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Abstract6

In this paper, we derive improved a priori error estimates for families of hybridizable interior penalty discontinuous7

Galerkin (H-IP) methods using a variable penalty for second-order elliptic problems. The strategy is to use a pe-8

nalization function of the form O(1/h1+δ), where h denotes the mesh size and δ is a user-dependent parameter. We9

then quantify its direct impact on the convergence analysis, namely, the (strong) consistency, discrete coercivity and10

boundedness (with hδ-dependency), and we derive updated error estimates for both discrete energy- and L2-norms.11

All theoretical results are supported by numerical evidence.12

Keywords: Hybridizable discontinuous Galerkin, interior penalty methods, variable-penalty technique, convergence13

analysis, updated a priori error estimates14
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1. Introduction16

Hybridizable discontinuous Galerkin (HDG) methods were first introduced in the last decade by Cockburn et al.17

[1] (see, e.g., [2]) and have since received extensive attention from the research community. They are popular and18

very efficient numerical approaches for solving a large class of partial differential equations (see, e.g., [3, 4, 5, 6, 7] for19

a historical perspective). Indeed, they inherit attractive features from both (i) discontinuous Galerkin (DG) methods20

such as local conservation, hp-adaptivity and high-order polynomial approximation [8] and (ii) standard conforming21

Galerkin (CG) methods such as the Schur complement strategy [9]. One undeniable additional benefit of the HDG22

methods is their superconvergence property, obtained through the application of a local postprocessing technique on23

each element of the mesh [4]. In the hybrid formalism, additional unknowns are introduced along the mesh skeleton24

corresponding to discrete trace approximations. Thanks to the specific localization of its additional degrees of freedom25

(dofs), interior variables can be eliminated in favor of its Lagrange multipliers by only static condensation [10]. The26

resulting matrix system is significantly smaller and sparser than those associated with CG or DG methods for any27

given mesh and polynomial degree [9]. Several HDG formulations have been derived in the literature and can be28

classified into two main categories. The first is based on a primal form of the continuous problem, such as the class29

of interior penalty (IP) methods [11], whereas the second relies on a dual (often called mixed) form, such as local30

discontinuous Galerkin (LDG) methods [1, 4, 12]. In the latter formulation, the flux variable is introduced as an31

additional unknown of the problem.32

Our focus is on families of hybridizable interior penalty discontinuous Galerkin (H-IP) methods [13]. They are33

hybridized counterparts of the well-known interior penalty DG (IPDG) methods [14, 15, 16] and have been analyzed34

until quite recently by several authors [11, 6]. Specifically, in our exposition, we considered the incomplete, non-35

symmetric and symmetric schemes denoted by H-IIP, H-NIP and H-SIP, respectively. The main difference between36

these schemes concerns the role of the symmetrization term in the discrete bilinear form [15]. Fabien et al. recently37
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analyzed these schemes using a stabilization function of the form O(1/h) for solving second-order elliptic problems38

[11]. The authors conclude that H-IP methods inherit similar convergence properties to their IPDG equivalents.39

Notably, they theoretically establish (i) optimal energy error estimates, and because of the lack of symmetry of the40

associated discrete operator, (ii) only suboptimal L2-norm error estimates for H-IIP and H-NIP schemes. In addition,41

they numerically conclude that the L2orders of convergence of both non-symmetric variants are suboptimal for only42

even polynomial degrees and are optimal otherwise. Similar conclusions have also been suggested by Oikawa for43

second-order elliptic problems [5].44

To restore optimal L2-error estimates for the nonsymmetric IPDG method, Rivière et al. suggest using a sort of45

superpenalty on the jumps [17, 18]. In the present paper, we explore a similar idea in the general context of H-IP46

methods by using a variable penalty function of the form τ := O(1/h1+δ), where δ ∈ R. Here, we analyze the direct47

impact of the parameter δ on a priori error estimates in different norms. First, we propose a convergence analysis by48

investigating three key properties: (strong) consistency, discrete coercivity and boundedness. One remarkable feature49

of this strategy is the hδ-dependency of the coercivity condition and the continuity (or boundedness) constant Cbnd,50

which consequently impacts the error estimates. Improved error estimates are then derived in the spirit of the second51

Strang lemma [16], and we first prove that the order of convergence in the natural energy-norm is linear, δ-dependent,52

and optimal when δ ≥ 0 for any scheme. Then, by using a duality argument, i.e., the so-called Aubin–Nitsche53

technique, we also prove that the optimal convergence is theoretically reached as soon as δ ≥ 0 for the H-SIP scheme54

only, and when δ ≥ 2 for both non-symmetric variants, i.e., H-NIP and H-IIP schemes. We recover some well-known55

theoretical error estimates proposed in the literature for both the natural energy- and L2-norms in the particular case56

of δ = 0.57

The rest of the material is organized as follows: Section 2 describes the model problem, mesh notation and58

assumptions, and recalls some definitions and useful (trace) inequalities, while Section 3 derives the discrete H-IP59

formulation and discusses its stability properties. In Section 4, optimal error estimates are provided for both the60

energy- and L2-norms by using a standard duality argument. Section 5 concerns the numerical experiments that61

validate our theoretical results. We briefly end with some remarks and perspectives.62

2. Some preliminaries63

2.1. The model problem64

Let Ω be a bounded (polyhedron) domain in R
d with Lipschitz boundary ∂Ω in spatial dimension d ≥ 2. For65

clarity, we consider the anisotropic diffusion problem with homogeneous Dirichlet boundary conditions:66

− ∇ · (κ∇u) = f in Ω and u = 0 on ∂Ω, (1)

where κ ∈ [L∞(Ω)]d×d is a bounded, symmetric, uniformly positive-definite matrix-valued function and f ∈ L2(Ω) is67

a forcing term. Thus, the weak formulation of problem (1) is to find u ∈ H1
0
(Ω) such that68

∫

Ω

κ∇u · ∇vdx =

∫

Ω

f vdx ∀v ∈ H1
0(Ω). (2)

It is well known that under elliptic regularity assumptions, the variational problem (2) is well posed.69

2.2. Mesh notation and assumptions70

Let h be a positive parameter; we assume without loss of generality that h ≤ 1. We denote by {Th}h>0 a family of71

affine triangulations of the domain Ω, where h stands for the largest diameter: hE := diam(E). We also assume that72

Th is quasi-uniform, meaning that for all E ∈ Th, there exists 0 < ρ0 ≤ 1 independent of h such that ρ0h ≤ hE ≤ h.73

Following our notation, the generic term interface indicates a (d − 1)-dimensional geometric object, i.e., an edge, if74

d = 2 and a face if d = 3. Thus, we denote by F i
h

the set of interior interfaces; i.e., F ∈ F i
h

if there exist E1 and E275

in Th such that F := ∂E1 ∩ ∂E2. The set of boundary interfaces is denoted by F b
h

; i.e., F ∈ F b
h

if there exists E in76

Th such that F := ∂E ∩ ∂Ω. The set of all interfaces is often called the mesh skeleton and is denoted by Fh, i.e.,77

Fh := F i
h
∪ F b

h
. We denote by ∂Th := {∪∂E ,∀E ∈ Th}, the collection of interfaces of all mesh elements. Let X be78

a mesh element or an interface; we then denote by |X| a positive d- or (d − 1)-dimensional Lebesgue measure of X,79
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respectively. Moreover, for any mesh element E ∈ Th, we denote by FE := {F ∈ Fh : F ⊂ ∂E} the set of interfaces80

composing the boundary of E; we define ηE := card(FE ) and η0 := max
∀E∈Th

(ηE ).81

2.3. Broken polynomial spaces82

For any polyhedral domain D ⊂ R
d with ∂D ⊂ R

d−1, we denote by (·, ·)0,D (resp., 〈·, ·〉0,∂D) the L2-inner product83

in L2(D) (resp., L2(∂D)) equipped with its natural norm ‖ · ‖0,D (resp., ‖ · ‖0,∂D). Let us now introduce some compact84

notation associated with the discrete L2-inner scalar product:85

(·, ·)0,Th
:=
∑

E∈Th

(·, ·)0,E and 〈·, ·〉0,∂Th
:=
∑

E∈Th

〈·, ·〉0,∂E . (3)

We denote by ‖ · ‖0,Th
and ‖ · ‖0,∂Th

the corresponding norms. Similarly, we denote by H s(D) the usual Hilbert space86

of index s on D equipped with its natural norm ‖ · ‖s,D and seminorm | · |s,D, respectively. If s = 0, then we set87

H0(D) = L2(D). We denote by H s(Th) the usual broken Sobolev space and by ∇h the broken gradient operator acting88

on H s(Th) with s ≥ 1. We assume an extended regularity requirement of the exact solution u of the weak problem (2),89

i.e., u ∈ H s
0
(Ω) ∩ H2(Th) with s > 3/2. We also introduce the additional unknown û ∈ L2(Fh) corresponding to the90

trace of u on the skeleton of the mesh. Let us now introduce the composite variable u := (u, û), which belongs to the91

continuous approximation space V := H s
0
(Ω) ∩ H2(Th) × L2(Fh); i.e., u ∈ V. As usual in HDG methods, we consider92

broken Sobolev spaces:93

Pk(Th) := {vh ∈ L2(Th) : vh|E ∈ Pk(E), ∀E ∈ Th}, (4)

and similarly for Pk(Fh). Here, Pk(X) denotes the space of polynomials of at least degree k on X, where X corresponds94

to a generic element of Th or Fh, respectively. For H-IP discretization, two types of discrete variables are necessary95

to approximate the weak solution u of problem (2). First, the discrete variable uh ∈ Vh is defined within each mesh96

element, and its trace ûh ∈ V̂
h

is defined on the mesh skeleton with respect to the imposed homogeneous Dirichlet97

boundary conditions. Thus, we set Vh := Pk(Th) and V̂
h

:= P
0
k
(Fh), where98

P
0
k(Fh) := {v̂h ∈ Pk(Fh) : v̂h|F = 0, ∀F ∈ F bh }. (5)

Throughout the manuscript, we use the following compact notation: Let Vh := Vh × V̂
h

denote the composite approx-99

imation space and a generic element of Vh be denoted by vh := (vh, v̂h). For all E ∈ Th and F ∈ FE , we define the100

jump of vh ∈ Vh across F as [[[vh]]]E ,F := (vh|E − v̂h|F )nF , where nF denotes the unit normal vector to F pointing101

out of E . When confusion cannot arise, we omit the subscripts E and F from the definition, and we simply write102

[[[vh]]] := (vh− v̂h)n. Finally, we introduce the space V(h) := V+Vh to analyze the boundedness of the discrete bilinear103

form.104

2.4. Useful inequalities105

We recall here some useful inequalities that will be used extensively later on (see, e.g., [19, 16, 15]). For clarity,106

C denotes a generic constant that is independent of h, hE and κ in the rest of the manuscript. Owing to the shape107

regularity of Th, we now introduce multiplicative trace inequalities. Let E ∈ Th and F ∈ FE . For all v ∈ H2(E), there108

exists a positive constant CM independent of hE , v and E such that109

‖v‖20,F ≤CM(‖v‖0,E |v|1,E + h−1
E ‖v‖

2
0,E ), (6a)

‖∇hv‖20,F ≤CM(|v|1,E |v|2,E + h−1
E |v|

2
1,E ). (6b)

On broken polynomial spaces vh ∈ Vh, we obtain the discrete and inverse trace inequalities, respectively:110

‖vh‖0,F ≤Ctrh
−1/2

E
‖vh‖0,E , (7a)

‖∇hvh‖0,E ≤Cinvh−1
E ‖vh‖0,E , (7b)

where Ctr and Cinv are positive constants independent of hE .111
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Remark 2.1. Following Rivière [15] (see Section 2.1.3, p.24), one can obtain an exact expression of the constant Ctr112

used in the discrete trace inequality (7a) for a d-simplex mesh element:113

Ctr :=

√

(k + 1)(k + d)

d
, (8)

where k denotes the polynomial degree of Vh and d denotes the spatial dimension. This expression is particularly114

important in our analysis since it will be used later in the definition of the penalty parameter.115

We are now in a position to introduce the energy-norm used in the stability analysis and error estimations [13, 10].116

For any given composite function vh ∈ Vh, we consider the jump seminorm:117

|vh|
2
γ :=

∑

E∈Th

|vh|
2
γ,∂E with |vh|

2
γ,∂E :=

∑

F∈FE

‖γ
1/2

F
[[[vh]]]‖20,F , (9)

where γF ≥ 0 is an arbitrary positive constant associated with F ∈ FE . The natural energy-norm equipping the118

discrete approximation space Vh is given by119

‖vh‖
2
∗ := ‖κ

1/2
∇hvh‖

2
0,Th
+ |vh|

2
γ, (10)

which clearly depends on κ.120

3. Hybridizable interior penalty methods121

The discrete H-IP problem is to find uh ∈ Vh such that122

B
(ǫ)

h
(uh, vh) = l(vh), ∀vh ∈ Vh, (11)

where l(vh) := ( f , vh)0,Th
and the bilinear form B

(ǫ)

h
: Vh × Vh → R is given by123

B
(ǫ)

h
(uh, vh) :=(κ∇huh,∇hvh)0,Th

− 〈κ∇huh, [[[vh]]]〉0,∂Th

− ǫ〈κ∇hvh, [[[uh]]]〉0,∂Th
+ 〈τ[[[uh]]], [[[vh]]]〉0,∂Th

, (12)

where ǫ ∈ {0,±1}. The second, third and fourth terms on the right-hand side of (12) are called the consistency,124

symmetry and penalty terms, respectively. The discrete bilinear operator B
(ǫ)

h
is symmetric iff ǫ = 1 and is nonsym-125

metric otherwise. We obtain the symmetric scheme (H-SIP) if ǫ = 1, the incomplete scheme (H-IIP) if ǫ = 0 and the126

nonsymmetric scheme (H-NIP) if ǫ = −1. For all E ∈ Th and F ∈ FE , the penalty term is chosen as follows:127

τF :=
γ0C2

trκF

h1+δ
F

with δ ∈ R, (13)

where γ0 is a user-dependent parameter, Ctr is given by (8) and results from the discrete trace inequality (7a), hF128

is a local length scale associated with the interface F , and κF := nFκE nF denotes the normal diffusivity. We then129

assume that the quantity hF satisfies the following equivalence condition, where for all E ∈ Th and F ∈ FE , there130

exist positive constants ρ1 and ρ2 independent of hE such that131

ρ1hE ≤ hF ≤ ρ2hE . (14)

Remark 3.1. Different choices of the local length scale hF have been suggested in the literature, i.e., hF := diam(F),132

hF := hE (the diameter of E), hF := |F | (the Lebesgue measure of F) and hF := |E | / |F | (the Hausdorff measure of133

F) (see, e.g., [16]). For simplicity, we assume that κ is approximated by piecewise constants on the mesh element Th;134

i.e., κ|E ∈ R
d×d for all E ∈ Th.135
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Lemma 3.1 (Consistency). Let u = (u, û) ∈ V, where u ∈ H s(Ω) is a solution of the weak problem (2) with s > 3/2.136

Then, the following holds:137

B
(ǫ)

h
(u, vh) = l(vh), ∀vh ∈ Vh. (15)

Proof. The regularity of the weak solution implies that the quantities u and κ∇hu · n are single-valued fields on the138

mesh skeleton; i.e., [[[u]]] = 0 for all E ∈ Th and F ∈ FE , and [[κ∇hu]] = 0 for all F ∈ F i
h
, where [[·]] denotes the139

standard jump operator as used in the DG method [8]. After integrating by parts, the bilinear form B
(ǫ)

h
yields140

B
(ǫ)

h
(u, vh) =(κ∇hu,∇hvh)0,Th

− 〈κ∇hu, [[[vh]]]〉0,∂Th
,

=
∑

E∈Th

(∇h · (−κ∇hu), vh)0,E +
∑

F∈F i
h

〈[[κ∇hu]]
︸  ︷︷  ︸

=0

, v̂h〉0,F =
∑

E∈Th

( f , vh)0,E ∀vh ∈ Vh,

since v̂h vanishes on the boundary skeleton F b
h

. This completes the proof.141

A straightforward consequence of the consistency property is the Galerkin orthogonality.142

Proposition 3.1 (Galerkin orthogonality). Let u = (u, û) ∈ V, where u ∈ H s(Ω) a solution of the weak problem (2)143

with s > 3/2. We denote by uh ∈ Vh the approximate solution of the discrete problem (11). Then,144

B
(ǫ)

h
(u − uh, vh) = 0 ∀vh ∈ Vh. (16)

Proof. Subtracting (15) and (11) yields the assertion.145

3.1. Coercivity and well-posedness146

The next step is to prove the key property, i.e., the discrete coercivity of the bilinear form B
(ǫ)

h
, to ensure the well-147

posedness of the discrete problem (11). To this end, we first need to establish an upper bound of the consistency term148

using the jump seminorm | · |τ.149

Lemma 3.2 (Bound on consistency term). Let (wh, vh) ∈ Vh × Vh; then, there exists a constant Cδ > 0 such that150

∣
∣
∣〈κ∇hwh, [[[vh]]]〉0,∂Th

∣
∣
∣ ≤ C

1/2

δ
‖κ

1/2
∇hwh‖0,Th

|vh|τ, (17)

where Cδ := C0hδ and C0 := Cη0γ
−1
0

is a positive constant independent of h.151

Proof. The decomposition of the consistency term yields152

〈κ∇hwh, [[[vh]]]〉0,∂Th
=
∑

E∈Th

∑

F∈FE

〈κ
1/2
∇hwh, κ

1/2[[[vh]]]〉0,F . (18)

For any F ∈ Fh, successively applying the Cauchy–Schwarz and the discrete trace inequalities (7a), using the defini-153

tion (13) and the equivalence condition (14), we infer that154

∣
∣
∣〈κ∇hwh, [[[vh]]]〉0,F

∣
∣
∣ ≤

[ h1+δ
F

γ0C2
tr

]1/2

(‖κ
1/2
∇hwh‖0,F )(τ

1/2

F
‖[[[vh]]]‖0,F ),

≤

[Chδ
E

γ0

]1/2

‖κ
1/2
∇hwh‖0,E |vh|τ,F .

By summing over all interfaces F ∈ FE and then over all mesh elements E ∈ Th and by using the quasi-uniformity155

property of the mesh Th, we obtain the assertion156

∣
∣
∣〈κ∇hwh, [[[vh]]]〉0,∂Th

∣
∣
∣ ≤

[
Cη0

γ0

hδ
]1/2

‖κ
1/2
∇hwh‖0,Th

|vh|τ, (19)

which concludes the proof.157
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Lemma 3.3 (Coercivity). For a penalty parameter γ0 that is large enough—i.e., γ0 > 4Cη0hδ—the discrete bilinear158

form B
(ǫ)

h
is Vh-coercive with respect to the energy-norm ‖ · ‖∗; i.e.,159

B
(ǫ)

h
(vh, vh) ≥

1

2
‖vh‖

2
∗, (20)

for all vh ∈ Vh and for any value of the parameter ǫ.160

Proof. Setting uh = vh in the definition of the bilinear form (12), we obtain161

B
(ǫ)

h
(vh, vh) =‖κ

1/2
∇hvh‖

2
0,Th
− (1 + ǫ)〈κ∇hvh, [[[vh]]]〉0,∂Th

+ |vh|
2
τ. (21)

Thus, owing to Lemmata 3.2 and using Young’s inequality, for any ζ > 0, there exists a constant C
(ǫ)

ζ
> 0 such that162

B
(ǫ)

h
(vh, vh) ≥

[

1 −
1 + ǫ

2

Cδ

ζ

]

‖κ
1/2
∇hvh‖

2
0,Th
+

[

1 −
1 + ǫ

2
ζ

]

|vh|
2
τ ≥ C

(ǫ)

ζ
‖vh‖

2
∗,

where C
(ǫ)

ζ
is given by163

C
(ǫ)

ζ
:= 1 −

1 + ǫ

2
max(Cδ/ζ, ζ).

We now select γ0 such that Cδ < ζ2; i.e., γ0 > ζ−2Cη0hδ. Setting ζ = 1/2, we easily bound C
(ǫ)
1/2
≥ 1/2 for any value164

of the parameter ǫ, thus completing the proof.165

Remark 3.2. Note the hδ-dependency of the coercivity condition. A straightforward consequence of the consistency166

and coercivity requirements via the Lax–Milgram Theorem is the well-posedness of the weak problem (11); i.e., the167

existence and uniqueness of the discrete solution uh ∈ Vh are ensured.168

3.2. Boundedness169

We now assume that the discrete bilinear formB
(ǫ)

h
can be extended to V(h)×V(h), and we assert the boundedness170

of the product space . To this end, we introduce the enriched energy-norm on V(h) denoted by ||| · ||| (which is also a171

natural norm on Vh) to bound the (normal) derivative terms [10]:172

|||v|||2 := ‖v‖2∗ +
∑

E∈Th

hE ‖κ
1/2
∇hv‖20,∂E , ∀v ∈ V(h). (22)

Lemma 3.4 (Equivalency of ‖ · ‖∗- and ||| · |||-norms). For all v ∈ V(h), the norms ‖v‖∗ and |||v||| are equivalent; i.e., there173

exists a constant ρ > 0 such that174

ρ−1|||v||| ≤ ‖v‖∗ ≤ |||v|||, (23)

where ρ := (1 + η0C2
tr)

1
2 depends only on the element shape.175

Proof. Following the definition (22), we notice that ‖v‖∗ ≤ |||v|||. We now can easily bound the difference of both norms176

by using the discrete trace inequality (7a)177

|||v|||2 − ‖v‖2∗ ≤ η0C2
tr‖κ

1/2
∇hv‖20,Th

≤ η0C2
tr‖v‖

2
∗, (24)

which yields the assertion.178

Lemma 3.5 (Boundedness with hδ-dependency). For all (w, v) ∈ V(h) × V(h), there exists a constant Cbnd > 0 such179

that180

B
(ǫ)

h
(w, v) ≤ Cbnd|||w||| · |||v|||, (25)

where Cbnd := 2 +C1hδ and C1 := (γ0C2
tr)
−1 is a positive constant independent of h.181
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Proof. Following the definition of the bilinear form (12), we deduce that182

∣
∣
∣B

(ǫ)

h
(w, v)

∣
∣
∣ ≤
∣
∣
∣(κ

1/2
∇hw, κ

1/2
∇hv)0,Th

+ 〈τ
1/2[[[w]]], τ

1/2[[[v]]]〉0,∂Th

∣
∣
∣+

∣
∣
∣〈κ

1/2
∇hw, κ

1/2[[[v]]]〉0,∂Th

∣
∣
∣ + |ǫ|

∣
∣
∣〈κ

1/2
∇hv, κ

1/2[[[w]]]〉0,∂Th

∣
∣
∣

≤ |T1 + T2| + |T3| + |ǫ| |T4| .

Applying the Cauchy–Schwarz inequality, the first two terms can be bounded as follows:183

|T1 + T2| ≤ [‖κ
1/2
∇hw‖20,Th

+ |w|2τ]
1/2[‖κ

1/2
∇hv‖20,Th

+ |v|2τ]
1/2 = ‖w‖∗‖v‖∗. (26)

Proceeding as in the proof of Lemmata 3.2, the third and fourth terms can also be bounded as follows:184

|T3| ≤

[

C1hδ
∑

E∈Th

hE‖κ
1/2
∇hw‖20,∂E

]1/2

‖v‖∗, (27a)

|T4| ≤

[

C1hδ
∑

E∈Th

hE‖κ
1/2
∇hv‖20,∂E

]1/2

‖w‖∗, (27b)

where C1 := (γ0C2
tr)
−1. By combining these estimates via the Cauchy–Schwarz inequality, we obtain185

∣
∣
∣B

(ǫ)

h
(w, v)

∣
∣
∣ ≤

[

(1 + |ǫ|)‖w‖2∗ +C1hδ
∑

E∈Th

hE ‖κ
1/2
∇hw‖20,∂E

]1/2[

2‖v‖2∗ + |ǫ|C1hδ
∑

E∈Th

hE‖κ
1/2
∇hv‖20,∂E

]1/2

,

≤ max(2,C1hδ)|||w||||||v|||,

which yields the assertion.186

Remark 3.3. Let us emphasize that Cbnd ≤ Chr, where r = min (0, δ) and C := 2 max(2,C1) and is a positive constant187

independent of h.188

4. A priori error analysis189

We now derive a priori error estimates in both the discrete ‖ · ‖∗- and ‖ · ‖0,Th
-norms to show the accuracy of the190

H-IP method. To this end, we first recall some definitions such as the continuous interpolant and derive standard191

interpolation estimates that will be used extensively in the rest of the document (for more details, we refer the reader192

to [16, 19]). Let us introduce πi
h

and πb
h
, the standard L2-orthogonal projectors on the discrete approximation spaces193

Vh and V̂
h
, respectively. Then, if φ ∈ H s(Ω) with s ≥ 2, the standard interpolation estimate is written as194

|φ − πihφ|q,Th
≤Chµ−q|φ|µ,Th

, ∀q ∈ {0, . . . , s − 1}, (28a)
[ ∑

E∈Th

hαE‖∇h(φ − πihφ)‖20,∂E

]1/2

≤Chµ+
α−3

2 |φ|µ,Th
, (28b)

where µ := min(k + 1, s) and k denote the polynomial degrees of approximation spaces Vh and V̂
h
, respectively.195

Lemma 4.1 (Optimal error estimates). Let u := (u, û) ∈ H s(Th) × L2(Fh), where u is the weak solution of (2) and196

s > 3/2. We denote by πhu := (πi
h
u, πb

h
û) the continuous interpolant of the composite variable u, which is contained197

in Vh; i.e., πhu ∈ Vh. Then,198

‖u − πhu‖∗ ≤ |||u − πhu||| ≤ Cκh
µ0 |u|µ,Th

, (29)

where µ0 := min(k, s − 1) and Cκ := C‖κ
1/2‖∞,Ω.199
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Proof. Successively using the definition of the ||| · |||-norm (22), the Cauchy–Schwarz inequality, and the interpolation200

estimates (28) yields201

‖u − πhu‖2∗
(23)

≤ |||u − πhu|||2
(22)
= ‖u − πhu‖2∗ +

∑

E∈Th

hE‖κ
1/2
∇h(u − πihu)‖20,∂E ,

(28)

≤ ‖κ
1/2‖2∞,Ω

∑

E∈Th

(|u − πihu|21,E + hE ‖∇h(u − πihu)‖20,∂E ),

≤C2‖κ
1/2‖2∞,Ωh2µ−2|u|2µ,Th

,

which concludes the proof.202

4.1. Energy-norm error estimates203

We now derive an error estimation of the discrete composite variable uh in the natural ‖ · ‖∗-norm.204

Theorem 4.1 (‖ · ‖∗-norm estimate and optimal convergence rate). Let u := (u, û) ∈ H s(Ω) × L2(Fh), where u is a205

solution of (2) with s > 3/2. We denote by uh ∈ Vh the approximate solution of the discrete problem (11). Then, for206

any value of the parameter δ, the following estimate holds:207

‖u − uh‖∗ ≤ |||u − uh||| ≤ Cκh
µ0+r |u|µ,Th

, (30)

where µ0 := min(k, s − 1), r := min(0, δ), and Cκ := C‖κ
1/2‖∞,Ω.208

Proof. We decompose this quantity as u − uh = u − πhu + πhu − uh. By using the triangle inequality, we easily infer209

that210

|||u − uh||| ≤ |||u− πhu||| + |||πhu − uh|||. (31)

Only an upper bound on the last term of (31) remains to be established. Successively using the coercivity, energy-norm211

equivalency, Galerkin orthogonality, and boundedness, we deduce that212

1

2ρ2
|||πhu − uh|||

2
(23)

≤
1

2
‖πhu − uh‖

2
∗

(20)

≤ B
(ǫ)

h
(πhu − uh, πhu − uh),

(16)

≤ B
(ǫ)

h
(πhu − u, πhu − uh)

(25)

≤ Cbnd|||u − πhu||||||πhu − uh|||,

and then we insert |||πhu − uh||| ≤ 2ρ2Cbnd|||u− πhu||| into (31) to obtain213

‖u − uh‖∗
(23)

≤ |||u − uh||| ≤ (1 + 2ρ2Cbnd)|||u − πhu|||.

Proceeding as in Remark 3.3, we can conclude that there exists a positive constant C such that 1 + 2ρ2Cbnd ≤ Chr,214

which yields the assertion.215

Corollary 4.1 (Estimate for strong-regularity solutions). Assume that s ≥ k + 1 with u ∈ Hk+1
0

(Th) and δ ∈ R. Then,216

we have the estimate217

‖u − uh‖∗ ≤ Cu,κh
k+r, (32)

where r := min(0, δ), Cu,κ := Cκ|u|k+1,Th
and Cκ := C‖κ

1/2‖∞,Ω.218

Proof. (Evident)219

Remark 4.1. Following Di Pietro and Ern, since C in Theorem 4.1 is independent of κ, the discrete method is said220

to be robust with respect to the anisotropy and heterogeneity of the diffusion tensor. The given estimate (32) indicates221

that the order of convergence in the ‖ · ‖∗-norm, or equivalently, ||| · |||-norm, is linear and δ-dependent, i.e., suboptimal222

if δ < 0 and optimal otherwise.223
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4.2. L2-norm error estimate224

Using a standard Aubin–Nitsche duality argument, we now derive an improved L2-error estimate of the H-IP225

method in terms of the parameter δ. To this end, we define an auxiliary function ψ as the solution of the adjoint226

problem:227

− ∇ · (κ∇ψ) = u − uh in Ω, and ψ = 0 on ∂Ω. (33)

By assuming elliptic regularity, the following estimate holds:228

‖ψ‖2,Ω ≤ Cκ‖u − uh‖0,Ω, (34)

where Cκ depends on the shape regularity (i.e., the convexity) of Ω and the distribution of κ inside it [20]. The weak229

adjoint problem is to find ψ ∈ H2(Ω) ∩ H1
0
(Ω) such that230

(κ∇hψ,∇hv)0,Th
− 〈κ∇hψ · n, v〉0,∂Th

= (u − uh, v)0,Th
, ∀v ∈ H1

0(Ω). (35)

By setting v = u − uh in (35), we obtain231

‖u − uh‖
2
0,Th
= (κ∇hψ,∇h(u − uh))0,Th

− 〈κ∇hψ, (u − uh)n〉0,∂Th
. (36)

Let us now introduce the composite error variable e
u
h

:= u − uh = (eu
h
, êu

h
). From the regularity of the variables û,232

ûh and ψ, we deduce that 〈κ∇hψ, (û − ûh)n〉0,∂Th
= 0. By embedding this condition in (36), we obtain an equivalent233

reformulation of the weak adjoint problem in terms of the discrete bilinear operator B
(ǫ)

h
:234

‖eu
h‖

2
0,Th
= (κ∇ψ,∇eu

h)0,Th
− 〈κ∇ψ, [[[eu

h]]]〉0,∂Th
= B

(ǫ)

h
(ψ, eu

h), (37)

where ψ := (ψ, ψ̂). Following the definition of the bilinear form B
(ǫ)

h
(12) and using the Galerkin orthogonality

B
(ǫ)

h
(eu

h
, πhψ) = 0, since πhψ ∈ Vh (see Proposition 3.1), we easily infer

B
(ǫ)

h
(ψ, eu

h) = B
(ǫ)

h
(eu

h, e
ψ
π ) − (1 − ǫ)〈κ∇ψ, [[[eu

h]]]〉0,∂Th
:= T

(ǫ)

1
− (1 − ǫ)T2, (38)

where e
ψ
π := ψ − πhψ. We will now determine an upper bound of the quantity ‖eu

h
‖2

0,Th
. Owing to Lemmas 3.5 and 4.1235

and using the regularity assumption ψ ∈ H2(Ω), we can bound the first term T1:236

∣
∣
∣T

(ǫ)

1

∣
∣
∣ ≤ Cbnd|||e

ψ
π ||||||e

u
h||| ≤ CκCbndh‖ψ‖2,Ω|||e

u
h|||. (39)

Using the trace inequality ‖∇hψ‖0,∂Th
≤ Ch−

1/2‖ψ‖2,Ω [19], the second term T2 can be bounded as follows:237

|T2| ≤ Cκh
1+δ

2 ‖∇hψ‖0,∂Th
|eu

h|τ ≤ Cκh
δ
2 ‖ψ‖2,Ω|||e

u
h|||. (40)

Combining (39) and (40), we obtain the estimate238

‖u − uh‖0,Th
≤ Cκ(Cbndh + (1 − ǫ)h

δ
2 )|||eu

h|||, (41)

and we can assert the theorem below.239

Theorem 4.2 (L2-norm estimate). Let u := (u, û) ∈ H s(Ω) × L2(Fh), where u is a solution of (2) with s > 3/2. We240

denote by uh ∈ Vh the approximate solution of the discrete problem (11). Then, for any value of the parameters δ and241

ǫ ∈ {0,±1}, the following estimate holds for the H-IP method:242

‖u − uh‖0,Th
≤ Cκh

µ0+s
(ǫ)

δ |u|s,Th
, (42)

where Cκ := C‖κ
1/2‖∞,Ω, µ0 := min(k, s − 1), and the parameter s

(ǫ)

δ
is only dependent on ǫ and δ and is given by243
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s
(ǫ)

δ
:=






min(1, 1 + 2δ) if ǫ = 1,

min(1, δ/2) if ǫ , 1 and δ ≥ 0,

min(1 + 2δ, 3δ/2) if ǫ , 1 and δ < 0.

(43)

Proof. The estimate (42) using (43) follows after some algebraic manipulations from the previous equation (41), the244

definition of Cbnd given in Lemma 3.5 and the optimal error estimate given in Lemma 4.1.245

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

δ

r δ

H-IIP/H-NIP/H-SIP

(a)

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

δ

s(ǫ
)

δ
H-SIP

H-IIP/-H-NIP

(b)

Figure 1: Representation of the quantities rδ and s
(ǫ)

δ
vs. δ given in Theorems 4.1 and 4.2, respectively.

Remark 4.2. The authors are certain that the estimates given in Theorems 4.1 and 4.2 have already been established246

in the literature, but we have not been able to find them.247

5. Numerical experiments248

In the previous sections, we built families of hybridizable interior penalty methods based on an adaptive definition249

of the penalty parameter that depends on several coefficients. This section highlights the benefit these methods provide250

in the approximation of diffusion problems with anisotropic and/or discontinuous coefficients and in the validation of a251

priori error estimates. In the rest of the document, we assume that the local length scale hF in (13) is chosen to be equal252

to the diameter of the associated element, i.e., hF := hE , for all E ∈ Th and for all F ∈ FE . All numerical experiments253

are performed using the high-performance finite element library NGSolve [21]. Then, the physical domain is taken254

to be a unit square—i.e., Ω := [0, 1]2 ⊂ R
2—and the right-hand-side f is chosen such that the given exact solution255

u respecting the homogeneous boundary conditions is verified. We use a sequence of subdivisions Th, where regular256

triangles or squares form each partition (see, e.g., Figure 2). Standard h- and k-refinement strategies are used to257

compute the numerical errors and estimated convergence rates (ECRs). To pursue our quantitative analysis, we first258

measure the impact of the parameter δ on the a posteriori error estimates. Second, we point out the crucial role of the259

factor κn arising in (12) for the robustness of the H-IP methods when the medium becomes highly anisotropic and/or260

discontinuous. Finally, we complete our experiments by pointing out some unexpected benefits of the value of γ0 for261

the ECRs of the H-SIP scheme.262

5.1. Test A: Influence of the parameter δ263

We consider the following test case, which was previously proposed in Fabien et al. [11]: the diffusion tensor is264

homogeneous and isotropic—κ = I2 (identity matrix)—and the exact smooth solution is given by u(x, y) = xy(1 −265

x)(1 − y) exp(−x2 − y2). Then, for all E ∈ Th and for all F ∈ FE , we assume that the penalty parameter has the266

following simplified form:267

τF :=
τ0

h1+δ
E

, (44)
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(a) (b)

Figure 2: Uniform triangular (a) and square (b) meshes with h = 1/8, respectively.

where τ0 > 0 is a positive constant chosen to be large enough in accordance with Lemma 3.3. The objective here is268

to measure the impact of the parameter δ on the ECRs in both the L2 and energy-norms. A history of convergence269

is shown in Figures 3 (||| · |||-norm) and 4 (‖ · ‖0,Th
-norm) for uniform triangular meshes and for polynomial degrees270

k ∈ {1, · · · , 3}, and Table 1 summarizes our numerical observations.271

H-IIP H-NIP H-SIP

Degree Norm δ = −1 δ = 0 δ ≥ 2 δ = −1 δ = 0 δ ≥ 2 δ = −1 δ = 0

k = 1
‖ · ‖0,Th

1.0 2.0 – 1.0 2.0 – 1.0 2.0

||| · ||| 1.0 1.0 – 1.0 1.0 – 1.0 1.0

odd k
‖ · ‖0,Th

k k + 1 – k + 1 – – k + 1 –

||| · ||| k − 1 k – k – – k –

even k
‖ · ‖0,Th

k − 1 k k + 1 k k k + 1 k + 1 –

||| · ||| k − 1 k k k k k k –

Table 1: Test A: a summary of the ECRs in the L2- and energy-norm of H-IP methods in terms of the parameter δ and the polynomial parity k.

As expected, these observations are in agreement with theoretical estimates and underline that the stabilization pa-272

rameter δ influences the convergence rate. In particular, we recover some well-known estimates if δ = 0. First, we273

notice that the convergence of the H-IP method in the energy-norm is linearly δ-dependent if δ ≤ 0 and optimal if274

δ ≥ 0, which is in accordance with Lemma 4.1 (see Figure 3). A brief analysis of the convergence in the L2-norm275

indicates that both the H-IIP and H-NIP schemes behave differently from the H-SIP scheme. Nonsymmetric variants276

are strongly influenced by the polynomial parity of k and by the penalty parameter δ. We observe that the convergence277

rate increases linearly and optimally if δ ≥ 0 for odd k and δ ≥ 2 for even k. In this last case, let us point out that278

the optimal convergence is nearly reached once δ ≥ 1. As expected, the symmetric scheme converges optimally when279

δ ≥ 0. These results agree with the theoretical results established in Theorem 4.2.280

5.2. Test B: Influence of the parameter κF281

In the second experiment, we analyze the behavior of the discretization method in the context of genuine anisotropic282

and heterogeneous properties. Then, the unit square Ω is split into four subdomains Ω1 = [0, 1/2]2, Ω2 = [1/2, 1] ×283

[0, 1/2],Ω3 = [1/2, 1]2 and Ω4 = [0, 1/2] × [1/2, 1], such that Ω := ∪4
i=1
Ωi. The exact solution on the whole domain284

Ω is given by u(x, y) = sin(πx) sin(πy), and the diffusivity tensor takes different values in each subregion:285

κ =

[

1 0

0 λ

]

for (x, y) ∈ Ω1, Ω3, and κ =

[

1/λ 0

0 1

]

for (x, y) ∈ Ω2, Ω4, (45)

where the parameter λ > 0 simultaneously controls both the anisotropy and the medium heterogeneity. Here, we286

focus on the influence of the parameter κF on the robustness of the discretization method in the context of highly287

anisotropic and heterogeneous coefficients, and we choose λ = 10−3. In this context, the anisotropy and heterogeneity288
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Figure 3: Test A: history of convergence of the H-IP methods with −1 ≤ δ ≤ 0: |||u − uh ||| vs. h for the three H-IP variants and various polynomial

degrees (1 ≤ k ≤ 3) on uniform triangular meshes.
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Figure 4: Test A: history of convergence of the H-IP methods with −1 ≤ δ ≤ 2: ‖u−uh‖0,Th
vs. h for the three H-IP variants and various polynomial

degrees (1 ≤ k ≤ 3) on uniform triangular meshes.

Ω1 Ω2

Ω3Ω4

κ1 κ2

κ3κ4

Figure 5: Description of test case B with genuine anisotropic and heterogeneous properties.
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ratios are approximately 103 and 106, respectively. For the simulations, we consider a conforming triangular mesh289

(h = 1/32) respecting the discontinuities of κ, we use piecewise linear approximations of the discrete variable uh, and290

we set δ = 0 in the definition of the penalty parameter (13). Here, the comparisons are only graphical (Figure 6).291

We depict the discrete solutions uh obtained successively using κF := 1 (Case 1) and κF := nFκE nF (Case 2) for292

all variations of ǫ ∈ {0,±1}. In the first situation (Figures 6-a, 6-b and 6-c), the discrete solutions exhibit spurious293

oscillations and erratic behavior, thus violating the discrete maximum principle (see, e.g., Table 2). This can be easily294

explained by observing that the first formulation does not distinguish between the principal directions of the diffusivity295

tensor. Consequently, a misestimated penalty is applied in directions of low or high diffusivity. In the second situation296

(Figures 6-d, 6-e and 6-f), the jumps in diffusivity are better captured at the interfaces of discontinuities, and the297

discrete solutions are significantly more robust, i.e., exhibit less erratic behavior.298

H-IIP H-NIP H-SIP

0.00  

0.36  

0.72  

1.1   

1.41

(a)

0.00  

0.39  

0.78  

1.2   

1.53

(b)

0.00  

0.37  

0.74  

1.1   

1.44

(c)

0.00  

0.25  

0.50  

0.75  

1.00

(d)

0.00  

0.25  

0.50  

0.75  

1.00

(e)

0.00  

0.25  

0.50  

0.76  

1.00

(f)

Figure 6: Test B: representation of the discrete solution uh obtained by the H-IIP, H-NIP and H-SIP schemes, respectively, on the structured

triangular mesh (h = 1/32). In the top images, the parameter κF in (13) is chosen as κF := 1, and in the bottom images, κF := nF κE nF .

H-IIP H-NIP H-SIP

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

min(uh) 1.54e − 03 2.14e − 03 2.79e − 03 2.09e − 03 2.68e − 03 2.12e − 03

max(uh) 1.25e + 00 9.97e − 01 1.33e + 00 9.97e − 01 1.30e + 00 9.97e − 01

‖u − uh‖0,Th
1.31e − 01 4.33e − 04 1.39e − 01 5.43e − 04 1.21e − 01 1.96e − 03

Table 2: Test B: comparison of H-IP methods using a piecewise linear approximation (uh ∈ P1(Th)) and two distinct definitions of the coefficient

κF for highly anisotropic and heterogeneous media (λ = 10−3). In Case 1, κF := 1, and in Case 2, κF := nF κE nF .

5.3. Test C: Influence of the parameter γ0299

To conclude the sequence of numerical tests, we analyze the influence of the parameter γ0 on the convergence300

of the H-SIP method for κ-orthogonal grids only. For simplicity, we consider the same test case as Test B, (5.2),301

and we set two values of the parameter λ: (i) λ = 1 for a homogeneous and isotropic media and (ii) λ = 0.1 for a302
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heterogeneous and anisotropic media. We plot the computed L2-error of the H-SIP method for a wide range of values303

of the parameter γ0—i.e., 1 ≤ γ0 ≤ 6—using a uniform square mesh (h = 1/32). The analysis is done for polynomial304

degrees 1 ≤ k ≤ 4, but the results are presented for k = 1, 2 only. Analyzing Figure 7, we observe that there exists an305

optimal value of the parameter γ0 := γopt that minimizes the L2-error of the scheme. In the context of κ-orthogonal306

grids, this optimal value (γopt = 2) is insensitive to the mesh form, the mesh size h, the polynomial degree k, and the307

heterogeneity and/or anisotropy of the media λ. A history of the convergence of the H-SIP method using γopt = 2308

is then given in Table 7, and we note the surprising superconvergence of uh (k + 2) in the discrete L2-norm obtained309

without any postprocessing. We emphasize that the superconvergence property is not achieved for any triangular mesh310

or any value of the parameter ǫ , 1, even using the optimal parameter γopt in (13).311
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Figure 7: Test C: the L2-error of the H-SIP method vs. γ0 for a uniform square mesh using piecewise linear (a) and quadratic (b) approximations.

H-SIP (k = 1) H-SIP (k = 2)

λ = 1 λ = 0.1 λ = 1 λ = 0.1

h−1 ‖u − uh‖0,Th
ECR ‖u − uh‖0,Th

ECR ‖u − uh‖0,Th
ECR ‖u − uh‖0,Th

ECR

8 1.7e − 04 – 1.7e − 04 – 2.6e − 06 – 2.6e − 06 –

16 2.1e − 05 3.00 2.1e − 05 3.00 1.6e − 07 3.99 1.6e − 07 3.99

32 2.7e − 06 3.00 2.7e − 06 3.00 1.0e − 08 4.00 1.0e − 08 4.00

64 3.4e − 07 3.00 3.4e − 07 3.00 6.4e − 10 4.00 6.4e − 10 4.00

Table 3: Test C: history of the convergence ‖u − uh‖0,Th
of the H-SIP method using the optimal parameter γopt on uniform square meshes

6. Conclusion312

We derive improved a priori error estimates of families of hybridizable interior penalty discontinuous Galerkin313

methods using a variable penalty to solve highly anisotropic diffusion problems. The convergence analysis highlights314

the hδ-dependency of the coercivity condition and the boundedness requirement that strongly impacts the derived315

error estimates in terms of both energy- and L2-norms. The optimal convergence of the energy-norm is proven for316

any penalty parameter δ ≥ 0 and ǫ ∈ {0,±1}. The situation is somewhat different in L2, and distinctive features317

can be found between the three schemes. Indeed, the symmetric method theoretically converges optimally if δ ≥ 0,318

and non-symmetric variants converge only if δ ≥ 2 independently of the polynomial parity. All of these estimates are319

corroborated by numerical evidence. Notably, the superconvergence of the H-SIP scheme is achieved for κ-orthogonal320

grids without any postprocessing but only if an appropriate γ0 is selected.321
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