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Abstract

This paper is concerned with the optimal selection of the smoothing parameter h in ker-

nel estimation of a trend in nonparametric regression models with (dependent) stochastic

volatility errors εi = σiZi, i = 1, · · · , n, where (σi)i is referred as the volatility sequences

and (Zi)i a sequence of i.i.d random variables. We consider three types of volatility se-

quences; the log-normal volatility, the Gamma volatility and the log-linear volatility with

Bernoulli innovations. In fact, based on three criteria for deriving optimal smoothing

parameters, namely the average squared error, the mean average squared error and an

adjusted Mallows-type criterion to the dependent case, we show that these three minimiz-

ers are first-order equivalent in probability. Moreover, we derive the normal asymptotic

distribution of the difference between the minimizer of the average squared error and the

minimizer based on the Mallows-type criterion. A Monte-Carlo simulation is conducted

for a log-normal stochastic volatility model.
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1 Introduction

Nonparametric trend estimation is a very popular field of research in Statistics and is used

in different domain of applications. There are several nonparametric estimate of the trend in

time series models or the mean function of stochastic processes. Most of these estimate are

constructed from a kernel function that depends on a smoothing parameter h known also as

a bandwidth. The choice of this parameter is crucial since it has an important impact on the

performance of the kernel estimate. Some criteria are available for choosing this parameter

but there are mostly based on models with independent errors; the plug-in method, see for

instance Ruppert, Sheather and Wand (1995) and Fan, Gijbels, Hu and Huang (1996), the

cross-validation (CV) and the generalized cross-validation (GCV), see for instance Rice (1984),

Härdle, Hall and Marron (1988) and Girard (1998) among others. However, in the case of de-

pendent (correlated) errors, there are a very limited available results in the literature concerning

the selection methods of the smoothing parameter, see for instance the review by Opsomer,

Wang and Yang (2001). Hall, Lahiri and Polzehl (1995) develop bootstrap and cross-validation

methods to select the smoothing parameter under short and long range dependance.

Benhenni, Girard and Louhichi (2020) considered dependent stationary martingale differ-

ence errors with an application to ARCH(1) errors. Based on three criteria for deriving optimal

smoothing parameters, namely the average squared error, the mean average squared error and

the Mallows-type criterion adapted to the dependent case, they showed that these three min-

imizers are first-order equivalent in probability. Moreover, they give a normal asymptotic

behavior of the difference between the minimizer of the average squared error and that of the

Mallows-type criterion.

In this paper, we extend these results to other types of strictly stationary dependent errors,

namely the time series volatility models.

Volatility has been one of the most active areas of research in time series econometrics and

economic forecasting. It may be modeled as an unobserved component following some latent

stochastic process, such as auto-regression. The resulting models are called stochastic volatility

(SV) models and have been the focus of considerable attention, see for instance Taylor (1994),

Ghysels, Harvey and Renault (1996), Shephard (1996) and Billo and Sartore (2005).

More precisely, we concentrate on three families of stochastic volatility models (SV): the log-

normal volatility, the Gamma volatility and the log-linear volatility with Bernoulli innovations.

The first two SV models enjoy a strong mixing condition with a decreasing power bound whereas

the Bernoulli SV models do not satisfy any mixing property.
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Likewise, we establish the first-order equivalent in probability of the three minimizers and

derive the asymptotic normal distribution of the difference between the minimizer of the average

squared error and the minimizer based on the adjusted Mallows-type criterion to (weakly)

dependent errors which can be mixing or not with a decreaing power decay of the corresponding

(dependence) coefficients.

It should be noticed that Hall, Lahiri and Polzehl (1995) obtained the first order equivalence

of the CV criteria instead of the Mallows one for stationary error process with all finite moments

but under the Rosenblatt mixing condition with a decreasing exponential decay.

The paper is organized as follows. Section 2 introduces the nonparametric model and defines

the different criteria for the selection of the smoothing parameter h. Section 3 is devoted to the

main results when SV models are considered and in particular for some families of SV models:

the log-normal SV, the Gamma SV and the log-linear SV with Bernoulli innovations. Finally,

a Monte Carlo simulation study is conducted for the log-normal SV error process in order to

confirm our theoretical results.

2 Model, selection criteria and previous results

In this section, we follow the same notations as in Benhenni, Girard and Louhichi (2020).

Let (εi)i≥0 be a stationary sequence of centered random variables with finite second moment.

Let σ2 = Var(ε1) and R be the correlation matrix of the vector (ε1, · · · , εn)t. Consider the

following regression model, defined for i = 1, · · · , n, by

Yi = r(xi) + εi, xi =
i

n
, (1)

where r is an unknown regression function with second order continuous derivative and the xi’s

are equally spaced fixed design.

We are interested in this paper by the Priestley-Chao estimator of r defined, for x ∈ IR, by

r̂(x) =
n∑
i=1

li(x)Yi, with li(x) =
1

nh
K

(
x− xi
h

)
,

where K is a compactly supported even kernel with class C1([−1, 1]) and h is a positive band-

width less than 1/2.

Other types of Kernel estimate such as the Gasser-Müller, see for instance Benelmadani,

Benhenni and Louhichi (2019) or local polynomial, see Fan, Gijbels, Hu and Huang (1996),

could also be considered and the optimal selection procedures of the smoothing parameter

raised in this section are of the same nature.

The above curve estimator entails the following smoothing, in the matrix form,

r̂ = LY,

3



with

r̂ = (r̂(x1), · · · , r̂(xn))t, Y = (Y1, · · · , Yn)t

and L = (lj(xi))1≤i,j≤n is known as the smoothing matrix or the hat matrix. Since the estimator

r̂ depends on some smoothing parameter h, we will need some procedure for choosing h. For

this, we recall some known criteria of selecting this parameter h.

In order to eliminate the boundary effects of the compactly supported kernelK, we introduce

a known function supported on a subinterval of the unit interval. For this, suppose without

loss of generality that h < ε where ε is a fixed positive real number less than 1/2. Let u := uε
be a positive function, of class C1 and [ε, 1− ε]-compactly supported.

Define the average squared error

Tn(h) =
1

n

n∑
i=1

u(xi)(r̂(xi)− r(xi))2 =
1

n
‖U1/2(r̂ − r)‖2,

where U is the diagonal matrix U = diag(u(x1), · · · , u(xn)). The following lemma from Ben-

henni, Girard and Louhichi (2020) evaluates its mean, IE(Tn(h)), for finite variance of stationary

errors (εi)i∈IN.

Lemma 1. Suppose that
∑∞

k=1 k|Cov(ε0, εk)| <∞. Define,

Dn(h) =
h4

4

∫ 1

0

u(x)r
′′2(x)dx

(∫ 1

−1
t2K(t)dt

)2

+
1

nh
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dy

(
σ2 + 2

∞∑
k=1

Cov(ε0, εk)

)
.

Then for any n ≥ 1 and h ∈]0, ε[,

IE(Tn(h)) = Dn(h) +O(
1

n
) + o(h4) +O(

1

n2h4
) +

γ(h)

nh
,

where O is uniformly on n and h, γ(h) depends on h (but not on n) and tends to 0 when h

tends to 0.

Let h∗n = argminh>0Dn(h). Clearly, if
∫ 1

0
u(x)r

′′2(x)dx 6= 0 then

h∗n = n−1/5

(
(
∫ 1

0
u(x)dx)

∫ 1

−1K
2(y)dy (σ2 + 2

∑∞
k=1 Cov(ε0, εk))∫ 1

0
u(x)r′′2(x)dx(

∫ 1

−1 t
2K(t)dt)2

)1/5

=: cn−1/5.

Let Hn be a neighborhood of h∗n, i.e, Hn = [an−1/5, bn−1/5] for some fixed a < c < b. Define

also,

hn = argminh∈Hn
IE(Tn(h)) and ĥn = argminh∈Hn

Tn(h).
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Of course these three “optimal” parameters hn, h∗n and ĥn depend on the unknown func-

tion r, since the criteria that they respectively minimise, depend themselves on the regression

function r. Many authors agree that, among these ones, ĥn should be the target (see Girard

(1998), page 316). For this reason, an important literature considered minimizers of “good”

estimators of Tn(h) and studied their asymptotic behavior.

A nearly unbiased estimate of IE(Tn(h)) is constructed allowing to define a criterion that

selects an observable choice for h. An early approach was the well known Cross-Validation

criterion which was next transformed to various Generalized Cross-Validation (GCV) criteria.

All those different forms of the GCV criteria are second order equivalent in the sense that they

are asymptotically close in distribution to the following Mallows criterion:

Cp := Cp(h) =
1∑n

i=1 u(xi)

n∑
i=1

u(xi)(Yi − r̂(xi))2 + 2
ν

n
σ̂2, (2)

where,

σ̂2 =
1∑n

i=1 u(xi)

n∑
i=1

u(xi)(Yi − r̂(xi))2, ν := n
tr(UL)

tr(U)
=

1

h
K(0).

Let ĥ be a minimizer over h ∈ Hn of the function Cp. Härdle, Hall and Marron (1988) proved,

in the context of i.i.d errors (εi)1≤i≤n with all finite moments, that ĥ, h∗n, ĥn, hn are all equivalent

in probability and that ĥ− ĥn, hn − ĥn are also close in distribution as n tends to infinity.

Benhenni, Girard and Louhichi (2020) extended these appealing theoretical properties of

the Mallows criteria (2) to stationary martingale difference sequences of dependent errors with

known covariance matrix σ2R of the vector (ε1, · · · , εn)t (of course R = I in the case “stationary

martingale differences”), by considering the well known “corrected CL criterion” (see Liu (2001),

Francisco-Fernandez and Opsomer (2005) and Meilan-Vila, Fernandez-Casal, Crujeiras and

Francisco-Fernandez (2020) for recent applications)

CL(h) = n−1‖U1/2(I − L)Y ‖2 + 2σ2n−1tr(URL). (3)

Let us define ĥM to be the minimizer of the dependent version of the Mallows criteria (3),

ĥM = argminh∈Hn
CL(h).

We recall two assumptions that are required to establish the main results in Benhenni, Girard

and Louhichi (2020).

Assumptions (A). Suppose that both the functions h 7−→ Tn(h) and h 7−→ CL(h) have

continuous first derivatives, that T ′n(ĥn) = 0 and CL′(ĥM) = 0 almost surely. Suppose also that

the function h 7−→ IE(Tn(h)) is twice differentiable with continuous second derivative and that
∂2

∂h2
IE(Tn(h)) = IE(T ′′n (h)).
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Assumptions (B). Assume that the errors (εi)i≥0 form a stationary martingale difference

sequence (MDS, in short) with respect to some natural filtration (Fi)i≥1, i.e, for any i > 0, εi
is Fi-measurable and IE(εi|Fi−1) = 0. Suppose also that IE(ε2p1 ) <∞ for some p > 8.

The first result of Benhenni, Girard and Louhichi (2020) states that for MDS errors, the

bandwidths hn, h
∗
n, ĥn and ĥM are first-order equivalent in probability (and the CL enjoys

the ”asymptotic optimality” property).

Proposition 1. Suppose that Assumptions (A) and (B) are satisfied. Then

h∗n
hn
,
ĥn
hn
,
ĥM
hn

all converge in probability to 1 as n tends to infinity.

The second result in Benhenni, Girard and Louhichi (2020) gives, under an additional depen-

dence condition, the rate at which ĥn− ĥM converges in distribution to a centered normal law,

and furthermore states that the martingale difference dependence doesn’t impact ĥn − ĥM up

to second-order.

Theorem 1. Suppose that Assumptions (A) and (B) are satisfied. Moreover, suppose that

there exists a positive decreasing function Φ defined on IR+ satisfying

∞∑
s=1

s4Φ(s) <∞,

and for any positive integer q ≤ 6, 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

ik+1 − ik ≥ max1≤l≤q−1(il+1 − il),

|Cov(εi1 · · · εik , εik+1
· · · εiq)| ≤ Φ(ik+1 − ik). (4)

Then

n3/10(ĥn − ĥM)

converges in distribution to a centered normal law with variance Σ2 given by

Σ2 =
4σ6/5

52A8/5B2/5
(

∫
t2K(t)dt)2

∫ 1

0

u2(x)r′′2(x)dx

+
8σ6/5

52A3/5B7/5

∫ 1

0

u2(x)dx

∫
(K −G)2(u)du,

where σ2 = IE(ε21), G is the function defined for any x ∈ IR by G(x) = −xK ′(x) and

A =

∫ 1

0

u(x)r′′2(x)dx

(∫
t2K(t)dt

)2

, B =

∫ 1

0

u(x)dx

∫
K2(t)dt.
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3 Stochastic volatility models

A Stochastic Volatility process (εi)i∈IN, SV in short, is defined as

εi = σiZi, i ∈ IN, (5)

where the volatility sequence (σi)i∈IN is a strictly stationary sequence of positive random vari-

ables which is independent of the i.i.d. centered noise sequence (Zi)i∈IN. We refer, for instance,

to Davis and Mikosh (2009) for the main properties of SV models.

The following proposition gives conditions under which the requirements of Proposition 1 and

Theorem 1 are satisfied for SV error process.

Proposition 2. Let (εi)i∈IN be as defined in (5). Suppose that there exists a sequence of filtration

(Fi)i≥0 such that for any i ∈ IN, σ(Z0, · · · , Zi) ⊂ Fi, σi is Fi−1-measurable and that almost

surely IE (Zi|Fi−1) = 0. Suppose moreover that, there exists a positive decreasing function Φ̃

defined on IR+ satisfying
∞∑
s=1

s4Φ̃(s) <∞,

and for any positive integer q ≤ 6, 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

ik+1 − ik ≥ max1≤l≤q−1(il+1 − il),

|Cov(σi1 · · ·σik , σik+1
· · ·σiq)| ≤ Φ̃(ik+1 − ik). (6)

Suppose that Assumptions (A) are satisfied. If IE(σ2p
1 ) < ∞ and IE(Z2p

1 ) < ∞ for some p > 8

then the conclusions of Proposition 1 and Theorem 1 hold.

Proof of Proposition 2. The sequence (εi)i∈IN, as defined in (5), is strictly stationary. This

property is an immediate consequence of the independence of the strictly stationary sequence

(σi)i∈IN and that of the i.i.d. sequence (Zi)i∈IN.

The (εi)i∈IN is MDS since, εi is Fi-measurable and IE (εi|Fi−1) = σiIE (Zi|Fi−1) = 0, almost

surely. We deduce from IE(ε2p1 ) = IE(Z2p
1 )IE(σ2p

1 ) and the assumptions of Proposition 2 that

IE(ε2p1 ) <∞ for some p > 8. Our task now, is to check Condition (4) of Theorem 1. We have,

by definition of SV model, (denoting by P the distribution of Z1),

Cov(εi1 · · · εik , εik+1
· · · εiq)

= Cov(σi1Zi1 · · ·σikZik , σik+1
Zik+1

· · ·σiqZiq)

=

∫ ∫
zi1 · · · ziqCov(σi1 · · ·σik , σik+1

· · ·σiq)dP (zi1) · · · dP (ziq)

= IE(Zi1 · · ·Ziq)Cov(σi1 · · ·σik , σik+1
· · ·σiq).

Consequently,∣∣Cov(εi1 · · · εik , εik+1
· · · εiq)

∣∣ = |IE(Zi1 · · ·Ziq)||Cov(σi1 · · ·σik , σik+1
· · ·σiq)|. (7)
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Condition (4) is then satisfied from the last equality together with Condition (6). The proof

of Proposition 2 is complete since all the requirements of Proposition 1 and Theorem 1 are

satisfied. �

3.1 Log-normal SV model

The following corollary gives a log-normal type of SV models satisfying the assumptions of

Proposition 2 and thus the conclusions of Proposition 1 and Theorem 1 are true. The log-

normal SV models are due to Taylor (1986). For these models, the volatility sequence (σi)i∈IN
is an exponential weight of a Gaussian moving average. They are a basic alternative to ARCH-

type processes, since unlike ARCH-type models, their variances always remain positive without

the need of further conditions.

Corollary 1 below, proves in particular that for log-normal SV models the volatility sequence

(σi)i∈IN is a stationary strong mixing sequence in the sense of Rosenblatt (1956): (σi)i∈IN is a

strongly mixing sequence if, its strong mixing coefficient αs defined by,

αs = sup
k∈IN

α(σ(σi, i ≤ k), (σi, i ≥ k + s)),

tends to 0 as s tends to infinity, where for two sigma-fields A and B,

α(A,B) = sup
A∈A,B∈B

|Cov(1IA, 1IB)|.

Corollary 1. Suppose that the volatility sequence (σi)i∈IN is defined for i ∈ IN, by σi =

exp
(∑∞

j=0 γ
jηi−j

)
with |γ| < 1 and (ηi)i∈IN is an i.i.d. centered sequence distributed as a

Gaussian law with finite variance. Suppose also that Z1 follows a standard Gaussian law. Then

the process (εi)i∈IN is stationary MDS, strongly mixing with αs = O(|γ| 23 s), with finite all integer

moments. If Assumptions (A) are satisfied then the conclusions of Proposition 1 and Theorem

1 hold.

Proof of Corollary 1. The strict stationary property of (εi)i follows from that of (σi)i. Now,

let Fi = σ(Z0, · · · , Zi, (ηl)l≤i+1). Then σi is Fi−1-measurable. We have also, by independence

of Zi and Fi−1 that IE (Zi|Fi−1) = 0, a.s. The process (εi)i∈IN is then stationary and MDS. For

p ∈ IN∗, all the 2p-moment of ε1 exist and

IE(ε2p1 ) =
(2p)!

2pp!
exp

(
(2p)2

Var(η1)

8(1− γ2)

)
,

we refer for instance to Cox, Hinkley and Barndorff-Nielsen (1996) (page 22). We have now to

check that (εi)i∈IN is strongly mixing and that Condition (6) is satisfied. Since the density of

η0 is in IL1, the linear process
(∑∞

j=0 γ
jηi−j

)
i

is strongly mixing (see Pham and Tran (1985))

with,

αs ≤ K
∑
j≥s

(∑
k≥j

|γ|k
)2/3

= O(|γ|
2
3
s),
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for some constant K. Similarly, the sequence (σi)i≥0 is still strongly mixing with the same

mixing coefficients (αs)s. We deduce, from (7), that (εi)i≥0 is also strongly mixing with mixing

coefficient of order O(|γ| 23 s). For 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

j := ik+1−ik ≥ max1≤l≤q−1(il+1−il), for s, l, r strictly positive reals for which 1/s+1/l+1/r = 1,

|Cov(σi1 · · ·σik , σik+1
· · ·σiq)| ≤ 8α

1/r
j ‖σi1 · · ·σik‖s‖σik+1

· · ·σiq‖l

(see Davydov (1968)). Condition (6) is then satisfied since
∑

j≥1 j
4|γ| 2j3r <∞.

Therefore the requirements of Proposition 2 are satisfied so that the conclusions of Proposition

1 and Theorem 1 hold. �

3.2 Gamma Stochastic Volatility Models

We consider here the Gamma stochastic model which is defined, for i ∈ IN, by

εi = σiZi, (8)

where (Zi)i≥1 is a sequence of i.i.d. standard normal random variables and for i ∈ IN, σi =
√
hi

where (hi)i∈IN is a positive time-homogeneous strictly stationary Markov chain. We suppose

that the marginal distribution of (hi)i∈IN is a Gamma Γ(p, λ) distribution, i.e., noting by π the

invariant measure of this chain,

π(dx) = f(x)dx, f(x) =
λp

Γ(p)
xp−1e−λx1Ix≥0, p, λ > 0,

Γ(p) is the normalizing constant defined by Γ(p) =
∫∞
0
up−1e−udu. Suppose that this Markov

chain is geometrically ergodic, in the sense that there exists a positive constant c and a Borel

positive function a(.) such that the following holds for any π-a.e. x ∈ IR: for any n ∈ IN∗, and

Borel set B

|P n(x,B)− π(B)| ≤ a(x)e−cn,

recall that the transition probability P is defined, for suitable set A and x, by

P (x,A) = IP (hn ∈ A|hn−1 = x)

and for n ∈ IN

P n(x,A) = IP (hn ∈ A|h0 = x) .

In this case, it is well known that the Markov chain (hi)i∈IN is β-mixing (absolutely regular)

with geometrically decaying mixing coefficients (βn)n≥1 (cf. for instance Theorem 3.7 in Bradley

(2005) and the references therein). Recall that for a sequence (Xn)n the β-mixing coefficients

(βn)n≥1 are defined by (see Doukhan (1994) (Sec 1.1))

βn = sup
m∈IN

IE

(
sup

B∈σ(Xi, i≥m+n)

|IP(B|σ(X0, · · · , Xm))− IP(B)|

)
.
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The Gamma AR(1) process, stated in the example below, is a Markov chain satisfying all

the above assumptions.

Example. Let h0 be distributed as Γ(p, λ) distribution. Define, for ρ ∈]0, 1[, hn recursively by,

hn = ρhn−1 + ξn,

where (ξn)n is an i.i.d. sequence of random variables with characteristic function IE
(
e−itξ1

)
=(

λ−it
λ−itρ

)−p
. The process (hn)n≥1 is then a stationary Markov chain with Gamma Γ(p, λ) uni-

variate marginal distribution (see for instance Gaver and Lewis (1980)). This Markov chain is

also geometrically ergodic in the sense of the above definition (see for instance Kesten (1974)).

The following corollary gives conditions under which the Gamma stochastic volatility models

satisfy the requirements of Proposition 1 and Theorem 1.

Corollary 2. Suppose that the volatility sequence (σi)i∈IN is defined for i ∈ IN, by σi =√
hi where (hi)i∈IN is a positive time-homogeneous strictly stationary and geometrically ergodic

Markov chain with marginal Gamma Γ(p, λ) distribution. Then the process (εi)i∈IN, as defined

by (8), is a stationary MDS, β-mixing with βn = O(e−ρn), for some ρ > 0, and with finite all

integer moments. If Assumptions (A) are satisfied then the conclusions of Proposition 1 and

Theorem 1 hold.

Proof of Corollary 2. This sequence (εn)n≥1 has finite moments at any order. In particular,

for r ∈ IN,

IE(ε2r1 ) = (2r − 1)(2r − 3) · · · 3× 1
Γ(p+ r)

Γ(p)
λ−r,

(see for instance Abraham, Balakrishna and Sivakumar (2007) and the references therein). Now

the sequence (σi)i is also β-mixing so it is also strongly mixing with

αn ≤ βn ≤ a1e
−a2n,

for some positive real numbers a1 and a2. It is proved (Rio (1993), see also Lemma 9 in

Doukhan and Louhichi (1999)) that, for 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

s := ik+1 − ik ≥ max1≤l≤q−1(il+1 − il),

|Cov(σi1 · · ·σik , σik+1
· · ·σiq)| ≤ 4

∫ αs

0

Qq(u)du, (9)

where Q is the quantile function of σ1, i.e. the inverse of the tail function t 7−→ IP(σ1 > t). We

have
∫∞
x
ta−1e−tdt ∼ xa−1e−x as x tends to infinity. We deduce, from this, that, as x tends to

infinity,

IP(h1 > x) =
λp

Γ(p)

∫ ∞
x

tp−1e−λtdt ∼ λp−1

Γ(p)
xp−1e−λx.

10



Hence Q(u) ≤
√

2
λ

ln( c
u
) for some c > 1 and, for some a ∈]0, 1[.

From now on, let cst denotes a constant that may be different from line to line

We have, ∫ αs

0

Qq(u)du ≤ cst

∫ αs

0

(
ln(

c

u
)
)q/2

du

≤ cst

∫ ∞
c/αs

(ln(v))q/2

v2
dv ≤ cst

∫ ∞
c/αs

1

v1+a
dv ≤ cst αas ≤ cst e−aρs.

Consequently, ∑
s≥1

s4
∫ αs

0

Qq(u)du <∞. (10)

Condition (6) is satisfied from (9) and (10). As in the proof of Corollary 1, we deduce that all

the requirements of Proposition 2 are satisfied and therefore the conclusions of Proposition 1

and Theorem 1 also hold. �

3.3 Other SV model with no mixing properties

The following corollary studies another SV model for which the conclusions of Proposition 1

and Theorem 1 still hold. In this model, we suppose that log(σi) is a linear process with

Bernoulli innovation having coefficients (2−k)k. Unlike the log-normal SV, in this case the

volatility sequence (σi)i is not strongly mixing (see Bradley (1986)) but it’s associated in the

sense of Esary, Proschan and Walkup (1967). Recall that the sequence (σi)i is associated if for

any non decreasing and bounded functions f and g,

Cov(f(σ1, · · · , σn), g(σ1, · · · , σn)) ≥ 0. (11)

Corollary 3. Suppose that the volatility sequence (σi)i∈IN is defined for i ∈ IN, by σi =

exp
(∑∞

j=0 2−jηi−j

)
where (ηi)i∈ZZ is an i.i.d. centered sequence distributed as a Bernoulli

B(1/2) distribution. Suppose also that Z1 follows a standard normal law. Then the volatil-

ity sequence (σi)i∈IN is associated. If Assumptions (A) are satisfied then the conclusions of

Proposition 1 and Theorem 1 hold.

Proof of Corollary 3. Let Fi = σ(Z0, · · · , Zi, (ηl)l≤i+1). Then σi is Fi−1-measurable. We have

also, by independence of Zi and Fi−1 that IE (Zi|Fi−1) = 0, almost surely. The sequence (σi)i
is associated since it is a nondecreasing of independent random variables (see Esary, Proschan

and Walkup (1967)). The random variable σi is bounded, |σi| ≤ e2 and, by (see Birkel (1988)),

|Cov(σi, σl)| ≤ e2
∞∑
j=0

2−j
∞∑
k=0

2−kCov(ηi−j, ηl−k) ≤ cst 2−|i−l|.

11



For 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that s := ik+1− ik ≥ max1≤l≤q−1(il+1− il), we

have using Birkel (1988),

|Cov(σi1 · · · σik , σik+1
· · ·σiq)| ≤ e2(q−2)

ik∑
i=i1

iq∑
l=ik+1

Cov(σi, σl) ≤ cst 2−s.

Condition (6) is then satisfied. All the requirements of Proposition 2 are satisfied and therefore

the conclusions of Proposition 1 and Theorem 1 hold. �

4 A Monte-carlo simulation study for a “trend plus a

log-normal SV process”

100 200 300 400 500

-2

-1

1

2

3

100 200 300 400 500

-2

-1

1

2

3

Figure 1 : n = 29. Each of these 2 panels displays one data set Y and the “smooth” deterministic

trend r(x) when the noise is a log-normal SV sequence. In the 2 panels τ = 0.75, and they only differ

by γ = 0.01 (left) and γ = 0.98 (right); see (12) for the definition of these two parameters

Our experiments use the same designs as the ones used for the experiments in Benhenni,

Girard and Louhichi (2020); the only difference is that the noise sequence is now a common

log-normal SV sequence, as analyzed in Corollary 1, instead of an ARCH(1). We thus consider

the same smooth function r(x) = (4x(1 − x))3 as “deterministic trend”, an equispaced design

and a noise level σ for which the noise-to-signal ratio is “moderate” (precisely 0.322). The

kernel regression technique employs a periodic kernel smoothing (the chosen r being “smoothly

periodic”, such a periodic processing is appropriate and makes very affordable extensive large-

scale simulations). We use u(t) ≡ 1 as a weight function, which is possible in this periodic

setting. See Benhenni, Girard and Louhichi (2020) for more details.

As parameters, in order to define the noise process, in addition to σ and γ (the serial

correlation introduced in Corollary 1), we introduce

τ :=
√

Var(η1)/(1− γ2). (12)

12



The advantage of using τ instead of Var(η1) is, as it is immediate to see, that τ is the unique

shape-parameter for the marginal density of the sequence of conditional variances σ2
i ’s. Such a

parameterization is common (see e.g. Taylor (1994)). Let us remark that, to generate a noise

process of variance σ2, it is easy to check that the variance of Zi (used in definition 8 of the

εi’s) has to be set to σ2 exp (−2τ 2) .

We consider three values for τ , and three values for the serial-correlation parameter γ,

precisely

τ ∈ {0.2, 0.4, 0.75}, γ ∈ {0.01, 0.9, 0.98},

with a common value σ = 0.32. Note that the intermediate value 0.4 for τ is representative

of values often obtained by fitting such a log-normal SV model to real econometric series; see

Taylor (1994) (especially its Section 3.4, where τ is denoted by β) for an interesting review.

Any large value of τ (say, greater than 1) implies a very fat tail for the marginal density of

the amplitude of the noise |εi| which may cause a large instability of the classical kernel curve-

estimate (a “robust” version kernel smoothing would be much more appropriate in such case).

On the other hand, recall that a value very close to 0 for τ would imply that the density of

the conditional variance σ2
i is concentrated around 1 and thus the serial correlation would have

virtually no impact on the dependence between the εi’s (which is then a “quasi-iid-normal”

sequence). Thus we restrict the present study to the range [0.2, 0.75] for τ .

The “a.o.” property. First, let us analyze the asymptotic optimality (a.o.) result. As is

well known, a result like Proposition 1 generally stems from a uniform relative accuracy result

which states that CL(h)−n−1‖U1/2(Y − r)‖2 uniformly approximates Tn(h) (or its expectation

MASE(h)) with a small (in probability and in sup norm over the domain of candidate h’s)

error, “small” being defined relatively to MASE(h).

We resume in Figure 2 that a uniform relative accuracy is well observed for all the considered

values of τ and γ (note that the results for γ = 0.01 and τ ∈ {0.2, 0.4, 0.75} have produced

plots very similar to the plot for γ = 0.9, τ = 0.2 (top-left panel in Figure 2) so they are not

included in Figure 2). Only a slight deterioration is observed for the largest τ and γ.
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Figure 2 : n = 215. These 6 panels only differ by (τ, γ) varying in {0.2, 0.4, 0.75}×{0.9, 0.98}. In each

panel, the dashed blue curve is the “empirical MASE”, precisely the average (over the 3000 replicates)

of the Tn(h) curves. Each of the 21 boxplots (located at 21 fixed discrete values for h) are built from

the first 100 replicates of CL(h)− n−1‖U1/2(Y − r)‖2.

Asymptotic normal distribution. This Section aims to assess the usefulness of the theoret-

ical asymptotic normal approximation stated in Theorem 1 for reasonable dataset sizes n. We

are going to demonstrate that both τ and γ have an impact on the rate of convergence (with

n) toward this approximation.
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Figure 3 : τ = 0.2. . These 6 panels only differ by n (= 29 in the top row and 215 in the bottom

row) and by γ varying in {0.01, 0.9, 0.98}. In each panel, the displayed normalized histogram is that

of the 3000 replicates of ĥM − ĥn. The superposed blue curve is the normal distribution of ĥM − ĥn
predicted by the asymptotic theory.

Let us first consider τ = 0.2. By inspecting Figure 3, we clearly see, in the three top

panels, that the asymptotic approximation fits rather well already for n = 29 and for any

γ ∈ {0.01, 0.9, 0.98}. For n = 215 the three bottom panels illustrate that the asymptotic theory

provides a very accurate prediction of the finite sample “truth”. Notice that, as expected the

accuracy for n = 212 (not displayed here) is observed to be intermediary between the one for

n = 29 and that for n = 215, and is thus also quite good.

Notice that, again as expected, the range of the abscissae (h-differences) increases by moving

from n = 215 (bottom) to n = 29 (top).

It is good news that the approximation given by Theorem 1 is very useful for n as small as

512.
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γ=0.01 γ=0.9 γ=0.98

n=29
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Figure 4 : τ = 0.4. These 9 panels only differ by n (= 29 in the top row, 212 (top) and n = 215

(bottom). )and by γ varying in {001, 0.9, 0.98}. In each panel, the displayed normalized histogram

is that of the 3000 replicates of ĥM − ĥn. The superposed blue curve is the normal distribution of

ĥM − ĥn predicted by the asymptotic theory.

The simulation results for τ = 0.4 are described in Figure 4. Here we add the three panels

corresponding to n = 212. The analog figure for τ = 0.75 is Figure 5. Now one clearly sees

that, for γ = 0.01 (first column in these two 3 × 3 arrays of histograms) the smallest value

of n (= 29) is always sufficient for the usefulness of the asymptotic normal approximation -

although there is a slight degradation for τ = 0.75 (precisely the histogram in the top-left panel

exhibits a non-negligible proportion of large negative values for ĥM − ĥn which almost always

are associated with too-small ĥM ’s). One observes that the latter degradation is softened if n

is increased to 212 (middle panel of first column of Figure 5). Next, an inspection of the second

column (thus γ = 0.9) of both these two arrays shows that n = 29 is ”just sufficient” only for

the smaller τ = 0, 4 and provided one accepts a slight inaccuracy of the same type as the one

mentioned above. But n = 212 is clearly required for τ = 0.75. Notice that, because of the

observed jump in the observed accuracy by passing from (τ, γ) = (0.75, 0.01) to (0.75, 0.9), we

also repeated the same simulations for the case (τ, γ) = (0.75, 0.5) : they produced a histogram

rather close to the one for (0.75, 0.01); this demonstrates that it is only for “large” γ (that is,

near 0.9 or above) that the asymptotic approximation is not accurate for n = 29.
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Next, the third columns (that is, for γ = 0.98) shows that n = 212 is required for τ = 0.4,

and n = 215 is required for τ = 0.75.
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Figure 5 : τ = 0.75. n = 29 (top), n = 212 (middle) and n = 215 (bottom). These 9 panels only differ

by n and by γ varying in {001, 0.9, 0.98}. In each panel, the displayed normalized histogram is that

of the 3000 replicates of ĥM − ĥn. The superposed blue curve is the normal distribution of ĥM − ĥn
predicted by the asymptotic theory.

All these experiments are thus well in agreement with Theorem 1. But for certain settings,

which are not un-common in practice (see Taylor (1994)) this normal approximation is accurate

only for quite large n (for example, n larger than 212 is required for (τ, γ) = (0.4, 0.98)). And

this so-required value for n is shown to be an increasing function of both τ and γ.
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