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Abstract

Explicit algebraic area enumeration formulae are derived for various lattice walks
generalizing the canonical square lattice walks, and in particular for the triangular
lattice chiral walks recently introduced by the authors. A key element in the enumer-
ation is the derivation of some identities involving some remarkable trigonometric
sums –which are also important building blocks of non trivial quantum models such
as the Hofstadter model– and their explicit rewriting in terms of multiple binomial
sums. An intriguing connection is also made with number theory and some classes
of Apéry-like numbers, the cousins of the Apéry numbers which play a central role
in irrationality considerations for ζ(2) and ζ(3).
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1 Introduction

Random walks on lattices emerge in the study of various problems of physical interest. The
dynamics of electrons (or quasiparticles) on an atomic lattice can be well approximated
by their hopping to the ground state levels of different atoms in the lattice. Hopping
to excited states would introduce extra effective discrete degrees of freedom but such
transitions are generally energetically suppressed. Likewise, hopping to atoms beyond
the few near neighbors of the atom presently binding the electron are also suppressed.
As a consequence, the entire dynamical process can be described by a random lattice
walk. Percolation processes and various other statistical processes can also be modeled
as random walks.

The canonical example of a square lattice random walk is the one mapping to the
Hofstadter model, describing a charged particle hopping on nearest neighbor sites on
a square lattice pierced by a constant magnetic field. The dynamics of this process is
described in terms of the length of random walks, quantified by the number of jumps, as
well as their area, due to the interaction with the magnetic field. In the sum over lattice
walks the magnetic term appears as a chemical potential dual to the algebraic area of
the walk (defined precisely in the next paragraph) measured in unit cells, in the form
eiΦ(algebraic area), with Φ the magnetic flux per unit cell. The parameter Q = eiΦ plays
the role of “fugacity” for the algebraic area. For a flux per unit cell equal to a rational
multiple of the flux quantum 2π (setting the particle charge e = 1), Φ = 2πp/q, the model
develops an intricate discrete spectrum, leading to the famous “Hofstadter butterfly” of
the energy spectrum as a function of the magnetic field. The Hofstadter problem reduces
effectively to enumerating paths of given length and algebraic area.

The exact enumeration of random walks of given algebraic area on a two-dimensional
lattice is a hard and challenging problem. The algebraic area is defined as the oriented
area spanned by the walk as it traces the lattice. A unit lattice cell enclosed in the
counterclockwise (positive) way has an area +1, whereas when enclosed in the clockwise
(negative) way it has an area −1. The total algebraic area is the area enclosed by the
walk weighted by the winding number: if the walk winds around more than once, the area
is counted with multiplicity. The combinatorics of such walks depend on the exact rule
generating them and on the lattice geometry.

An exact formula for the number of square lattice walks of given length and algebraic
area for a rational flux Φ = 2πp/q, with p and q coprime positive integers, was only
recently obtained [1]. The analysis revealed some trigonometric sums to be key ingredients
for the algebraic area enumeration. They are defined as

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) (1)

where bp/q(k) is a trigonometric function called spectral function which depends on the
rational number p/q, and l1, l2, . . . , lj is a set of positive or null integers. In view of
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the algebraic area enumeration of square lattice walks these integers will be parts in the
compositions of the integer n, i.e., n = l1 + · · · + lj and all li positive, with n fixing the
length of the walks. But in the sequel we will consider that some of the li’s can be null,
in a way to be specified below, for more general lattice walks relevant to other physical
processes.

In [1] the focus was on the spectral function

bp/q(k) =
(
2 sin(πkp/q)

)2
(2)

which encodes the Hofstadter dynamics. The algebraic area enumeration was obtained in
part thanks to an explicit rewriting of the trigonometric sum (1), when evaluated for the
Hofstadter spectral function (2), in terms of the binomial multiple sums

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∞∑
A=−∞
A even

eiπAp/q (3)

l3∑
k3=−l3

. . .

lj∑
kj=−lj

(
2l1

l1 + A/2 +
∑j

i=3(i− 2)ki

)(
2l2

l2 − A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
2li

li + ki

)
The summation variable A in the right hand side of (3) will later on play the role of
the algebraic area of the square lattice walks, thus making contact with the enumeration
problem of interest, exp(iπAp/q) being the magnetic flux factor. Eq. (3) is valid for any
set of positive or null integers li with an A-summation range finite due to the first two
binomials, where A appears. In the specific case where the li’s are all positive –as is the
case for the square lattice walks algebraic area enumeration– A is restricted in the interval
[−2⌊(l1+ . . .+ lj)

2/4⌋, 2⌊(l1+ . . .+ lj)
2/4⌋ ]. When some of the li’s are null these bounds

can be generalized (see, e.g., the bounds in eq. (11)).

We note that when we replace eiπAp/q by 1 in (3), which corresponds to vanishing
magnetic field in the Hofstadter model and leads to a simple counting of random walks
of all areas for given length l, we get the binomial identity(

2(l1 + . . .+ lj)

l1 + . . .+ lj

)
=

∞∑
A=−∞
A even

(4)

l3∑
k3=−l3

. . .

lj∑
kj=−lj

(
2l1

l1 + A/2 +
∑j

i=3(i− 2)ki

)(
2l2

l2 − A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
2li

li + ki

)
where the resulting binomial products in the LHS1 will be interpreted later on as factors
contributing to the counting of lattice walks. Again, formula (4) is valid for any set of
positive or null integers li; if the li’s are all positive the bounds on A are as specified
above.

1This binomial counting can be easily checked by first summing over A and subsequently over the ki’s,
redefining them appropriately; see [1].
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We remark here that the trigonometric sum (1) reduces to the binomial multiple sum

given in (3) in the case bp/q(k) =
(
2 sin(πkp/q)

)2
only when l1+ . . .+ lj < q, i.e., for large

enough values of q (or walks of length less than q). This constraint on q eliminates from
the counting open walks with endpoint coordinates coinciding modulo q, that is, closed
walks on a doubly periodic lattice of periods q in each direction, which the formula counts
along with closed walks on the plane2.

In [3] we revisited the algebraic area enumeration of [1] and noted that it admits a
statistical mechanical interpretation in terms of particles obeying generalized exclusion
statistics [4] with exclusion parameter g = 2 (g = 0 for bosons, g = 1 for fermions, higher
g means a stronger exclusion beyond Fermi). Other lattice walks admit a similar interpre-
tation with higher integer values of g. We also introduced the notion of g-compositions
where some zeros can be inserted at will inside the set of the li’s with the restriction
that no more than g − 2 zeros lay in succession. The integer n admits gn−1 such com-
positions. In particular, g=1-exclusion refers to the unique composition n = n, whereas
g = 2-exclusion corresponds to the standard compositions with no zeros at all. We also
constructed triangular lattice chiral walks realizing g=3-exclusion with spectral function

bp/q(k) =
(
2 sin(2πkp/q)

)(
2 sin(2π(k + 1)p/q)

)
(5)

We finally hinted at other walks corresponding to statistics with higher values of the
exclusion parameter g and to other spectral functions. However, for the triangular lattice
chiral walks, as well as for other cases, an explicit algebraic area enumeration formula
was missing due to the lack of binomial expressions analogous to (3) for the triangular
spectral function (5).

In the present work we focus on filling this gap by uncovering such expressions for
entire classes of trigonometric spectral functions generalizing (2) and (5). Namely, we
consider, on the one hand

bp/q(k) =
(
2 sin(πkp/q)

)r
(6)

and on the other hand

bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k + 1)p/q)

)
. . .

(
2 sin(π(k + r − 1)p/q)

)
(7)

where in both instances r can be even or odd. The case r = 2 reproduces3 (2) and (5)
respectively, thus deriving the area counting and statistics of triangular chiral walks as
a special case. We will see that the basic structure of the binomial multiple sum (3)
naturally generalizes to these cases. In the Appendix we will also derive the relevant
generalization for the spectral function

bp/q(k) =
(
2 sin(πkp/q)

)r/2(
2 sin(π(k + 1)p/q)

)r/2
(8)

2Extrapolating (3) as such to any value of q ≥ 1 would amount to enforcing, for any given integer l,
the identity

∑q
k=1 e

2ikπpl/q = 0 even though this is valid only when l is not a multiple of q (when l is a
multiple of q the sum is actually equal to q).

3The actual spectral function (5) for triangular lattice chiral walks has a factor 2 in front of the π’s
which we omit here to stay in line with (6); it anyway amounts to a trivial redefinition of p/q → 2p/q.
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where r is even, yet another possible generalization of (5) that is relevant to other types
of random walks.

Turning to the algebraic area combinatorics per se, these expressions, as already men-
tioned, will allow for explicit enumeration formulae analogous to the square lattice walks
formula obtained in [1] for g = 2 and the Hofstadter spectral function (2). Achieving this
requires the additional step of introducing an appropriate weighting coefficient depending
on the composition and summing over all compositions of the integer n. We refer to [1]
for detailed explanations of how this procedure unfolds and to [3] for the connection to
g-exclusion statistics and the resulting generalizations. With the g-exclusion statistics
weighting coefficients [3]

cg(l1, l2, . . . , lj) =
(l1 + · · ·+ lg−1 − 1)!

l1! · · · lg−1!

j−g+1∏
i=1

(
li + · · ·+ li+g−1 − 1

li+g−1

)

=

∏j−g+1
i=1 (li + · · ·+ li+g−1 − 1)!∏j−g
i=1 (li+1 + · · ·+ li+g−1 − 1)!

j∏
i=1

1

li!

we can express the lattice walks algebraic area enumeration for g ≥ 2-exclusion and a
general periodic spectral function bp/q(k) by means of the g-cluster coefficient4

b(n) = gn
∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj)
1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k − 1) . . . bp/q
lj(k − j + 1) (9)

As already stressed, (9) yields the algebraic area combinatorics provided that an expres-
sion analogous to (3) is known for the trigonometric sum involving the specific bp/q(k).
Indeed, the summation index A in (3) will be interpreted in (9) as the algebraic area for
square lattice walks, and the coefficient multiplying the exponential factor eiπAp/q will be
the desired algebraic area counting number. Eq. (9) will also yield the triangular lattice
chiral walk counting described by g=3-exclusion and spectral function (5).

Finally, we will discuss the unexpected occurrence of Apéry-like numbers in the cluster
coefficient (9) evaluated at particular values of p/q for certain g-exclusions and spectral
functions. Apéry-like numbers are interesting per se since they are cousins of the cele-
brated Apéry numbers which allow for a proof of the irrationality of ζ(2) and ζ(3). One
key characteristic of these numbers is that they are integer solutions of second order recur-
sion relations. As we will see, some of the ζ(2) Apéry-like numbers fascinatingly emerge
in the algebraic enumeration formula (9).

2 Trigonometric sums
∑q

k=1 bp/q
l1(k) bp/q

l2(k + 1) · · · bp/qlj(k + j − 1)

We aim at uncovering explicit binomial multiple sums analogous to (3) for the spectral
functions (6) and (7). In fact, the form of (3) is quite robust and suggestive, and allows

4For statistical mechanics considerations the g-cluster coefficient introduced in [3] is the expression in
(9) multiplied by (−1)n−1q/(gn).
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deducing such generalizations by simple deformations while preserving its overall struc-
ture. We stress that, from now on, some li’s can be null according to the g-composition
structure discussed previously, i.e., no more than g − 2 zeros in succession inside the set.
The A-summation bounds, when specified, will explicitly depend on the parameter g.

2.1 Square lattice walks generalization: bp/q(k) =
(
2 sin(πkp/q)

)r
We first point out two basic facts:

• When q → ∞ the sum over k in (3) goes over to an integral and one obtains the
overall counting∫ 1

0

(
2 sin(πs)

)rl1+l2+...+rlj ds =

(
r(l1 + l2 + . . .+ lj)

r(l1 + l2 + . . .+ lj)/2

)
(10)

so we focus on (l1 + l2 + . . . + lj) such that r(l1 + l2 + . . . + lj) be even. It means
that for r even any set l1, l2, . . . , lj is admissible, whereas for r odd the li’s have to
be such that their sum be even.

• It is obvious that for a given r

1

q

q∑
k=1

((
2 sin(πkp/q)

)r)l1((2 sin(π(k + 1)p/q)
)r)l2 . . . ((2 sin(π(k + j − 1)p/q)

)r)lj
amounts to

1

q

q∑
k=1

((
2 sin(πkp/q)

)2)rl1/2((2 sin(π(k+1)p/q)
)2)rl2/2 . . . ((2 sin(π(k+j−1)p/q)

)2)rlj/2
which is essentially the Hofstadter case r = 2, i.e., for the spectral function

(
2 sin(πkp/q)

)2
,

but now with li → rli/2.

Based on the above observations, the binomial multiple sum in (3) for the r = 2
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Hofstadter case becomes, for bp/q(k) =
(
2 sin(πkp/q)

)r
with r even5,

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

(g−1)r⌊(l1+...+lj)
2/4⌋∑

A=−(g−1)r⌊(l1+...+lj)
2/4⌋

A even

eiπAp/q (11)

rl3/2∑
k3=−rl3/2

. . .

rlj/2∑
kj=−rlj/2

(
rl1

rl1/2 + A/2 +
∑j

i=3(i− 2)ki

)(
rl2

rl2/2− A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
rli

rli/2 + ki

)

which is valid when r(l1 + . . . + lj)/2 < q holds, and where we have specified the range
[−(g−1)r⌊(l1+ . . .+ lj)

2/4⌋, (g−1)r⌊(l1+ . . .+ lj)
2/4⌋] in which A needs to be restricted.

In the r odd case we expect a binomial multiple sum analogous to (11). To see this
in full generality, and to give a full proof of the original formula with even r, let us first
recall the Poisson resummation formula for any q-periodic function f(x) = f(x+ q)

q∑
k=1

f(k) =
∞∑

n=−∞

f̃(nq) (12)

where f̃ is the Fourier transform of f defined as

f̃(k) =

∫ q

0

f(x)e−2iπkx/qdx , f(x) =
1

q

∞∑
k=−∞

f̃(k)e2iπkx/q

Let us consider the function f(x) = 1
q
bp/q

l1(x)bp/q
l2(x + 1) . . . bp/q

lj(x + j − 1) which is

5The overall counting, found by replacing eiπAp/q by 1 is

(
r(l1 + l2 + . . .+ lj)

r(l1 + l2 + . . .+ lj)/2

)
=

(g−1)r⌊(l1+...+lj)
2/4⌋∑

A=−(g−1)r⌊(l1+...+lj)
2/4⌋

A even

rl3/2∑
k3=−rl3/2

. . .

rlj/2∑
kj=−rlj/2

(
rl1

rl1/2 +A/2 +
∑j

i=3(i− 2)ki

)(
rl2

rl2/2−A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
rli

rli/2 + ki

)
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indeed q-periodic due to r(l1 + l2 + . . .+ lj) being assumed even. We have

f̃(nq) =

∫ q

0

f(k)e−2iπkndk

=
1

q

∫ q

0

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1)e−2iπkndk

=
1

q

∫ q

0

j∏
i=1

1

irli

(
eiπ(k+i−1)p/q − e−iπ(k+i−1)p/q

)rli

e−2iπkndk

=
1

q

∫ q

0

j∏
i=1

1

irli

rli/2∑
ki=−rli/2

(
rli

rli/2 + ki

)
e2iπ(k+i−1)kip/q(−1)rli/2−kie−2iπkndk

=

rl1/2∑
k1=−rl1/2

. . .

rlj/2∑
kj=−rlj/2

j∏
i=1

(
rli

rli/2 + ki

)
(−1)rli/2−ki

irli

∫ 1

0

e2iπ
∑j

i=1 kisp+2iπ
∑j

i=1(i−1)kip/qe−2iπsqnds

=

rl1/2∑
k1=−rl1/2

. . .

rlj/2∑
kj=−rlj/2

j∏
i=1

(
rli

rli/2 + ki

)
(−1)rli/2−ki

irli
e2iπ

∑j
i=1(i−1)kip/q δ

( j∑
i=1

kip− nq
)

(13)

As stressed above, r(l1 . . .+ lj) is even and thus the sum of the ki is an integer. Further,
p and q are coprime. These facts imply that enforcing the Kronecker δ in (13) yields

p

j∑
i=1

ki = qn and thus

j∑
i=1

ki = tq and n = tp

for some integer t. Now
∣∣∑j

i=1 ki
∣∣ ≤ r(l1 + . . . + lj)/2 and thus, under the condition

r(l1 + . . . + lj)/2 < q, t is necessarily equal to 0, implying that
∑j

i=1 ki = 0 and n = 0.

From the Poisson resummation formula (12) then we infer
∑q

k=1 f(k) = f̃(0) =
∫ q

0
f(x)dx;

that is, for bp/q(k) =
(
2 sin(πkp/q)

)r
,

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k+1) . . . bp/q
lj(k+j−1) =

1

q

∫ q

0

bp/q
l1(k)bp/q

l2(k+1) . . . bp/q
lj(k+j−1)dk

(14)
What has been achieved in (14) is the trading of the original sum over k from 1 to q
in the LHS for the integral over k from 0 to q in the RHS, which is valid provided that
r(l1 + . . .+ lj)/2 < q.

We can easily check that the trigonometric integral yields the binomial multiple sum
(3) in the r = 2 case, or more generally (11) in the r even case. The integral is essentially
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evaluated in the last line of (13) for n = 0, which implies
∑j

i=1 ki = 0. We obtain

1

q

∫ q

0

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1)dk =

∫ 1

0

dt

j∏
i=1

(
2 sin

(
πt+ π(i− 1)p/q

))rli

=

rl1/2∑
k1=−rl1/2

. . .

rlj/2∑
kj=−rlj/2

δ
( j∑

i=1

ki

) j∏
i=1

(
rli

rli/2 + ki

)
e2iπ

∑j
i=1(i−1)kip/q (15)

The change of integration from (1/q)
∫ q

0
dk to

∫ 1

0
dt in the variable t = kp/q in the first

line is justified since r(l1 + . . . + lj) is even and the integrand has period 1 in t. To
reproduce the A-expansion with exponential factors eiπAp/q in the binomial multiple sums
(3) and (11), we denote by A the coefficient 2

∑j
i=1(i − 1)ki of iπp/q appearing in the

exponential of the last line in (15). We also need to enforce the Kronecker δ constraint
in the summation variables ki. The resulting system of two equations,

∑j
i=1 ki = 0 and

A = 2
∑j

i=1(i− 1)ki, can be readily solved for, e.g., k1 and k2, to yield

k1 = −A/2 +

j∑
i=3

(i− 2)ki , k2 = A/2−
j∑

i=3

(i− 1)ki

Finally, changing summation variables from ki to −ki and noting that each binomial is
invariant under changing the sign of ki, we obtain

1

q

q∑
k=0

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1)

=

(g−1)r⌊(l1+...+lj)
2/4⌋∑

A=−(g−1)r⌊(l1+...+lj)
2/4⌋

in steps of 2

eiπAp/q

rl3/2∑
k3=−rl3/2

. . .

rlj/2∑
kj=−rlj/2

(16)

(
rl1

rl1/2 + A/2 +
∑j

i=3(i− 2)ki

)(
rl2

rl2/2− A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
rli

rli/2 + ki

)
i.e., precisely (11) but now valid for r even and r odd, with a specificA-summation dictated
by the condition that in (16) the first two binomial entries rl1/2 + A/2 +

∑j
i=3(i − 2)ki

and rl2/2−A/2−
∑j

i=3(i−1)ki take integer values for all ki ∈ [−rli/2, rli/2], i = 3, . . . , j,
as was the case in (15) for the first two binomial entries rl1/2 + k1 and rl2/2 + k2 for
all k1 ∈ [−rl1/2, rl1/2] and k2 ∈ [−rl2/2, rl2/2]. It follows that in the case r even,
where the ki’s are all integers, A has to be even, and in the case r odd, where the
ki’s are either integers or half integers, l1 + l2 + . . . + lj has to be even and A of the
same parity as l1 + l3 + . . . (or l2 + l4 + . . .). In both cases this boils down to A ∈
[−(g − 1)r⌊(l1 + . . .+ lj)

2/4⌋, (g − 1)r⌊(l1 + . . .+ lj)
2/4⌋ ] in steps of 2.

We can express the A-binomial block in (16) in an integral form by augmenting the

LHS to the double integral 1
2

∫ 1

0
dt

∫ 2

0
dt′

∏j
i=1

(
2 sin(πt + π(i − 1)t′

))rli
δ(p/q − t′) and

9



using 2
∑∞

n=−∞ δ(p/q − t′ − 2n) =
∑∞

A=−∞ eiπA(p/q−t′) to get

1

2

∫ 2

0

dt′
∫ 1

0

dt

j∏
i=1

(
2 sin

(
πt+ π(i− 1)t′

))rli

eiπAt′ (17)

=

rl3/2∑
k3=−rl3/2

· · ·
rlj/2∑

kj=−rlj/2

(
rl1

rl1/2 +A/2 +
∑j

i=3(i− 2)ki

)(
rl2

rl2/2−A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
rli

rli/2 + ki

)
In the multiple sum of the RHS A is constrained as above, depending on r being even or
odd. However, the integral in the LHS is valid for all integer values of A, yielding zero
for the values that do not appear in the RHS.

2.2 Triangular generalization: bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k +

1)p/q)
)
. . .

(
2 sin(π(k + r − 1)p/q)

)
We can proceed in exactly the same way for triangular-like spectral functions of the type
bp/q(k) =

(
2 sin(πkp/q)

)(
2 sin(π(k + 1)p/q)

)
. . .

(
2 sin(π(k + r − 1)p/q)

)
. Again

• q → ∞ recovers the overall counting∫ 1

0

(
2 sin(πs)

)rl1+rl2+...+rljds =

(
r(l1 + l2 + . . .+ lj)

r(l1 + l2 + . . .+ lj)/2

)
as in (10), so we still focus on sets of li’s such that r(l1 + l2 + . . .+ lj) is even, again
ensuring the q-periodicity of the functions at hand

• The rewriting of the trigonometric sum as a trigonometric integral proceeds along
the same lines as in (13) under the same condition r(l1 + . . . + lj)/2 < q since the
sole input in this condition is the highest power of eiπkp/q that appears in bp/q(k)
given by (7), which happens to be again r

2.2.1 Triangular chiral walks r = 2: bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k + 1)p/q)

)
Following the same steps as in 2.1, we can rewrite the trigonometric sum corresponding
to bp/q(k) =

(
2 sin(πkp/q)

)(
2 sin(π(k + 1)p/q)

)
as the simple integral

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∫ 1

0

dt

(
2 sin

(
πt
))l1 j∏

i=2

(
2 sin

(
πt+ π(i− 1)p/q

))li−1+li(
2 sin

(
πt+ πjp/q

))lj

(18)

provided that l1 + . . .+ lj < q.
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Integrating (18) leads to the appropriate deformation of the binomial multiple sum
(3) for the spectral function bp/q(k) =

(
2 sin(πkp/q)

)(
2 sin(π(k + 1)p/q)

)
, a deformation

which could also have been directly guessed by simple manipulations: in (1) the integer
l1 is associated with the index k, l1 + l2 with k + 1, l2 + l3 with k + 2, etc. This leads to6

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1)

=

∫ 1

0

dt

(
2 sin

(
πt
))l1 j∏

i=2

(
2 sin

(
πt+ π(i− 1)p/q

))li−1+li(
2 sin

(
πt+ πjp/q

))lj

=

⌈(l1+...+lj)
2/2⌉+(g−2)⌊(l1+...+lj)

2/2⌋∑
A=−⌈(l1+...+lj)

2/2⌉−(g−2)⌊(l1+...+lj)
2/2⌋

A same parity as l1+l2+...+lj

eiπAp/q

(l2+l3)/2∑
k3=−(l2+l3)/2

. . .

(lj−1+lj)/2∑
kj=−(lj−1+lj)/2

lj/2∑
kj+1=−lj/2(

l1
l1/2 + A/2 +

∑j+1
i=3 (i− 2)ki

)(
l1 + l2

(l1 + l2)/2− A/2−
∑j+1

i=3 (i− 1)ki

)
×

j∏
i=3

(
li−1 + li

(li−1 + li)/2 + ki

)(
lj

lj/2 + kj+1

)
(19)

We note that A in the summation (19) spans the interval [−⌈(l1+ . . .+ lj)
2/2⌉− (g−

2)⌊(l1 + . . .+ lj)
2/2⌋, ⌈(l1 + . . .+ lj)

2/2⌉+ (g − 2)⌊(l1 + . . .+ lj)
2/2⌋ ] increasing by steps

of 2, which in particular implies that A is of the same parity as l1 + l2 + . . .+ lj.

2.2.2 r = 3: bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k + 1)p/q)

)(
2 sin(π(k + 2)p/q)

)
with l1 + . . .+ lj even

Similarly to the previous cases one can rewrite the r = 3 triangular trigonometric sum as
the simple integral

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∫ 1

0

dt

(
2 sin

(
πt
))l1(

2 sin
(
πt+ πp/q

))l1+l2 j∏
i=3

(
2 sin

(
πt+ π(i− 1)p/q

))li−2+li−1+li

×
(
2 sin

(
πt+ πjp/q

))lj−1+lj(
2 sin

(
πt+ π(j + 1)p/q

))lj

6With overall counting, obtained in the q → ∞ limit by replacing eiAp/q by 1:(
2(l1 + l2 + . . .+ lj)

l1 + l2 + . . .+ lj

)
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provided that 3(l1 + . . .+ lj)/2 < q.

Likewise one obtains the binomial multiple sum7

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∞∑
A=−∞

A same parity as l1+l3+... or l2+l4+...

eiπAp/q

(l1+l2+l3)/2∑
k3=−(l1+l2+l3)/2

. . .

(lj−2+lj−1+lj)/2∑
kj=−(lj−2+lj−1+lj)/2

(lj−1+lj)/2∑
kj+1=−(lj−1+lj)/2

lj/2∑
kj+2=−lj/2(

l1
l1/2 + A/2 +

∑j+2
i=3 (i− 2)ki

)(
l1 + l2

(l1 + l2)/2− A/2−
∑j+2

i=3 (i− 1)ki

)
×

j∏
i=3

(
li−2 + li−1 + li

(li−2 + li−1 + li)/2 + ki

)(
lj−1 + lj

(lj−1 + lj)/2 + kj+1

)(
lj

lj/2 + kj+2

)
(20)

where A has to be of the same parity as l1+ l3+ . . . (or l2+ l4+ . . .) and obviously a finite
range. The cases r = 4 and beyond are treated in the Appendix.

3 Algebraic area enumeration

From the obtained trigonometric identities and the cluster coefficient (9) we can retrieve
algebraic area enumeration formulae for various random lattice walks. For example, from
(16) for bp/q(k) =

(
2 sin(πkp/q)

)r
with r even and g-exclusion, (9) becomes

b(n) = gn

(g−1)r⌊n2/4⌋∑
A=−(g−1)r⌊n2/4⌋

A even

eiπAp/q
∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj) (21)

rl3/2∑
k3=−rl3/2

. . .

rlj/2∑
kj=−rlj/2

(
rl1

rl1/2 +A/2 +
∑j

i=3(i− 2)ki

)(
rl2

rl2/2−A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
rli

rli/2 + ki

)
with overall counting, given by replacing eiπAp/q by 1(

gn

n

)(
rn

rn/2

)
(22)

This reproduces the area counting of various types of square walks. Note that the second
binomial in (22), as initially discussed in (4) and displayed in the various overall counting
cases of subsection (2.1), results from the trigonometric sums replacing eiπAp/q by 1 in the
limit q → ∞, whereas the first one results from the summation of the exclusion weight
coefficients cg over all g-compositions of the integer n.

7With overall counting, obtained by replacing eiπAp/q by 1:(
3(l1 + l2 + . . .+ lj)

3(l1 + l2 + . . .+ lj)/2

)
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3.1 Square lattice walks: bp/q(k) =
(
2 sin(πkp/q)

)2
As already stated, the standard square lattice walks are specifically g = 2 and r = 2 and
are defined in terms of the Hamiltonian [3]

H = (1− u)v + v−1(1− u−1)

where u and v respectively stand for the right and up hopping operators on the lattice,
with commutation vu = quv, where q = eiΦ = ei2πp/q is the noncommutativity parameter
encoding the presence of the magnetic field perpendicular to the lattice, with Φ the
magnetic flux per plaquette. We recover the Hofstadter spectral function as

bp/q(k) = (1− q−k)(1− qk) =
(
2 sin(πkp/q)

)2
The Hamiltonian describes a random walk with elementary steps up, right followed

by up, down, and down followed by left. It means that starting from the origin (0, 0)
it reaches after one step the lattice points (0, 1), (1, 1), (0,−1) or (−1,−1) with equal
probability. This generates deformed walks on the square lattice (see Fig.1) which are
equivalent through a modular transformation to the usual square lattice walks. (This
modular transformation amounts to the transformation u → −uv, which leaves the u, v
commutation relation unchanged and turns H into u+ v + u−1 + v−1.) b(n) in (21) then
yields the desired algebraic area counting [1]

b(n) =

2⌊n2/4⌋∑
A=−2⌊n2/4⌋

A even

eiπAp/qC2n(A)

where

C2n(A) = 2n
∑

l1,l2,...,lj
2-composition of n

c2(l1, l2, . . . , lj) (23)

l3∑
k3=−l3

. . .

lj∑
kj=−lj

(
2l1

l1 + A/2 +
∑j

i=3(i− 2)ki

)(
2l2

l2 − A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
2li

li + ki

)

with A even in the interval [−2⌊n2/4⌋, 2⌊n2/4⌋]. C2n(A) counts the number of closed

square lattice walks of length 2n –there are overall
(
2n
n

)2
of them, see (22)– enclosing an

algebraic area A/2 in the interval8 [−⌊n2/4⌋, ⌊n2/4⌋ ]: indeed the mapping of random
walk algebraic area to the Hofstadter model [1] is via the weighting factor qalgebraic area,
where q = e2iπp/q, so here, with eiπAp/q appearing in (21), the algebraic area is A/2.

8This can be easily seen geometrically for lattice walks of length 2n with n even, which have largest
possible area ±(n/2)2: this is the walk circling a square of side n/2 anti-clockwise or clockwise.
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3.2 Square lattice walks: bp/q(k) =
(
2 sin(πkp/q)

)4
Let us now look at square lattice walks with g = 2 and r = 4 which are defined in terms
of the Hamiltonian

H = (u+ u−1)2v + v−1(u+ u−1)2 (24)

The corresponding spectral function

bp/q(k) = (qk + q−k)4 =
(
2 cos(2πkp/q)

)4
can be put in the standard form (6) for r = 4 by redefining u → iu and q →

√
q, which

does not affect the counting of walks nor the area weighting.

The Hamiltonian (24) describes a random walk with elementary steps in groups of
one random step up or down and two independent random steps right or left. It means
that starting from the origin (0, 0) it reaches after one step the lattice points (2, 1),
(−2, 1), (2,−1) or (−2,−1) with probability 1/8, or the lattice points (1, 0) or (−1, 0)
with probability 1/4. The same walk can be described as a particle hopping on an even
or odd square sublattice, where even points are those with x and y coordinates adding
to an even integer, the remaining being odd. The walk proceeds randomly on one of the
sublattices but at each step it has the option to move to the nearest up or down point of
the opposite sublattice, with each such jump contributing a factor of two in the weight
of the walk. The Hamiltonian (24) counts the weighted number of such closed walks of a
given total area.

There are
(
2n
n

)(
4n
2n

)
such closed walks of length 2n, as in (22). The enumeration of

such walks enclosing a given algebraic area, with the proper weight, is given by (21):

b(n) =

4⌊n2/4⌋∑
A=−4⌊n2/4⌋

A even

eiπAp/qC ′
2n(A)

where

C ′
2n(A) = 2n

∑
l1,l2,...,lj

2-composition of n

c2(l1, l2, . . . , lj)

2l3∑
k3=−2l3

. . .

2lj∑
kj=−2lj

(
4l1

2l1+A/2 +
∑j

i=3(i− 2)ki

)(
4l2

2l2−A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
4li

2li + ki

)

with A even in the interval [−4⌊n2/4⌋, 4⌊n2/4⌋]. C ′
2n(A) counts the number of closed

square lattice walks described above of length 2n and enclosing an algebraic area A/2.
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3.3 Square lattice walks: bp/q(k) =

((
2 sin(πkp/q)

)(
2 sin(π(k+1)p/q)

))2

Now consider square lattice walks with g = 2 and r = 4 defined by the Hamiltonian

H = (u+ u−1)v(u+ u−1) + (u+ u−1)v−1(u+ u−1) (25)

The spectral function can be brought to the standard form (8) for r = 4 by an appropriate
redefinition of u → −iu

bp/q(k) =
(
2 sin(πkp/q)

)2(
2 sin(π(k + 1)p/q)

)2
Its treatment is given in the subsection 6.2 of the Appendix.

This walk proceeds with sets of one step left or right, one step up or down and another
step left or right. With an appropriate redefinition of u and v (modular transformation)
this walk can also be mapped to a walk proceeding on odd or even square sublattices, as
in the last subsection, but now the weight of jumping on the opposite sublattice is not
2, as before, but rather Q+Q−1. So in this description the weight of the walks depends
explicitly on Q, unlike any other walk we encountered before.

There are again
(
2n
n

)(
4n
2n

)
such closed walks of length 2n.The enumeration of such walks

enclosing a given algebraic area, with the proper weight, is given by

b(n) =
∞∑

A=−∞
A even

eiπAp/qC ′′
2n(A)

where

C ′′
2n(A) = 2n

∑
l1,l2,...,lj

2-composition of n

c2(l1, l2, . . . , lj)

l2+l3∑
k3=−(l2+l3)

. . .

lj−1+lj)∑
kj=−(lj−1+lj)

lj∑
kj+1=−lj

(
2l1

l1+A/2 +
∑j+1

i=3 (i− 2)ki

)(
2(l1 + l2)

l1+ l2−A/2−
∑j+1

i=3 (i− 1)ki

)

×
j∏

i=3

(
2(li−1 + li)

li−1 + li + ki

)(
2lj

lj + kj+1

)
(26)

C ′′
2n(A) counts again the weighted number of closed square lattice walks described above

of length 2n enclosing an algebraic area A/2. It differs from the corresponding number
(25) only in the weighting factor when jumping sublattices.
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3.4 Triangular lattice chiral walks: bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k+

1)p/q)
)

From (19) for the triangular spectral function (7) with r = 2 and g-exclusion we obtain

b(n) = gn

⌈n2/2⌉+(g−2)⌊n2/2⌋∑
A=−⌈n2/2⌉−(g−2)⌊n2/2⌋

A same parity as n

eiπAp/q
∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj)

(l2+l3)/2∑
k3=−(l2+l3)/2

. . .

(lj−1+lj)/2∑
kj=−(lj−1+lj)/2

lj/2∑
kj+1=−lj/2(

l1
l1/2 + A/2 +

∑j+1
i=3 (i− 2)ki

)(
l1 + l2

(l1 + l2)/2− A/2−
∑j+1

i=3 (i− 1)ki

)
×

j∏
i=3

(
li−1 + li

(li−1 + li)/2 + ki

)(
lj

lj/2 + kj+1

)
(27)

with overall counting given by replacing eiπAp/q by 1(
gn

n

)(
2n

n

)
Triangular g = 3 lattice chiral walks correspond to the quantum Hamiltonian

H = i(−u+ u−1) v + v−2

with spectral function

bp/q(k) =
(
2 sin(2πkp/q)

)(
2 sin(2π(k + 1)p/q)

)
as already given in (5). They are depicted in Figs.2–4 (see [3] for more details; these walks
are the generalization to four quadrants of the Kreweras walks [5]). Since the exclusion
parameter is g = 3 the counting above reduces to(

3n

n, n, n

)
which is the number of closed triangular lattice chiral walks of length 3n. The cluster
coefficient (27) then yields the triangular lattice chiral walks algebraic area counting

b(n) =
n2∑

A=−n2

A in steps of 2

eiπAp/qC3n(A)
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where

C3n(A) = 3n
∑

l1,l2,...,lj
3-compositions of n

c3(l1, l2, . . . , lj)

(l2+l3)/2∑
k3=−(l2+l3)/2

. . .

(lj−1+lj)/2∑
kj=−(lj−1+lj)/2

lj/2∑
kj+1=−lj/2(

l1
l1/2 + A/2 +

∑j+1
i=3 (i− 2)ki

)(
l1 + l2

(l1 + l2)/2− A/2−
∑j+1

i=3 (i− 1)ki

)
×

j∏
i=3

(
li−1 + li

(li−1 + li)/2 + ki

)(
lj

lj/2 + kj+1

)
(28)

with A in the interval [−n2, n2] with same parity as n.

C3n(A) counts the number of closed triangular lattice chiral walks of length 3n en-
closing an algebraic area A. Indeed, the mapping of triangular algebraic area-quantum
triangular Hamiltonian discussed in [3] is via qalgebraic area where q = e2iπp/q. Since in
bp/q(k) of (7) the building block 2 sin(πkp/q) is used, rather than 2 sin(2πkp/q) as in (5),
we end up with eiπAp/q in (27) in place of e2iπAp/q, so that the algebraic area is A. One
can directly check by explicit enumeration that when n is odd A is also odd (see, e.g.,
n = 1 with 3 walks of algebraic area 1 and 3 walks of algebraic area −1) and when n is
even A is also even (as in n = 2, with algebraic areas 0,±2 and ±4).

We conclude our discussion of algebraic area counting by remarking that it was possi-
ble to extract explicit expressions in terms of binomial sums for C2n(A) in (23), C ′

2n(A) in
(25) and C3n(A) in (28) from the cluster coefficients (21) or (27) because the summation
constraints over A in the relevant binomial multiple sums (16) with r = 2, 4 (A even) or
(19) with r = 2 (A same parity as l1 + l2 + . . . + lj), as well as the summation ranges,
depend only on l1 + l2 + . . . + lj = n and not on the individual li’s. Similar expressions
would apply for walks deriving from odd r binomial sums, like (16) or (20), provided
that the binomials appearing in the expressions are understood to vanish for values of A
leading to noninteger entries, as discussed after (16).

It is a curious fact that if, in the binomial multiple sums or the cluster coefficients,
we sum over all integer values of A without restrictions, and analytically continue the
binomials to fractional values using gamma functions, the resulting infinite sums are
closely related to the finite ones over the allowed values of A. This point is detailed
and explained in the subsection 6.3 of the Appendix. Considering, for example, the
binomial multiple sum (16), this means in particular that for even r and any set of li’s,
the cumulative sum of the infinite sequence of coefficients of odd A, which are rational
numbers times 1/π2, converges to the standard binomial counting

(
r(l1+l2+...+lj)

r(l1+l2+...+lj)/2

)
.

4 Apéry-like numbers

We finally turn to the occurrence of Apéry-like numbers in cluster coefficients (9) when
evaluated at certain values of p/q. We consider b(n) as a stand-alone mathematical entity
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that happens to lead to such occurrences. The interpretation of b(n) as the generating
function of algebraic area enumerations of actual lattice walks, however, leads to the
emergence of these Apéry-like numbers as specific weighted sums of random walks.

4.1 Apéry-like numbers g = 2 and r = 2 : bp/q(k) =
(
2 sin(πkp/q)

)2
Let us consider9 b(n) in (21). For g = 2 and r = 2 it gives, for n = 1, 2, 3, . . .

p/q = 1 ⇒ b(n) =

(
2n

n

)2

⇔ closed square lattice walks counting

p/q = 1/2 ⇒ b(n) = 4, 20, 112, 676, 4304, 28496, . . .

These are the Apéry-like numbers ζ(2) sequence OEIS A081085

n∑
k=0

(
n

k

)(
2k

k

)(
2n− 2k

n− k

)
=

[n/2]∑
k=0

4n−2k

(
n

2k

)(
2k

k

)2

with recurrence relation

(n+ 1)2b(n+ 1)−
(
12n(n+ 1) + 4

)
b(n) + 32n2b(n− 1) = 0

The above Apéry-like numbers appear as alternating sums of square lattice random walks,
weighted by the parity of their area.

4.2 Apéry-like numbers g = 2 and r = 1 : bp/q(k) = 2 sin(πkp/q)

Let us still focus on (21) but now for g = 2 and r = 1, with n necessarily even10. We find,
for n = 2, 4, 6, . . .

p/q = 1 ⇒ b(n) = (−1)n/2
(

n

n/2

)2

p/q = 1/2 ⇒ b(n) = 4, 20, 112, 676, 4304, 28496, . . .

These are the same Apéry-like numbers as above

n/2∑
k=0

(
n/2

k

)(
2k

k

)(
n− 2k

n/2− k

)
9Or equivalently, using (14)

b(n) = gn
∑

l1,l2,...,lj
g−composition of n

cg(l1, l2, . . . , lj)

∫ 1

0

dt

j∏
i=1

(
2 sin

(
πt+ π(i− 1)p/q

))rli

10n is necesseraly even because l1 + l2 + . . .+ lj (which is equal to n) has to be even.
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now occurring for even n’s. Indeed, cases r = 2 and (r = 1, n even) are essentially

equivalent: calling n = 2n′ for r = 1, then
(
2 sin(πkp/q)

)n=l1+l2+...+lj with l1, l2, . . . , lj a

composition of n, is in fact
(
(2 sin(πkp/q))2

)l′1+l′2+...+l′j=n′
with l′1, l

′
2, . . . , l

′
j a composition

of n′, which is the r = 2 result.

4.3 Apéry-like numbers g = 2 and r = 4: bp/q(k) =
(
2 sin(πkp/q)

)4
Let us again focus on b(n) in (21) but now for g = 2 and r = 4: we find, for n = 1, 2, 3, . . .

p/q = 1 ⇒ b(n) =

(
2n

n

)(
4n

2n

)
p/q = 1/2 ⇒ b(n) = 12, 164, 2352, 34596, 516912, 7806224, . . .

These are the Apéry-like numbers ζ(2) sequence OEIS A143583

n∑
k=0

(
2k

k

)(
4k

2k

)(
2n− 2k

n− k

)(
4n− 4k

2n− 2k

)
/

(
2n

n

)
=

n∑
k=0

4n−k

(
2n− 2k

n− k

)(
2k

k

)2

with recurrence relation

(n+ 1)2b(n+ 1)− (32n(n+ 1) + 12)b(n) + 256n2b(n− 1) = 0

These are, again, related to alternating sums of square random walks of the modified type
defined in section 3.2.

4.4 Apéry-like numbers g = 3 and r = 2: bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k+

1)p/q)
)

Finally we focus11 on b(n) in (27). We find, for g = 3 and n = 1, 2, 3, . . .

p/q = 1 ⇒ b(n) = (−1)n
(
3n

n

)(
2n

n

)
⇔ triangular lattice chiral walks counting

p/q = 1/2 ⇒ b(n) =

(
3n/2

n/2

)(
n

n/2

)
if n multiple of 2 and 0 otherwise

p/q = 1/3 ⇒ b(n) = 3, 9, 21, 9,−297,−2421, . . .

11Or equivalently, using (18), on

b(n) = gn
∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj)

∫ 1

0

dt

(
2 sin

(
πt
))l1 j∏

i=2

(
2 sin

(
πt+ π(i− 1)p/q

))li−1+li(
2 sin

(
πt+ πjp/q

))lj
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These are Apéry-like numbers ζ(2) sequence OEIS A006077

[n/3]∑
k=0

(−1)k3n−3k

(
n

3k

)(
2k

k

)(
3k

k

)
=

[n/3]∑
k=0

(−1)k3n−3k

(
n

n− 3k, k, k, k

)
with recurrence relation

(n+ 1)2b(n+ 1) +
(
9n(n+ 1) + 3

)
b(n) + 27n2b(n− 1) = 0

We see that now Apéry-like numbers emerge as sums of random walks weighted by a phase
ei2πA/3 with A the area of the walk in fundamental triangles, which reflects the triangular,
rather than square, nature of the walk.

5 Conclusions

The trigonometric identities analyzed in this work, as well as their generalizations to
other spectral functions that can be derived along the lines presented here, allow us to
obtain expressions for the algebraic area counting of a broad set of random walks on
two-dimensional lattices. The only requirement is that these walks be described by a
Hamiltonian of the general form introduced in [3], admitting an interpretation as systems
of generalized exclusion statistics with specific spectral functions. A wide class of lattice
walk models can be embedded into this framework, and we gave a few examples in the
present work, most notably the triangular chiral walk introduced originally in [3]. Using
our present results we were able to derive the algebraic area counting formula for this
chiral triangular walk.

The most obvious and interesting extension of our results would be in obtaining the
area counting of other, more general types of walks. From the algebraic point of view, an
immediate choice presents itself: the Hamiltonian

Hm = (u+ u−1)m v + v−1(u+ u−1)m , m = 1, 2, . . .

describes a class of Hofstadter-like models representing generalized random walks on the
square lattice, with m = 1 the standard (Hofstadter) random walk and m = 2 the walk
studied in subsection 3.2. The model for general m represents a walk that proceeds in
groups of one random step up or down and then m independent random steps left or
right, but other representations are possible by performing modular transformations to
the lattice (or redefinitions of the u, v operators in the Hamiltonian). All these walks
belong to the class of g = 2 exclusion statistics and their area counting is readily given
by the relevant g = 2 cluster coefficients and generalized trigonometric sums.

Clearly this is just the tip of a large iceberg as far as lattice walk models are concerned.
For instance, another class of walks at g = 2 would be described by the Hamiltonian

H̃m = (um + um−1 + · · ·+ u−m)v + v−1(um + um−1 + · · ·+ u−m)
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This represents walks proceeding with a random step up or down to one of the 2m + 1
neighboring points in the left-right direction of distance up to m from the original hori-
zontal position with equal probability. Again, the combinatorics of these walks are readily
obtained with our methods. Yet other walks can be constructed, with asymmetrical prop-
agation rules and belonging to higher g statistics. The only limitation, or criterion, is the
potential relevance and physical significance of these walks, and this remains an open
field of investigation. In particular, an adaptation of the methods of [3] and of the present
work for walks on a hexagonal lattice, with or without chirality, would be of considerable
physical interest, as such models would provide a description of the motion of electrons
on graphene in the tight-binding electron-atom regime in the presence of a magnetic field,
perhaps with additional chiral dynamics. This is a line of investigation with substantial
potential physical payoff.

The emergence of Apéry-like numbers within the mathematical structure of these
walks is another intriguing but obscure issue. At the present level of our understanding
this is something of a mystery, or curiosity. It would be satisfying to have a better
understanding of the relation between random walks and Apéry numbers, with an eye to
possible applications in the mathematics of ζ-functions and/or statistical models.

Finally, the Hamiltonians Hm and H̃m presented above are all Hermitian and thus
have a real spectrum, generalizing the corresponding spectrum of the Hofstadter model
that leads to the celebrated “butterfly” fractal structure. It is expected that the spectrum
of all the above models will have a similarly fractal structure, and preliminary numerical
investigations confirm this fact. The shape and eigenvalue statistics of the spectrum of
these generalized models are nontrivial deformations of the basic Hofstadter butterfly and
their properties are an intriguing topic for further research.
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6 Appendix

6.1 Triangular r = 4: bp/q(k)=
(
2 sin(πkp/q)

)(
2 sin(π(k+1)p/q)

)(
2 sin(π(k+

2)p/q)
)(
2 sin(π(k + 3)p/q)

)
Likewise

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∞∑
A=−∞
A even

eiπAp/q

(l1+l2+l3)/2∑
k3=−(l1+l2+l3)/2

(l1+l2+l3+l4)/2∑
k4=−(l1+l2+l3+l4)/2

. . .

(lj−3+lj−2+lj−1+lj)/2∑
kj=−(lj−3+lj−2+lj−1+lj)/2

(lj−2+lj−1+lj)/2∑
kj+1=−(lj−2+lj−1+lj)/2

(lj−1+lj)/2∑
kj+2=−(lj−1+lj)/2

lj/2∑
kj+3=−lj/2(

l1
l1/2 + A/2 +

∑j+3
i=3 (i− 2)ki

)(
l1 + l2

(l1 + l2)/2− A/2−
∑j+3

i=3 (i− 1)ki

)(
l1 + l2 + l3

(l1 + l2 + l3)/2 + k3

)
j∏

i=4

(
li−3 + li−2 + li−1 + li

(li−3 + li−2 + li−1 + li)/2 + ki

)(
lj−2 + lj−1 + lj

(lj−2 + lj−1 + lj)/2 + kj+1

)(
lj−1 + lj

(lj−1 + lj)/2 + kj+2

)(
lj

lj/2 + kj+3

)
(29)

with overall counting (
4(l1 + l2 + . . .+ lj)

2(l1 + l2 + . . .+ lj)

)
One notes that as in previous cases the binomial multiple sum (29) is nothing but the
trigonometric integral

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∫ 1

0

dt

(
2 sin

(
πt
))l1(

2 sin
(
πt+ πp/q

))l1+l2(
2 sin

(
πt+ π2p/q

))l1+l2+l3

j∏
i=4

(
2 sin

(
πt+ π(i− 1)p/q

))li−3+li−2+li−1+li(
2 sin

(
πt+ πjp/q

))lj−2+lj−1+lj

(
2 sin

(
πt+ π(j + 1)p/q

))lj−1+lj(
2 sin

(
πt+ π(j + 2)p/q

))lj

under the provision that 2(l1 + . . .+ lj) < q.

Clearly for a general r the spectral function bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k +

1)p/q)
)
. . .

(
2 sin(π(k + r − 1)p/q)

)
can be treated along the same lines as in subsections

(2.2.1) and (2.2.2) and above.
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6.2 Another triangular chiral walks generalization:

bp/q(k) =
(
2 sin(πkp/q)

)r/2(
2 sin(π(k + 1)p/q)

)r/2
with r even

When bp/q(k) =
(
2 sin(πkp/q)

)2
we have seen that (3), rewritten as

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∞∑
A=−∞
A even

eiπAp/q

l3∑
k3=−l3

. . .

lj∑
kj=−lj

(
2l1

l1 + A/2 +
∑j

i=3(i− 2)ki

)(
2l2

l2 − A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
2li

li + ki

)

generalizes for bp/q(k) =
(
2 sin(πkp/q)

)r
and r is even to

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1) =

∞∑
A=−∞
A even

eiπAp/q

rl3/2∑
k3=−rl3/2

. . .

rlj/2∑
kj=−rlj/2

(
rl1

rl1/2 + A/2 +
∑j

i=3(i− 2)ki

)(
rl2

rl2/2− A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
rli

rli/2 + ki

)

Likewise, when bp/q(k) =
(
2 sin(πkp/q)

)(
2 sin(π(k + 1)p/q)

)
, equation (19),

1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1)

=
∞∑

A=−∞
A same parity l1+l2+...+lj

eiπAp/q

(l2+l3)/2∑
k3=−(l2+l3)/2

. . .

(lj−1+lj)/2∑
kj=−(lj−1+lj)/2

lj/2∑
kj+1=−lj/2(

l1
l1/2 + A/2 +

∑j+1
i=3 (i− 2)ki

)(
l1 + l2

(l1 + l2)/2− A/2−
∑j+1

i=3 (i− 1)ki

)
j∏

i=3

(
li−1 + li

(li−1 + li)/2 + ki

)(
lj

lj/2 + kj+1

)

generalizes for bp/q(k) = (
(
2 sin(πkp/q)

)r/2(
2 sin(π(k + 1)p/q)

)r/2
and r even to
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1

q

q∑
k=1

bp/q
l1(k)bp/q

l2(k + 1) . . . bp/q
lj(k + j − 1)

=
∞∑

A=−∞
A same parity r(l1+l2+...+lj)/2

eiπAp/q

r(l2+l3)/4∑
k3=−r(l2+l3)/4

. . .

r(lj−1+lj)/4∑
kj=−r(lj−1+lj)/4

rlj/4∑
kj+1=−rlj/4(

rl1/2

rl1/4 + A/2 +
∑j+1

i=3 (i− 2)ki

)(
r(l1 + l2)/2

r(l1 + l2)/4− A/2−
∑j+1

i=3 (i− 1)ki

)
j∏

i=3

(
r(li−1 + li)/2

r(li−1 + li)/4 + ki

)(
rlj/2

rlj/4 + kj+1

)

6.3 Regarding (16): summing over A odd when r is even

So far one has considered the r(l1 + l2 + . . . + lj) even cases so that the q → ∞ limit
in the trigonometric sum (1) yields an overall binomial counting which is an integer and
contributes as such to the overall counting of closed lattice walks. We have seen that
this trigonometric sum can be rewritten as a multiple binomial sum of the type (16) or
(19) with some constraints on the evenness or oddness of the A’s (and additionnally of
l1+ l2+ . . .+ lj in the case r odd). In the r(l1+ l2+ . . .+ lj) odd cases, on the other hand,
(1) would not rewrite anymore as a multiple binomial sum.

Still, and quite generally, one could take the binomial multiple sums (16) (and likewise
(19)) at face value for all possible entries A even or odd and l1 + l2 + . . . + lj even or
odd. In the r even case we already know that the A even summation in (16) has a finite
range and yields the overall integer counting binomial. The A odd summation happens
to yield again the same overall binomial but with each term in the sum a rational number
times 1/π2 and an infinite summation range. The 1/π2 factor comes from the first two
binomials in (16) due the relaxation of the constraint that their entries be integers (since
A is now odd). Likewise in the r odd case, when l1+ l2+ . . .+ lj is even, we already know
that A even or odd summations, depending on the parity of l1 + l3 + . . ., have a finite
range and yield the usual overall integer counting binomial; it is still true that summing
over A even with l1+ l3+ . . . odd or on A odd with l1+ l3+ . . . even would yield the same
overall counting binomial with again terms 1/π2 times rational numbers and an infinite
summation range. Finally when both r and l1 + l2 + . . . + lj are odd, A even and odd
summations have finite range to yield the overall binomial which is in this case 1/π times

a rational number. In all these instances the coefficients sum up to
(

r(l1+l2+...+lj)
r(l1+l2+...+lj)/2

)
for

both A even or odd summations, with finite or infinite ranges depending on the situation.
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To better understand these weird A-summations, let us first focus on the regular A-
summations and consider the RHS of (17) i.e., the binomial multiple sum

rl3/2∑
k3=−rl3/2

· · ·
rlj/2∑

kj=−rlj/2

(
rl1

rl1/2 + A/2 +
∑j

i=3(i− 2)ki

)(
rl2

rl2/2− A/2−
∑j

i=3(i− 1)ki

) j∏
i=3

(
rli

rli/2 + ki

)
One wishes to go backward and get the double integral in the LHS of (17), which, when
summed over A, directly yields the overall counting binomial(

r(l1 + l2 + . . .+ lj)

r(l1 + l2 + . . .+ lj)/2

)
For simplicity let us consider the case r even: since r is even, all the ki’s i = 3, . . . , j are
integers, and since we know that A has then to be even (see below (16)), in the first two
binomials both rl1/2 +A/2+

∑j
i=3(i− 2)ki and rl2/2−A/2−

∑j
i=3(i− 1)ki are integers.

Using that for an integer n and integer k∫ 1

0

dte2iπ(k−n)t

is the Kronecker δ(k, n) meaning12

∞∑
k=−∞
k integer

δ(k, n)f(k) = f(n)

we can rewrite these binomials as(
rl1

rl1/2 + A/2 +
∑j

i=3(i− 2)ki

)
=

rl1/2∑
k1=−rl1/2
k1 integer

∫ 1

0

dte2iπ
(
k1−(A/2+

∑j
i=3(i−2)ki)

)
t

(
rl1

rl1/2 + k1

)

(
rl2

rl2/2− A/2−
∑j

i=3(i− 1)ki

)
=

rl2/2∑
k2=−rl2/2
k2 integer

∫ 1

0

dt′e2iπ
(
k2+A/2+

∑j
i=3(i−1)ki

)
t′
(

rl2
rl2/2 + k2

)

where the summations are restricted to [−rl1/2, rl1/2] and [−rl2/2, rl2/2] since there is
no point to sum outside these intervals where the binomials trivially vanish. So the LHS
of (17) becomes

rl1/2∑
k1=−rl1/2
k1 integer

· · ·
rlj/2∑

kj=−rlj/2

kj integer

∫ 1

0

dte2iπ
(
k1−(A/2+

∑j
i=3(i−2)ki)

)
t

∫ 1

0

dt′e2iπ
(
k2+A/2+

∑j
i=3(i−1)ki

)
t′

j∏
i=1

(
rli

rli/2 + ki

)

12From now on for clarity we explicitly specify summation indices to be integers or half integers.
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which is

rl1/2∑
k1=−rl1/2
k1 integer

· · ·
rlj/2∑

kj=−rlj/2

kj integer

∫ 1

0

dt

∫ 1

0

dt′eiπA(t′−t)

j∏
i=1

(
rli

rli/2 + ki

)
e2iπki

(
(i−1)t′−(i−2)t)

)

i.e., since obviously

rli/2∑
ki=−rli/2
ki integer

(
rli

rli/2 + ki

)
e2iπki

(
(i−1)t′−(i−2)t

)
=

(
2 cos

(
π ((i− 1)t′ − (i− 2)t)

))rli

and calling t′ − t = t”, we obtain13

∫ 1

0

dt

∫ 1

0

dt”eiπAt”

j∏
i=1

(
2 cos

(
π ((i− 1)t” + t)

))rli

We have to sum over A even: since
∑

A even e
iπAt” =

∑∞
n=−∞ δ(t”, n)

∑
A even

∫ 1

0

dt

∫ 1

0

dt”eiπAt”

j∏
i=1

(
2 cos

(
π ((i− 1)t” + t)

))rlj

=

∫ 1

0

dt
(
2 cos(πt)

)r(l1+l2+...+lj)

=

(
r(l1 + l2 + . . .+ lj)

r(l1 + l2 + . . .+ lj)/2

)
(30)

where the overall binomial counting has been obtained as expected.

Now still assuming r being even, so that all the ki’s i = 3, . . . , j are integers, let us insist
that the summation over A be on A odd so that both rl1/2 + A/2 +

∑j
i=3(i − 2)ki and

rl2/2−A/2−
∑j

i=3(i− 1)ki are half-integers. Using that for an half-integer n/2 and half
integer k ∫ 1

0

dte2iπ(k−n/2)t

is the Kronecker δ(k, n/2) meaning

∞∑
k=−∞

k half integer

δ(k, n/2)f(k) = f(n/2)

13Or equivalently as in the RHS of (17)

1

2

∫ 2

0

dt′
∫ 1

0

dt

j∏
i=1

(
2 sin

(
πt+ π(i− 1)t′

))rli

eiπAt′
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we rewrite the same two binomials as(
rl1

rl1/2 + A/2 +
∑j

i=3(i− 2)ki

)
=

∞∑
k1=−∞

k1 half integer

∫ 1

0

dte2iπ
(
k1−(A/2+

∑j
i=3(i−2)ki)

)
t

(
rl1

rl1/2 + k1

)
(

rl2
rl2/2− A/2−

∑j
i=3(i− 1)ki

)
=

∞∑
k2=−∞

k2 half integer

∫ 1

0

dt′e2iπ
(
k2+A/2+

∑j
i=3(i−1)ki

)
t′
(

rl2
rl2/2 + k2

)
Doing the same manipulations as above except for the first two binomials the LHS of (17)
then becomes ∫ 1

0

dt

∫ 1

0

dt”
∞∑

k1=−∞
k1 half integer

∞∑
k2=−∞

k2 half integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)

eiπAt”e2iπ(k1+k2)te2iπk2t”
j∏

i=3

(
2 cos

(
π ((i− 1)t” + t)

))rli

Summing over all A odd i.e., over A+ 2k2 even –since k2 is an half integer– yields again
a Kronecker enforcing t” = 0 so that after summation one obtains∫ 1

0

dt
∞∑

k1=−∞
k1 half integer

∞∑
k2=−∞

k2 half integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t

(
2 cos(πt)

)r(l3+...+lj)

Comparing with (30) we see that in order to get the same overall binomial counting
everything boils down to showing that in the same way that obviously

rl1/2∑
k1=−rl1/2
k1 integer

rl2/2∑
k2=−rl2/2
k2 integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t

=
(
2 cos(πt)

)r(l1+l2) (31)

holds,

∞∑
k1=−∞

k1 half integer

∞∑
k2=−∞

k2 half integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t

=
(
2 cos(πt)

)r(l1+l2)

should also hold.

To show this let us focus on the trivial identity (31) which is nothing but

rl1/2∑
k1=−rl1/2
k1 integer

rl2/2∑
k2=−rl2/2
k2 integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t =

r(l1+l2)/2∑
k=−r(l1+l2)/2

k integer

(
r(l1 + l2)

r(l1 + l2)/2 + k

)
e2iπkt
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or equivalently, harmlessly relaxing the range of k1, k2 and k summations,
∞∑

k1=−∞
k1 integer

∞∑
k2=−∞
k2 integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t =

∞∑
k=−∞
k integer

(
r(l1 + l2)

r(l1 + l2)/2 + k

)
e2iπkt

(32)

Let us to rederive it in an other way : defining k = k1 + k2 we can rewrite
∞∑

k1=−∞
k1 integer

∞∑
k2=−∞
k2 integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t

=
∞∑

k=−∞
k integer

∞∑
k1=−∞
k1 integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k − k1

)
e2iπkt

Thanks to the Chu-Vandermonde identity(
l1 + l2
l′1 + l′2

)
=

∞∑
k1=−∞
k1 integer

(
l1

l′1 + k1

)(
l2

l′2 − k1

)
we conclude that we indeed recover (32).

It is clear that the same conclusion can be reached when k1 and k2 are now both half
integers namely

∞∑
k1=−∞

k1 half integer

∞∑
k2=−∞

k2 half integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t

=
∞∑

k=−∞
k integer

(
r(l1 + l2)

r(l1 + l2)/2 + k

)
e2iπkt (33)

Indeed k1 and k2 being both half integers then k = k1 + k2 is again an integer so we can
write

∞∑
k1=−∞

k1 half integer

∞∑
k2=−∞

k2 half integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k2

)
e2iπ(k1+k2)t

=
∞∑

k=−∞
k integer

∞∑
k1=−∞

k1 half integer

(
rl1

rl1/2 + k1

)(
rl2

rl2/2 + k − k1

)
e2iπkt

Thanks to the generalized Chu-Vandermonde identity(
l1 + l2
l′1 + l′2

)
=

∞∑
k1=−∞

k1 half integer

(
l1

l′1 + k1

)(
l2

l′2 − k1

)
we reach indeed the identity (33) for the half integers summations. From which it directly

follows that in the presence of the additional
(
2 cos(πt)

)r(l3+...+lj) term integrating over t
from 0 to 1 one ends up getting again the same overall binomial counting, as desired.
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Figure 1: The lattice in (3.1).
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Figure 2: U, V and W are the three possible hoppings on the triangular lattice. As
an illustration two chiral walks going around up-vertex and down-vertex triangular cells
starting from the black bullet lattice site.
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•

Figure 3: Three of the 6 possible chiral walks starting from the same black bullet lattice
site. Only the 3 outgoing arrows represent possible motions from the original site.
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Figure 4: UWUWV 2 and U2W 2V 2 walks.
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