NGO-GM: Natural Gradient Optimization for Graphical Models - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

NGO-GM: Natural Gradient Optimization for Graphical Models

Résumé

This paper deals with estimating model parameters in graphical models. We reformulate it as an information geometric optimization problem and introduce a natural gradient descent strategy that incorporates additional meta parameters. We show that our approach is a strong alternative to the celebrated EM approach for learning in graphical models. Actually, our natural gradient based strategy leads to learning optimal parameters for the final objective function without artificially trying to fit a distribution that may not correspond to the real one. We support our theoretical findings with the question of trend detection in financial markets and show that the learned model performs better than traditional practitioner methods and is less prone to overfitting.
Fichier principal
Vignette du fichier
main - non_anonymous.pdf (427.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02886514 , version 1 (01-07-2020)

Identifiants

  • HAL Id : hal-02886514 , version 1

Citer

Eric Benhamou, Jamal Atifl, Rida Laraki, David Saltiel. NGO-GM: Natural Gradient Optimization for Graphical Models. 2020. ⟨hal-02886514⟩
34 Consultations
68 Téléchargements

Partager

More