Optimal bandwidth criteria for nonparametric trend estimation under stochastic volatility error processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Optimal bandwidth criteria for nonparametric trend estimation under stochastic volatility error processes

Karim Benhenni
Didier A. Girard
Sana Louhichi

Résumé

This paper is concerned with the optimal selection of the smoothing parameter $h$ in kernel estimation of a trend in nonparametric regression models with (dependent) stochastic volatility errors $\epsilon_i= \sigma_i Z_i$, $i=1,\cdots, n$, where $(\sigma_i)_i$ is referred as the volatility sequences and $(Z_i)_i$ a sequence of i.i.d random variables. We consider three types of volatility sequences; the log-normal volatility, the Gamma volatility and the log-linear volatility with Bernoulli innovations. In fact, based on three criteria for deriving optimal smoothing parameters, namely the average squared error, the mean average squared error and an adjusted Mallows-type criterion to the dependent case, we show that these three minimizers are first-order equivalent in probability. Moreover, we derive the normal asymptotic distribution of the difference between the minimizer of the average squared error and the minimizer based on the Mallows-type criterion. A Monte-Carlo simulation is conducted for a log-normal stochastic volatility model.
Fichier principal
Vignette du fichier
proceedings05-07-20.pdf (700.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02889802 , version 1 (05-07-2020)
hal-02889802 , version 2 (31-08-2021)

Identifiants

  • HAL Id : hal-02889802 , version 1

Citer

Karim Benhenni, Didier A. Girard, Sana Louhichi. Optimal bandwidth criteria for nonparametric trend estimation under stochastic volatility error processes. 2020. ⟨hal-02889802v1⟩
174 Consultations
130 Téléchargements

Partager

More