Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers - Archive ouverte HAL
Article Dans Une Revue Nuclear Physics B Année : 2020

Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers

Résumé

Explicit algebraic area enumeration formulae are derived for various lattice walks generalizing the canonical square lattice walks, and in particular for the triangular lattice chiral walks recently introduced by the authors. A key element in the enumeration is the derivation of some identities involving some remarkable trigonometric sums –which are also important building blocks of non trivial quantum models such as the Hofstadter model– and their explicit rewriting in terms of multiple binomial sums. An intriguing connection is also made with number theory and some classes of Apéry-like numbers, the cousins of the Apéry numbers which play a central role in irrationality considerations for ζ(2) and ζ(3) .
Fichier principal
Vignette du fichier
S0550321320302601.pdf (250.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02886896 , version 1 (23-09-2022)

Licence

Identifiants

Citer

Stéphane Ouvry, Alexios Polychronakos. Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers. Nuclear Physics B, 2020, 960, pp.115174. ⟨10.1016/j.nuclphysb.2020.115174⟩. ⟨hal-02886896⟩
75 Consultations
47 Téléchargements

Altmetric

Partager

More