Improved Error estimates of hybridizable interior penalty methods using a variable penalty for highly anisotropic diffusion problems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Improved Error estimates of hybridizable interior penalty methods using a variable penalty for highly anisotropic diffusion problems

Résumé

In this paper, we derive improved a priori error estimates for families of hybridizable interior penalty discontinuous Galerkin (H-IP) methods using a variable penalty for second-order elliptic problems. The strategy is to use a penalization function of the form O(1/h^{1+δ}), where h denotes the mesh size and δ is a user-dependent parameter. We then quantify its direct impact on the convergence analysis, namely, the (strong) consistency, discrete coercivity and boundedness (with h δ-dependency), and we derive updated error estimates for both discrete energy-and L^2-norms. All theoretical results are supported by numerical evidence.
Fichier principal
Vignette du fichier
Superpenalization_HIP.pdf (610.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02893064 , version 1 (08-07-2020)
hal-02893064 , version 2 (20-06-2021)

Identifiants

Citer

Grégory Etangsale, Marwan Fahs, Vincent Fontaine, Nalitiana Rajaonison. Improved Error estimates of hybridizable interior penalty methods using a variable penalty for highly anisotropic diffusion problems. 2020. ⟨hal-02893064v1⟩
98 Consultations
66 Téléchargements

Altmetric

Partager

More