+j∂pi∂pj + (i+ j)pipj∂pi+j . (2.21)

The first term in the operator joins two cycles while the second term cuts one cycle into

two. This is the most elementary (cubic) interaction term in the cutting and joining of the

second quantized string theory described in [6, 36, 48], and it is familiar from (topological)

string theory. In [26], the operator Hint is restricted to interactions that preserve the

degree. It is not hard to see that the only terms that respect the degree are the terms

of the first (join) type. Using the transposition as a stepping stone, it is shown in [26]

that the alternating character generates the whole ring (both on the combinatorial and

the algebraic geometric side) and establishes an isomorphism between the top degree class

multiplication and the Hilbert scheme cohomology ring. The (cutting and) joining method

of proof is akin to reasonings in second quantized string theory, matrix string theory or

two-dimensional topological gravity.

2.5 The structure constants are Hurwitz numbers

In this subsection, we wish to recall the relation between the Hilbert scheme of the plane, the

counting of permutations and the Hurwitz numbers [49]. We define the Hurwitz numbers

HP1

n (λ0, . . . , λk) as the number of (k+ 1) tuples of permutations (π0, π1, . . . , πk) in Sn such

that πi is of cycle type λi and π0π1 . . . πk = 1, divided by n!. This counts the number of

(possibly disconnected) covers of the sphere with k+1 branching points of branching types

λi [50]. When we restrict to counting only those covers that satisfy the additive degree

relation, then we impose that

n− l(λ0) =

k∑
i=1

(n− l(λi)) , (2.22)

where l(λi) are the lengths of the partitions λi. For ease of notation, we introduce the

normalization factor ζ(λ) = ζ([1m12m2 . . . ]):

ζ(λ) =
∏
i≥1

(imimi!) . (2.23)

We then have, following [49], that the generalized structure constant cλ0λ1...λk is the (top)

coefficient of the conjugacy class [λ0] in the product of conjugacy classes [λi]:

k∏
i=1

[λi] = cλ0λ1...λk [λ0] + . . . (2.24)

5We have p0 = 1 and pλi = xλi
1 + · · ·+ xλi

n .

– 13 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
1

We rewrite this by using the number of elements in the given conjugacy class [λ0] and find:

cλ0λ1...λk =
ζλ0
n!
c

[1n]
λ0...λk

= ζλ0H
P1

n (λ0, . . . , λk) , (2.25)

where the final equation follows by the property of the Hurwitz numbers reviewed above.

Thus, top connection coefficients for the multiplication of any number of conjugacy classes

are equal to the Hurwitz numbers that count the number of (possible disconnected)

branched covers of the sphere with the appropriate extremal branching behaviour. In

the end, this is a direct consequence of description of the cohomology ring in terms of the

symmetric group class functions [26].

2.6 The broader context and a proof of a conjecture

Let us put the results we obtained in a broader context. The first remark we wish to make

is that we studied a ring which is a canonical quotient ring of the cohomology ring for a

Hilbert scheme of points on a (quasi-projective) surface M . Indeed, the latter cohomology

ring has an ideal generated by all operators that have a factor that takes a non-trivial

value (i.e. not the identity) in the seed cohomology ring of M . If we divide the symmetric

orbifold cohomology ring by that ideal, the quotient ring is isomorphic to the cohomology

ring of the Hilbert scheme of the complex plane [51]. Thus, the latter captures part of the

ring structure for any manifold M .

The second remark is that up till now, we have restricted ourselves to an analysis of

the operator algebra and its structure constants. This is because in the non-compact case,

the topological orbifold conformal field theory has no natural seed two-point function —

in the compact case the two-point function is given by a (finite) integral over the compact

manifold M .

Nevertheless, we can at this stage make a useful connection with the physical extremal

correlators computed for three- and four-point functions in [13] and conjectured for any

number of operator insertions in equation (4.58) of [13].6 In the physical theory, there

are diagonalizable two-point functions. These can be used to trivially lower an index on

the structure constants of the cohomology ring (2.25). This simple remark shows that the

Hurwitz number structure constants (2.25) coincide with the correlators (4.58) in [13] when

they pertain to the identity cohomology element, and proves the conjecture in that case.

In fact, we make the sub-statement considerably more powerful in that we showed that the

statement is valid at large enough but finite order n, with appropriate normalizations of

the operators (as in (2.14)), and moreover extends to a large class of surfaces M .

2.7 Summary and lessons

We briefly summarize this section and prepare the ground for the next one. When we divide

the cohomology ring of the Hilbert scheme of points on a surface by the ideal generated by

all non-zero elements in the cohomology of the original manifold, we obtain the cohomology

6See also the end of section 5 of [12] for a discussion.
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ring of the Hilbert scheme of points of the plane. The cohomology ring of the plane has a cup

product which agrees with the top coefficients of the convolution of the conjugacy classes in

the symmetric group Sn. The convolution product counts permutations in given conjugacy

classes that multiply to one. The Hurwitz numbers as well count these permutations.

Therefore, the extremal operator product expansion, which satisfies the condition that

they correspond to top coefficients, agree with the Hurwitz numbers. This statement is

true at order n larger than the sum of the size of the permutations involved in the operator

product, and the structure constants are independent of n at large enough, but finite n.

We have studied a non-compact symmetric orbifold conformal field theory. The ring

structure of the original manifold C2 is trivial, and this simplifies the cohomology ring of

the symmetric orbifold. In the next section, we will work with a compact complex surface

M and thus add to the mix both a non-trivial seed cohomology ring, as well as a topological

two-point function.

3 Compact surfaces

In the previous section, we discussed the cohomology ring of the Hilbert scheme of points

on the complex two-plane M = C2 and how the ring relates to a ring of chiral operators

in the corresponding topological symmetric orbifold conformal field theory. In this section,

we wish to extend that analysis to the case where the manifold M is a (quasi-projective)

compact complex surface (with trivial canonical bundle), for example M = K3 or M = T 4.7

We wish to review that the chiral ring of the topological symmetric orbifold conformal field

theory has a neat mathematical description in terms of the cohomology ring of the seed

manifold M , as well as the combinatorics of permutations [29]. From that description,

we derive old and new correlators in the (topological) symmetric orbifold conformal field

theory, as well as their generic characteristics.

3.1 The orbifold Frobenius algebra

The starting point of the construction in [29] is the cohomology ring of the manifold M , and

a linear form T on the ring. The latter is the integral on the compact manifold M .8 The

combined structure forms a graded Frobenius algebra A. The results of [29] then construct

from this algebra, and the combinatorics of the symmetric group, a symmetric product

Frobenius algebra A[n] that coincides with the chiral ring of the topological symmetric

orbifold conformal field theory [30–32]. The construction of the algebra A[n] is lengthy —

we will provide only the gist of the construction and refer to [29] for further details.

7Surfaces with non-trivial canonical class can also be studied using similar techniques, but here we

concentrate on the case most frequently encountered in string theory.
8From now on, will have in mind compact Kähler manifolds M . Note that in this case the Dolbeault

cohomology is a refinement of the de Rham cohomology. Thus, for the compact case at hand, we no longer

have to worry about the distinction between these cohomologies, as we did in section 2. The chiral ring

will match perfectly onto the de Rham cohomology, both for the seed theory and for the Hilbert scheme.

– 15 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
1

3.1.1 The tensor Frobenius algebra and permutations

Following [29] we start with a graded commutative, associative algebra A over C, with a unit

and a linear form T such that the bilinear form T (ab) induced by T is non-degenerate.9 Our

graded Frobenius algebra is a finite dimensional graded vector space with grades ranging

from −d to d, with a multiplication of degree d and a unity element (necessarily of degree

−d). These grades are the degrees of the cohomology elements on a manifold of complex

dimension d, shifted by −d.10,11 The linear form T is of degree −d.

The tensor product A⊗n is a Frobenius algebra of degree nd. The product of tensor

product elements is the (graded) tensor product of the individual products in the factors:

(a1 ⊗ · · · ⊗ an).(b1 ⊗ · · · ⊗ bn) = ε(a, b)(a1b1)⊗ · · · ⊗ (anbn) , (3.1)

where the sign ε(a, b) keeps track of the number of odd elements (i.e. fermions) we had to

exchange in order to perform the multiplication. The bi-linear form on the tensor product

algebra A⊗n is defined by

T (a1 ⊗ · · · ⊗ an) = T (a1) . . . T (an) . (3.2)

It is of degree −nd and is again non-degenerate. The symmetric group acts on the tensor

product factors and the action takes into account the grading of the factors. For each

bijection f : {1, 2, . . . , n} → I, there is a canonical isomorphism A⊗n ≡ A⊗I . We will often

implicitly make use of this in the following.12

Next, we define maps between tensor products of the original Frobenius algebra with

a different number of factors. First, we reduce the number of factors. Suppose we have a

partition n = n1 + n2 + · · ·+ nk. We then define a ring homomorphism through multipli-

cation:

φn,k : A⊗n → A⊗k : a1 ⊗ · · · ⊗ an 7→ (a1a2 . . . an1)⊗ · · · ⊗ (an1+···+nk−1+1 . . . an) . (3.3)

This generalizes to a map φ∗ associated to any surfective map of indices φ : I → J .

Moreover, we have the adjoint map φ∗ : A⊗J → A⊗I with respect to the bilinear forms (3.2)

induced on the tensor products.

A particular example of these maps that we will encounter is the multiplication φ2,1 =

∆∗ : A⊗ A → A as well as its adjoint, the co-multiplication ∆∗ : A → A⊗ A. The image

of the unit under the combined map is called the Euler class e(A) of the algebra A. Let us

compute the Euler class in more familiar terms. Consider a (graded) basis ei of the algebra

9We encourage the reader to already imagine that the graded associative algebra A is the algebra of

cohomology elements of the manifold M and to think of the bi-linear form T as the topological conformal

field theory two-point function, given by integrating the wedge product of two cohomology elements over

the manifold M .
10Our surface has dimension d = 2. We will nevertheless keep the dimension d general for a while.
11The reader familiar with conformal field theory is invited to simultaneously think of the grade as the

sum of the Ramond-Ramond sector U(1)R charges, and the shift −d = −c/3 as arising from spectral flow.
12At this stage, we have the topological tensor product conformal field theory Hilbert space with an

action of the permutation group, the seed ring structure and a two-point function that extends to the

tensor product.
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A. We introduce an expression for the structure constants cij
k of the algebra A as well as

for the metric ηij that arises from the bilinear form T :

eiej = cij
kek = (−1)ijcji

kek

T (eiej) = ηij = (−1)ijηji = (−1)iηji = (−1)jηji . (3.4)

We drew attention to (anti-)symmetry properties of the structure constants and the metric

(exploiting an obvious notation for the grading of the basis elements). We have a unique

element in the cohomology that is the unit element and it has grade −d. By Poincaré

duality, there is a unique volume element of grade +d that evaluates under the linear form

T to T (vol) = 1. The co-multiplication map maps the unity element to cji0ei ⊗ ej since it

is the adjoint of the multiplication map captured by the structure constants. We denoted

the unity basis element e0 = 1 by the index zero. If we then multiply ei with ej , we obtain

1
∆∗◦∆∗−−−−→ cji0cij

kek = cji0cij0 vol = χ(A) vol where χ(A) =
∑

i(−1)idim(Ai) = ηijη
ji is

the Euler-Poincaré characteristic of the algebra A. We thus map unity to the Euler class

e(A) = χ(A) vol.13 For future purposes, we introduce the notation

eg = ⊗i∈Ieg(i) ∈ A⊗I (3.5)

for the tensor product of Euler classes associated to a function g : I → N0. Next, we

need to add ingredients that will be necessary to treat the combinatorial aspects of the

symmetric orbifold theory. We recall that every permutation π has a degree |π| given by

the minimal number of transpositions necessary to construct it. For any subgroup H ⊂ Sn
and an H-stable subset B ⊂ {1, 2, . . . , n}, we write H \ B for the space of orbits in the

set B under the action of the group H. We note that the degree |π| of a permutation

can be identified as |π| = n− |〈π〉 \ [n]| where 〈π〉 is the subgroup of Sn generated by the

permutation π. Indeed, this is the total number of elements minus the number of cycles,

and thus the sum of cycle lengths minus one. This notation allows us to define the graph

defect g for two permutations π and ρ evaluated on a set B:

g(π, ρ)(B) =
1

2
(|B|+ 2− |〈π〉\B| − |〈ρ〉\B| − |〈πρ〉\B|) . (3.6)

The graph defect is a positive integer that has an interpretation as the genus of a Riemann

surface [29].

3.1.2 The twisted sectors, the multiplication and the gauge invariants

We introduce two further algebras A{Sn} and A[n] [29]. The first is the analogue of the

unprojected space of operators in the topological orbifold theory, while the second is the

subspace of Sn gauge invariants. We need to define the first space, an action of the

permutation group on the space, and most importantly, the equivariant product in the

algebra. We define the algebra A{Sn} for starters as the (graded) vector space of tensor

13For the four-torus, the Euler number χ(T 4) is zero, and therefore e(AT4) = 0. For the K3 surface, the

Euler number equals χ(K3) = 24.
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products of operators multiplying permutations:

A{Sn} =
⊕
π∈Sn

A⊗〈π〉\[n] π . (3.7)

Each orbit of the permutation is assigned a single operator. The grading of an element

a π is the sum of the grades in the tensor algebra, namely |a π| = |a|. The action of the

group Sn on the set {1, 2, . . . , n} = [n] gives rise to a bijection between the orbits of a

permutation π and its conjugates:

σ : 〈π〉\[n]→ 〈σπσ−1〉\[n] : x 7→ σx . (3.8)

Thus we have an isomorphism σ̃

σ̃ : A{Sn} → A{Sn} : aπ 7→ σ(a)σπσ−1 , (3.9)

which defines the action of the symmetric group Sn on the vector space A{Sn}. The vector

space A[n] is the subspace of symmetric group invariants A[n] = (A{Sn})Sn .

Finally, we come to the crucial definition of the product on A{Sn} [29]. Firstly, note

that any inclusion of subgroups H ⊂ K leads to a surjection of orbit spaces H\[n]→ K\[n]

and by the previous constructions to a map

fH,K : A⊗H\[n] → A⊗K\[n] (3.10)

and its adjoint fK,H . These maps allow us to bring operators that lie in different twisted

sectors into a common space in which we are able to multiply them, then to bring them

back into the product twisted sector. Indeed, we define the operator multiplication map

mπ,ρ [29]:

mπ,ρ : A⊗〈π〉\[n] ⊗A⊗〈ρ〉\[n] → A⊗〈πρ〉\[n] (3.11)

by

mπ,ρ(a⊗ b) = f〈π,ρ〉,πρ(f
π,〈π,ρ〉(a).fρ,〈π,ρ〉(b).eg(π,ρ)) . (3.12)

Note that the middle multiplication takes place in the tensor product associated to the

subgroup 〈π, ρ〉 generated by both permutations π, ρ separately. The multiplication map

mπ,ρ not only prescribes how to sensibly combine operators in different tensor product

factors, it also tells us that we need to take into account a correction factor that depends

on the graph defect as well as on the Euler class e(A) of the seed algebra A. It moreover

prescribes how to co-multiply from the smaller set of orbits of the subgroup 〈π, ρ〉 to the

orbits of the subgroup 〈πρ〉. Finally, the cup product is given by:

aπ.bρ = mπ,ρ(a⊗ b)πρ , (3.13)

namely, twists compose. The product is associative, Sn equivariant and homogeneous of

degree nd, as proven in [29]. In other words, we have |aπ · bρ| = |aπ|+ |bρ|+ nd.

The equivariant ring structure on A{Sn} induces a ring structure on the space of

invariants A[n] and moreover, the latter ring is a subring of the centre of A{Sn} [29]. Thus,

elements (anti-)commute in the orbifold ring A[n], as expected. The algebra A[n] is again

a graded Frobenius algebra.
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Remarks.

• Let us describe briefly how the generic construction in this section relates to the case

of the cohomology ring of the Hilbert scheme of the complex plane C2 in section 2.

In that case, the seed Frobenius algebra A is trivial. Permutations multiply as in the

multiplication formula (3.13). What remains to show is that the multiplication (3.13)

of degree nd preserves the degree of the permutations. We will show that it does.

The degree of the unit operator in A is equal to −d. We moreover recall the relation

between the degree of a permutation and the number of orbits:

|π| = n− |〈π〉 \ [n]| . (3.14)

If we consider the element 1 π as an element of A⊗〈π〉\[n] π then its degree is equal to

|〈π〉 \ [n]| times −d. Thus, if we have cohomology elements a = 1 = b, the degree

condition for the product mπ,ρ reduces to:

|1π · 1ρ| = −d|〈π〉 \ [n]| − d|〈ρ〉 \ [n]|+ dn = d(|π|+ |ρ|)− dn = −d|〈πρ〉 \ [n]| (3.15)

and therefore |πρ| = n−|〈πρ〉 \ [n]| = |π|+ |ρ|. This is indeed the degree or R-charge

conservation condition familiar from section 2. More generally, the degree condition

on the product agrees with total R-charge conservation in the conformal field theory.

• An isomorphism between the algebra of gauge invariants A[n] and a Fock space as for

a second quantized string [36] can be established [28, 29].

• In [29] the cup product on Hilbert schemes of surfaces was proven to coincide with

the efficient description reviewed above. Moreover, it was proven to coincide with

the mathematical reformulation of the symmetric product cohomology [30–32].

• Note that since the Euler class e(A(T 4)) of T 4 is zero, because the Euler number is,

the correction associated to the Euler class is absent for the T 4 topological symmetric

orbifold conformal field theory. Moreover, the multiplication map will set to zero any

multiplication that has non-zero genus or graph defect.

• For the case of M = K3, the Euler class correction is important.

• Whenever the graph defect (or genus) of two permutations π, ρ we multiply is larger

or equal to two in a given orbit of the group 〈π, ρ〉 generated by the two permutations,

then the multiplication mπ,ρ contains a factor of e(M)2 and is therefore equal to zero.

In this sense, the multiplication formula contains one-loop corrections only. Provided

we can identify the covering surface with the bulk string world sheet (see e.g. [52]),

there are at most one loop corrections in the bulk topological string theory.

• Finally, we summarize in geometric terms, familiar from generic two-dimensional

topological field theories, the mechanics behind the results we found. Recall that

these theories are solvable in terms of their (pants) three-point functions, combined

with cutting and gluing. From the three-point functions, we can compute the operator
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that inserts a handle in a Riemann surface. We have computed the handle operator

e = ci
ijej to be (multiplication by) the Euler class. Since the Euler class squares to

zero, the insertion of two handles makes for a vanishing amplitude.

We have reviewed the topological symmetric orbifold conformal field theory cohomology

ring for a (quasi-projective) compact manifold M (with trivial canonical class) [29], and

added some remarks that serve to guide the physics reader through the construction. We

will next employ the efficient description to recompute a few structure constants and ex-

plicitly match them to the physics literature on the symmetric orbifold conformal field

theory. These calculations confirm the general picture drawn above, as they must.

3.2 Cup products of single cycle elements

We compute the operator product of two operators associated to two permutations that

are each single cycles with either zero elements overlapping, one, or two. One reason for

performing these calculations is that they can be compared to calculations in the physical

conformal field theory [6–8]. A second reason is that these correlators have been compared

to bulk three-point functions [2, 3] and thus provide a concrete holographic bridge to string

theory in three-dimensional anti-de Sitter space.

3.2.1 Without overlap

In the case where we consider two operators ασ(n1) and βσ(n2) in the algebra A{Sn}
concentrated in ni factors of the symmetric product A⊗n with zero overlap in the respective

factors, the product is trivial, namely it is the ordinary tensor product of the individual

operators.14,15

3.2.2 A single overlap

We discuss a second case of a product of operators απ and βρ in the algebra A{Sn},
associated to two single cycle permutations π = σ(n1), ρ = σ(n2) with a single element

in common. As a result, we have the multiplication of permutations πρ = σ(n1+n2−1)

and we act on the minimal space of indices {1, 2, 3, . . . , n1 + n2 − 1} ≡ [n1 + n2 − 1].16

To compute the product of such operators in the algebra A{Sn} according to the rules

laid out in subsection 3.1, we establish a few preliminaries. The space of orbits of the

various subgroups generated by the permutations is — with mild abuses of notation, and

14In the algebra of gauge invariants A[n] this situation will hardly occur. After making gauge invariants,

various cycles are bound to overlap. In that circumstance, we have zero overlap for certain terms only.
15In the following we will often use the notation α, β, . . . for operators in A, associated to a single orbit

of the permutation. For example, we have ασ(n1) = · · · ⊗ 1⊗ α⊗ 1⊗ . . . σ(n1) where α ∈ A corresponds to

the orbit of σ(n1) of length n1.
16This notation for a set conflicts with the notation for conjugacy classes. The context should be sufficient

to distinguish the concepts.
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a particular choice of permutation action —:

〈π〉 \ [n1 + n2 − 1] = {[n1], n1 + 1, n1 + 2, . . . , n1 + n2 − 1}
〈ρ〉 \ [n1 + n2 − 1] = {1, 2, . . . , n1 − 1, {n1, n1 + 1, . . . , n1 + n2 − 1}}
〈πρ〉 \ [n1 + n2 − 1] = {[n1 + n2 − 1]}
〈π, ρ〉 \ [n1 + n2 − 1] = {[n1 + n2 − 1]} . (3.16)

We have the graph defect g (3.6) for the stable subset B = [n1 + n2 − 1]:

g(π, ρ)([n1 + n2 − 1]) =
1

2
(n1 + n2 − 1 + 2− n1 − n2 − 1) = 0 . (3.17)

We then apply maps fπ,〈π,ρ〉 and fρ,〈π,ρ〉 to elements α and β which are elements of the

cohomology associated to the orbits of σ(n1) and σ(n2) respectively, and the identity other-

wise, such that they become elements of a single algebra A〈π,ρ〉\[n1+n2−1] associated to the

orbit of the subgroup 〈σ(n1), σ(n2)〉. In this single factor, we multiply α and β according

to formula (3.12), and we receive no extra factor from the Euler class of the algebra A

since the graph defect g (3.17) is zero. Moreover, for this case, we have that the orbits of

〈πρ〉 and 〈π, ρ〉 are the same, and thus that the map f〈π,ρ〉,πρ is trivial. Thus the product

mπ,ρ(α ⊗ β) = αβ is merely the multiplication of cohomology elements, which we com-

bine with the non-trivial composition of permutations to obtain the final result for the

multiplication in A{Sn}:
ασ(n1) · βσ(n2) = αβσ(n1+n2−1) . (3.18)

To obtain a product in A[n] in which we concentrate on the right hand side on a single cycle

permutation generated by a single overlap, we merely need to count elements in conjugacy

classes, as we did in subsection 2.1.3. We therefore find the structure constants of the

original ring, captured by the product αβ, times the combinatorial coefficient n1 + n2 − 1.

Thus, we have computed a subset of three-point functions. In this example, the ring

structure factorized into the seed ring structure times combinatorics.

3.2.3 An overlap of two

In the next example we study two operators multiplying single cycles, overlapping in two

factors of the tensor product space. The composition of permutations on which we focus is

σ(n1)σ(n2) = σn1+n2−3 where we have an overlap of two entries in the cyclic permutations

that are in reverse order and therefore generate a single longer cycle. We concentrate on

the example π = σ(n1) = (12 . . . n1) and ρ = σ(n2) = (2, 1, n1 + 1, n1 + 2, . . . , n1 + n2 − 2)

which composes to πρ = σn1+n2−3 = (1, n1 + 1, n1 + 1, . . . , n1 + n2 − 2, 3, . . . , n1). We

apply again the iron logic of [29] and first compute the orbits of the permutations in the

set {1, 2, . . . , n1 + n2 − 2}:

〈π〉 \ [n1 + n2 − 2] = {[n1], n1 + 1, n1 + 2, . . . , n1 + n2 − 2}
〈ρ〉 \ [n1 + n2 − 2] = {3, 4, . . . , n1, {1, 2, n1 + 1, n1 + 2, . . . , n1 + n2 − 2}}
〈πρ〉 \ [n1 + n2 − 2] = {2, {1, 3, 4, . . . . . . , n1 + n2 − 2}}
〈π, ρ〉 \ [n1 + n2 − 2] = [n1 + n2 − 2] , (3.19)
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as well as the graph defect g:

g(π, ρ)([n1 + n2 − 2]) =
1

2
(n1 + n2 − 2 + 2− (n1 − 1)− (n2 − 1)− 2) = 0 , (3.20)

which is once again zero. As in the previous subsection, after projection and multiplication,

we have the product αβ of the elements α and β associated to the individual factors.

However, now we have a non-trivial map f〈π,ρ〉,πρ which maps from a space with a single

factor A back to the tensor product A⊗2 associated to the two orbits of the product πρ.

This adjoint map back is nothing but the co-multiplication ∆∗. In slightly more detail

than before, we have the maps:

∆(ei ⊗ ej) = fπρ,〈π,ρ〉(ei ⊗ ej) = eiej = cij
kek (3.21)

as well as the adjoint condition:

T (el, f
πρ,〈π,ρ〉(ei ⊗ ej)) = cij

kηlk = (−1)lcijl = T (f〈π,ρ〉,πρel, ei ⊗ ej) . (3.22)

The unique solution is

∆∗(el) = f〈π,ρ〉,πρel = (−1)lcmklek ⊗ em , (3.23)

since

T ((−1)lcmklek ⊗ em, ei ⊗ ej) = (−1)lcmkl(−1)miηkiηmj

= (−1)lcijl . (3.24)

Thus, we find the final product:

ασ(n1) · βσ(n2) = ∆∗(αβ)σ(n1+n2−3) , (3.25)

which we can render explicit in terms of the structure constants cij
k and the metric ηij of

the seed theory:

∆∗(α
iβjcij

kek) = αiβjcij
k(−1)kcnmkem ⊗ en . (3.26)

Next, we wish to add in the gauge invariance combinatorics that arises when exploiting

this result to obtain a structure constant in the orbifold algebra of gauge invariants A[n].

We count the number of such double overlap multiplications that appear when multiplying

conjugacy invariant operators. We again start by picking n1 elements out of n elements

(say), and ordering them in (n1 − 1)! ways, to obtain n!/(n − n1)!/n1 different operators

σ(n1). We pick two consecutive elements out of the n1 elements, which we can do in n1

ways — we must put them in opposite order in the second permutation –, and moreover,

we pick (n2 − 2) elements out of n − n1, and order them in (n2 − 2)! ways, which we can

do in (n− n1)!/(n− n1− n2 + 2)! ways. Thus, this gives a total of n!/(n− n1− n2 + 2)! of

combinations of the type we are looking for. We have n!/((n− n1 − n2 + 3)!(n1 + n2 − 3))

elements in the conjugacy class of σn1+n2−3, and we then still have n− n1− n2 + 3 choices

for the extra lonely element we need, for a total of n!/((n − n1 − n2 + 2)!(n1 + n2 − 3))

choices. Thus we have a prefactor of

n1 + n2 − 3 (3.27)
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that arises from the combinatorics. Apart from the structure constants and adjoint map

that arises from the original cohomology ring, this is the structure constant of the multi-

plication of the classes of σ(n1) with σ(n2) into σ(n1+n2−3). If we denote the gauge invariant

operator sum (without extra normalization factor) by O(ni)(α), we find the operator prod-

uct coefficient:

O(n1)(α)O(n2)(β) = (n1 + n2 − 3)O(1)(n1+n2−3)(∆∗(αβ)) + . . . (3.28)

where on the right hand side, we need to split the co-product over the two tensor factors

associated to the cycle of length one and the cycle of length n1 + n2 − 3.

Thus, we computed a few structure constants in the orbifold cohomology ring of the

Hilbert schemes of points on M = T 4 and M = K3 among others. We wish to compare

these results to operator product expansions of chiral primary operators in the physical

symmetric orbifold conformal field theory. Those were obtained using rather different

techniques.

3.2.4 To match the physical correlators

We wish to confirm that the mathematical construction of subsection 3.1 indeed captures

the physical operator product expansions that survive topological twisting. From the ref-

erences [6, 7] and in particular [8], we glean a few structure constants in the symmetric

orbifold conformal field theory chiral ring. The appropriate extraction from [8] is performed

in appendix A. As in [8], we use the notation σ±,±(ni)
to indicate a chiral ring primary associ-

ated to the (−,−) = (0, 0) Dolbeault cohomology, the (+,−) = (2, 0), (−,+) = (0, 2) and

the (+,+) = (2, 2) Dolbeault cohomology of the manifolds M = K3 or M = T 4. Here, we

focus on these manifolds and classes only. Moreover, following [8] we factorize the structure

constants into a structure constant associated to two-dimensional massless left-movers and

a structure constant associated to right-movers in the symmetric orbifold conformal field

theory. The structure constants from [8] can then be summarized by — see appendix A:

C
1n1 ,1n2 ;1n3
n1n2;n3 =

(
(1n1n1 + 1n2n2 + 1n3n3 + 1)2

4n1n2n3

) 1
2

(3.29)

where the individual operators carry U(1)R charge ni+ 1ni and 1ni is ±1 depending on the

(left or right) upper index of the operator σ±,±ni , and we assume the R-charge constraint

n1 + 1n1 + n2 + 1n2 = n3 + 1n3 [8]. The (left or right) structure constants that preserve

U(1)R charge are the cases [6]:

C−−−n1,n2,n1+n2−1 =

(
n1 + n2 − 1

n1n2

) 1
2

C−++
n1,n2,n1+n2−1 =

(
n2

n1(n1 + n2 − 1)

) 1
2

C−−+
n1,n2,n1+n2−3 =

(
1

n1n2(n1 + n2 − 3)

) 1
2

, (3.30)
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and these chiral structure constants lead to the non-chiral operator product terms:

σ−−n1
σ−−n2

=
n1 + n2 − 1

n1n2
σ−−n1+n2−1 + . . .

σ−−n1
σ++
n2

=
n2

n1(n1 + n2 − 1)
σ++
n1+n2−1 + . . .

σ−−n1
σ−−n2

=
1

n1n2(n1 + n2 − 3)
σ++
n1+n2−3 + . . . (3.31)

σ−−n1
σ+−
n2

=
1

n1
σ+−
n1+n2−1 + . . .

σ−+
n1
σ+−
n2

=
1

n1 + n2 − 1
σ++
n1+n2−1 + . . . (3.32)

We now perform the renormalization we already saw for the quotient ring

σni = niσ
−−
ni (3.33)

as well as the renormalizations:
1

ni
σ++
ni = volσni , σ+−

ni = α(2,0)σni σ−+
ni = α(0,2)σni . (3.34)

We note that as long as the volume operator and the unit operator scale oppositely (and the

middle cohomology elements do not scale) we keep their two-point functions T invariant.

All the correlation functions (3.32) then precisely match those computed in subsection 3.2.

For the special case of the correlator (3.31), this is the case because we concentrate on the

term in the co-multiplication that associates the identity operator to the cycle of length

one. We note that the correlators computed by elementary means in subsection 3.2 already

contain a few more results than those that we could extract from the physics results.

3.3 Cup products at low and high order

In this section, we compute products of operators at a few low orders n. This serves

firstly as a small catalogue of results. Secondly, we will soon see that these results contain

glimpses of results at large n, as well as examples that inspire. Thus, we compute the cup

product in the algebra A{Sn} and therefore A[n] for various values of the order n of the

permutation group Sn.

3.3.1 Orders one and two

For n = 1, the cup product equals the ordinary product in the cohomology. This defines

the original Frobenius algebra A. For n = 2, there are two elements in S2. They give rise

to the algebras

A{S2} = A⊗2() + A(12)

A[2] = S2A[()] + A[(12)] (3.35)

with the multiplication rule:

α1 ⊗ α2() · β1 ⊗ β2() = (−1)β1α2α1β1 ⊗ α2β2()

α1 ⊗ α2() · β(12) = α1α2β(12)

α(12)β(12) = ∆∗(αβ)() (3.36)
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in A{S2}. An operator γ1 ⊗ γ2 multiplying the unit element () in the permutation group

will be symmetrized in A[2], and otherwise the algebra is similar.

3.3.2 Order three

At order three, we have the algebras:

A{S3} = A⊗3() +A⊗2(12) +A(123) + . . .

A[2] = S3A[()] + A⊗A[(12)] + A[(123)] (3.37)

and in the algebra A{S3} the multiplication rule is (as in example 2.17 of [29]):

(α1 ⊗ α2)(12) · (β1 ⊗ β2)(13) = α1α2β1β2(132)

(α1 ⊗ α2)(12) · (β1 ⊗ β2)(12) = (−1)β1α2∆∗(α1β1)⊗ (α2β2)()

α(123) · β(123) = (αβe)(132)

α(123) · β(132) = ∆
(3)
∗ (αβ)() . (3.38)

We used the symbol ∆
(3)
∗ for the adjoint of the multiplication map φ3,1 = ∆∗(3) : A⊗A⊗

A → A : α1 ⊗ α2 ⊗ α3 → α1α2α3. Note that for the first time, we have a multiplication

with a graph defect equal to one, leading to a multiplication with the Euler class e. Our

interpretation of this structure constant as an operator product structure constant makes

it the first such three-point function in AdS3/CFT2 calculated for a covering surface of

genus one. We will generalize this example soon.

3.3.3 Orders four and six

We have the algebra

A[4] = A⊕A⊗A⊕ S2A⊕ S2A⊗A⊕ S4A (3.39)

corresponding to the partitions [4], [13], [22], [122], [14] of n = 4, and a similar decomposition

of the algebra A[6] for n = 6. We wish to make a few illustrative and useful calculations in

these algebras using the multiplications in A{Sn}. We find the n = 4 products:

α1 ⊗ α2 ⊗ α3(12) · β1 ⊗ β2 ⊗ β3(12) = (−1)β1(α2+α3)+β2α3∆∗(α1β1)⊗ α2β2 ⊗ α3β3()

α1 ⊗ α2 ⊗ α3(12) · β1 ⊗ β2 ⊗ β3(13) = (−1)α3(β1+β2)α1α2β1β2 ⊗ α3β3(132) (3.40)

α1 ⊗ α2 ⊗ α3(12) · β1 ⊗ β2 ⊗ β3(34) = (−1)(α2+α3)(β1+β2)α1β1β2 ⊗ α2α3β3(12)(34) .

If we compute the analogues in S5, we multiply the fifth wheel on the first wagon with the

fifth wheel on the second, but learn little extra. In the algebra A{S6} we multiply:

α1 ⊗ . . . (123)β1 ⊗ β2 ⊗ . . . (234) = ε(αi, βi)∆∗(α1α2β1β2)⊗ α3β3 ⊗ α4β4(12)(34)

α1 ⊗ . . . (123)β1 ⊗ β2 ⊗ . . . (324) = ε∆∗(α1α2β1β2)⊗ . . . (124)

α1 ⊗ . . . (123)β1 ⊗ . . . (345) = ε α1α2α3β1β2β3 ⊗ α4β4(12345)

α1 ⊗ α2 ⊗ . . . (123)β1 ⊗ . . . (456) = ε α1β1β2β3 ⊗ α2α3α4β4(123)(456) . (3.41)
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In these results, we have gradually suppressed details (like the sign ε depending on the

grades of the elements αi and βi and spectator factors) in order to make them more

compact.

The results for the A{S4} algebra lead to the gauge invariant A[4] multiplication rule

for the transposition conjugaction class:

(α1 ⊗ α2 ⊗ α3 + α1 ⊗ α3 ⊗ α2)[(12)] · (β1 ⊗ β2 ⊗ β3 + β1 ⊗ β3 ⊗ β2)[(12)] =

6
(

(−1)β1(α2+α3)+β2α3∆∗(α1β1)⊗ α2β2 ⊗ α3β3 + three symm.
)

[()]

+2
(

(−1)(α2+α3)(β1+β2)α1β1β2 ⊗ α2α3β3 + three symm.
)

[(12)][(34)]

+3
(
α1α2β1β2 + three symmetrization terms

)
[(123)] . (3.42)

It is clear that the structure constants depend on the seed theory only, though the combi-

natorics depends on the order of the symmetric group. In the algebra of gauge invariants

A[6] we recall that the [133] partition corresponds to a term S3A⊗A in the direct sum A[6].

When we compute the product of three-cycle conjugacy classes, we therefore symmetrize

the results (3.41) as well as (3.38) over the factors associated to the cycles of length one,

giving rise to six terms for each element of the conjugacy class [133], of which there are

40. Thus, a naive counting gives 2402 terms. While this can be written significantly more

efficiently, we still refrain from writing out the final result. We remark that the conjugacy

class combinatorics is captured by the product:

[133] ∗ [133] = 40[16] + 8[1222] + 10[133] + 2[32] + 5[15] . (3.43)

3.3.4 Remarks

• We note that when we express the ring structure in an appropriate set of cohomology

elements, the structure constants become independent of the order of the orbifold

n [53], such that even low order n results capture structure constants of the large

order ring (as long as the order is large enough to accommodate all possible conjugacy

classes that can occur in the product). We refer to [53] for the precise statement.

This property holds in the presence of genus one Euler class corrections.

• The combinatorial description of top connection coefficients and sub-top coefficients of

the symmetric group [45, 46] may be useful to efficiently compute structure constants

of the Hilbert scheme of points for compact surfaces.

3.4 Genus one and an overlap of three

In this subsection, we compute a simple yet new class of structure constants. We consider

two operators απ and βρ, proportional to permutations π = σ(n1) = (1234 . . . n1) and

ρ = σ(n2) = (1, 2, 3, n1 + 1, n1 + 2, . . . , n1 + n2 − 3) which overlap in the three elements
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1, 2, 3. We list the orbits:

〈π〉 \ [n1 + n2 − 3] = {[n1], n1 + 1, n1 + 2, . . . , n1 + n2 − 3}
〈ρ〉 \ [n1 + n2 − 3] = {4, 5, . . . , n1, {1, 2, 3, n1 + 1, n1 + 2, . . . , n1 + n2 − 3}}
〈πρ〉 \ [n1 + n2 − 3] = {1, 2, . . . , n1 + n2 − 3}
〈π, ρ〉 \ [n1 + n2 − 3] = [n1 + n2 − 3] . (3.44)

Importantly, the graph defect equals

g =
1

2
(n1 + n2 − 1− (n2 − 2)− (n1 − 2)− 1) = 1 . (3.45)

We find the operator product:

απ · βρ = (αβe)πρ . (3.46)

This is a generalization of the product we found for equal three-cycles in S3. It is a simple

and generic genus one result for the operator product expansion in the topological orbifold

conformal field theory that forms a clear target for the holographically dual bulk AdS3

topological string theory.

3.5 Further examples

It is straightforward to generate further classes of examples using the tools we have laid out.

• Note that for 2l + 1 identical (consecutive) elements in two cyclic permutations,

the graph defect equals g = l, and therefore the product vanishes for l = g ≥ 2.

This provides an example of how to generate (vanishing) higher genus amplitudes of

arbitrarily high genus.

• An example that involves the co-multiplication map ∆
(n)
∗ , namely the adjoint of φn,1,

is found in the multiplication of two elements associated to inverse n-cycles:

α(12 . . . n) · β(n, n− 1, . . . , 1) = ∆
(n)
∗ (αβ)() .

• Co-multiplication can also act on a graph defect one contribution:

α(123 . . . n) · β(1, 2, n, n− 1, . . . 4, 3) = ∆
(n−2)
∗ (αβe)(132) .

• Finally, we provide an example involving a permutation that is the product of two

cycles in the algebra A{S4}:
α1 ⊗ α2(12)(34) · β1 ⊗ β2 ⊗ β3(23) = α1α2β1β2β3(1243) .

We leave room to further combine and invent examples in creative ways.

4 Conclusions

We described the topological symmetric orbifold conformal field theory on a complex sur-

face M on the basis of the mathematics literature on the Hilbert scheme of points on the

surface. We started out by studying a universal quotient of the operator ring, which is iso-

morphic to the cohomology ring of the Hilbert scheme of points on the complex two-plane
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C2. The mathematical description of the ring [26] allowed to leverage the literature on

permutation group combinatorics to provide explicit expressions for correlators. Moreover,

we were able to prove a conjectured description of a set of extremal correlators in terms of

Hurwitz numbers [13].

The full cohomology ring is compactly captured by a symmetric Frobenius algebra

described in [29]. We showed that the correlators that one computes in the symmetric

orbifold conformal field theory as well as the bulk string theory agree with the mathematical

description of the orbifold cohomology ring. The calculations are very efficient in the

mathematical formalism, which uses only the structure constants of the seed cohomology

ring and combinatorics. We stressed that the structure constants in the topologically

twisted theory can be rendered independent of the order of the orbifold as long as one picks

it to be (finite but) large enough. We moreover computed a set of genus one correlators

and observed that connected higher genus correlators vanish.

The simplification of the topological symmetric orbifold theory is a good preparation

for proving a topological AdS/CFT correspondence. The task is to bijectively map the bulk

gauge invariants to the operator algebra A[n] that captures the boundary chiral ring. For

the quotient ring, the problem reduces to identifying bulk operators that map bijectively

into the conjugacy classes of the symmetric group Sn (while ignoring all non-trivial topology

in the manifold M). Once the correct bijection has been identified, the matching of the

structure constants may well be manageable. To establish the bijection, one takes cues from

the matching of spectra generically (see e.g. [54]) or from the example at level k = 1 [4, 5],

namely when the bulk curvature radius equals the string length.

Moreover, one would like to directly twist the bulk string theory, and gather further

insight into the topological AdS/CFT duality. This can be done following one of the

approaches of [12, 14–17] and should lead to an alternative and interesting representation

of the Frobenius algebra at hand. The topological bulk string theory correlators should

give rise, after localization, to an intersection theory on the moduli space of Riemann

surfaces that must match the space-time cohomology ring (and in its simplest incarnation,

the Hurwitz numbers).

Importantly, we propose a concrete mathematical incarnation of the proof of holo-

graphic duality (for simplicity in the case of M = C2 though the relation holds more

generally). An equivalence between the Gromov-Witten theory on P1 × C2 and the coho-

mology of the Hilbert scheme of points on C2 was proven in [55]. We propose that this is

a precise mathematical realization of a non-perturbative proof of a topological AdS/CFT

duality. The quantum cohomology ring of the Hilbert scheme is the ring of the topologi-

cally twisted boundary theory deformed by the two-cycle operator. The closed topological

A-model on the equivariantly deformed space P1×C2
equiv is to be identified with the topo-

logically twisted bulk dual. This proposal is compelling, and the equivalence theorem

proven in [55] provides an explicit holographic map. It moreover generalizes the duality to

include equivariant deformation parameters that render the two-plane of finite volume, as

well as the quantum parameter that counts the curve degree.17

17We thank Sujay Ashok for useful discussions on this proposal.
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Finally, a duality symmetry in string theory, proposed in [56] and further analyzed

in [57, 58], predicts a covariance of the ring of the topological symmetric orbifold theory on

T 4 or K3 that goes beyond what is known about the structure constants in the mathematics

literature. It would be interesting to prove the duality covariance of the ring.
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A Operator product coefficients

In this appendix only, for easier comparison, we use the notation of [8], and we extract

from that paper a number of structure constants that we use in the bulk of the paper.

The paper defines and uses operators σ±,±n of (left, right) R-charge n± 1 depending on the

sign of the upper index on the operator. The structure constants in the operator product

expansion of two of these operators giving rise to a third are computed separately for right-

and left-movers. Moreover, the paper [8] separates out a reduced structure constant where

one has factored out an su(2)R Clebsch-Gordan coefficient. This is sensible if one wishes

to capture the full N = (4, 4) superconformal structure of the correlators. In twisting

the topological theory, we pick a particular N = (2, 2) superconformal subalgebra, and we

break the su(2)R symmetry. We therefore wish to write the structure constants rather in

a u(1)R language (and restore the Clebsch-Gordan coefficients). Firstly, we recall from [8]

the su(2)R reduced chiral structure constants:

Ĉ
1n,1m,1q
nmq =

(
(1nn+ 1mm+ 1qq + 1)2

4mnq

Σ!αn!αm!αq!

(n+ 1n)!(m+ 1m)!(q + 1q)!

) 1
2

Σ =
1

2
(n+ 1n +m+ 1m + q + 1q) + 1

αn = Σ− n− 1n − 1 . (A.1)

If we delve into appendix C of [8], we can reconstruct the N = 2 structure constants from

these N = 4 structure constants by multiplying back in the Clebsch-Gordan coefficient:(
n+1n

2
m+1m

2
q+1q

2
q+1q−m−1m

2
m+1m

2 − q+1q
2

)
=

(
(m+ 1m)!(q + 1q)!

Σ!αn!

) 1
2

(A.2)

We then obtain the formula:

C
1n,1m,1q
nmq =

(
(1nn+ 1mm+ 1qq + 1)2

4mnq

αm!αq!

(n+ 1n)!

) 1
2

(A.3)

Σ =
1

2
(n+ 1n +m+ 1m + q + 1q) + 1

αn = Σ− n− 1n − 1 . (A.4)

Since we have the U(1)R charge constraint n+1n+m+1m = q+1q, we can simplify further

and obtain the equation (3.29) for the chiral structure constants in the bulk of the paper.
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