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Abstract

This paper deals with estimating model param-
eters in graphical models. We reformulate it
as an information geometric optimization prob-
lem and introduce a natural gradient descent
strategy that incorporates additional meta pa-
rameters. We show that our approach is a strong
alternative to the celebrated EM approach for
learning in graphical models. Actually, our nat-
ural gradient based strategy leads to learning
optimal parameters for the final objective func-
tion without artificially trying to fit a distribu-
tion that may not correspond to the real one.
We support our theoretical findings with the
question of trend detection in financial markets
and show that the learned model performs bet-
ter than traditional practitioner methods and is
less prone to overfitting.

1 Introduction

One of the most challenging question in social sciences
and in particular financial markets, is to be able from past
observations to make some meaningful predictions. Part
of the challenge comes from multiple difficulties. First of
all, there is no universally established physical law and
our model will be at best a simplified version and at worst
a complete non sense. Second, sequential information
does not imply stationarity of the process: data may incur
regime changes. Third, we should find the right balance
between not enough and too much modeling.

To be able to represent connection between our variables,
an efficient and meaningful framework is graphical mod-
els. As stated in [Jordan, 2012], graphical models are a
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marriage between probability theory and graph theory.
They are powerful as they provide a condensed way to
represent variables dependencies. The graphical repre-
sentation allows not only compacting information, it also
provides a powerful formalism for reasoning under uncer-
tainty. It represents knowledge about the dynamics of the
variables, their dependencies and their conditional distri-
bution, hence sometimes called also Dynamic Bayesian
Networks (DBN).

Graphical models exploit latent variables to make the
model better in terms of explanation power. By defin-
ing a joint distribution over visible and latent variables,
the corresponding distribution of the observed variables
is obtained by marginalization. This has the nice prop-
erty to express relatively complex distributions in terms
of more tractable joint distributions over the expanded
variable space. The canonical atomic example of hidden
variable models is the mixture distribution in which the
hidden variable is the discrete component label that pro-
vides the corresponding distribution for the observable
variable. The static version leads to the Gaussian mix-
ture model and in continuous space to the factor analysis
model while the dynamic version leads respectively to
HMM and the Kalman filter model, often referred to as
the state space model and represented by figure 1. How-
ever, dynamic graphical models can be more complex as
given by figure 2 with combination of the Kalman filter
(KF) model and echo state networks (ESN) or by figure 3
with feedback from past observations to next step latent
variables. We will exploit a combination of the latter in
our numerical experiments.

To finalize our model, we need to solve the issue of learn-
ing the its parameters. The typical learning approach is
the Expectation Maximization (EM) algorithm. It was
initially developed for mixture models, in particular Gaus-
sian mixtures and other natural laws such as Poisson,
binomial, multinomial and exponential distributions, see
[Hartley, 1958] and [Dempster et al., 1977]. It was only
when the link between latent variables and Kalman fil-



Latent x1 x2 x3 xt

z1 z2 z3 ztObserved

. . .

Figure 1: State Space model represented as a Bayesian
Probabilistic Graphical model. Each vertical slice repre-
sents a time step. Nodes in gray (resp. white) represent
observable (resp. non observable or latent) variables. This
State Space model encompasses HMM and KF models
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Figure 2: Example of another dynamic Bayesian network
combining Kalman filter (KF) model and echo state net-
works (ESN). This is another example of a multi-input
several multi-outputs (MISMO) forecasting model. It is
used frequently in time series forecast (see for instance
[Xiao et al., 2017])

ter models was made that it became clear that it could
also be applied to Kalman and extended Kalman filters
(see [Cappe et al., 2010] or [Einicke et al., 2010]). The
EM method is so far the state of the art method for learn-
ing graphical model parameters as it provides an effi-
cient way to find model parameters in a fraction of sec-
onds (see for instance [Neal and Hinton, 1999], but also
[Pfeifer and Protzel, 2018], [Li and McCormick, 2017],
[Robin et al., 2017], [Levine, 2018]). Interestingly
[Xu and Jordan, 1996] shows that the EM method can
be viewed as a gradient descent where the decrement is
computed as the projection of the gradient, making it a
variable metric gradient ascent. Similarly, [Amari, 1995]
proves that the E and M steps in EM can be interpreted
as dual projected gradient flows under dual affine con-
nections using information geometry. This advocates to
find alternatives that are also gradient descent but in the
natural space.

We argue that although EM enjoys several nice properties,
it misses the point that graphical models are imprecise
and simplified models for the reality especially when tack-
ling complex problems such as time series forecasting.
In particular, whenever we apply graphical models to
economics and finance, we are forced to make some mod-
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Figure 3: Example of a dynamic Bayesian network with
connection between past observable variables and latent
variables

eling assumptions about the state dynamics and the graph
topology (the DBN structure). These assumptions may be
incorrectly specified and add some bias compared to real-
ity. Trying to use a best fit approach through maximum
likelihood estimation and Kullback Leibler divergence op-
timization may miss this point and try to fit at all cost the
model on data. It does not factor in the interdependence
between our graphical model and the actions related to
this graphical model. In the case of social sciences, if the
graphical model is used to make a forecast which is then
used to make a parametric action, the EM method does
not take into account the interrelation between parameters
of the graphical model denoted by θ and the ones of the
action denoted by τ . To measure the efficiency of the full
set of parameters (θ, τ), we rely on a cost function that
can contain a regularizer to lead to smooth parameters. In
finance, this cost function can be for instance a measure
of the performance of our prediction taking into account
the risk in our actions.

We present here a new approach that takes a radical point
of view and focuses on the final efficiency of our model.
Graphical model parameters are now estimated in terms
of their efficiency for the cost function together with the
action parameters rather than just their distributional fit
to data. We rely on information geometric optimization
to find a local optimum for our final cost function. Our
key features are the following:

• it is possible to directly optimize the cost function
with a stochastic optimization approach and in par-
ticular the CMA-ES method;

• this approach computes a natural gradient in the
implicit Fisher information Riemannian manifold;

• it is a good alternative to the EM approach as it does
not fit at any cost the distribution of our graphical
model to reality but rather looks at model efficiency
measured by a loss function related to the problem
under study;



• the estimation of our model parameters is performed
jointly with the action strategy parameters;

• numerical results show that the overfitting issue of
this approach due to local minima is less than the
EM approach as it takes into account that the model
dynamics is incorrectly specified.

The rest of the paper is organized as follows. Section 2
presents the overall framework and the resulting optimiza-
tion problem. Section 3 provides some theoretical argu-
ments that favor stochastic optimization approaches based
on Information Geometric Optimization (IGO). Section 4
discusses an example in finance. Our method outper-
forms traditional trend following methods by far. We
finally conclude about some possible extensions and fur-
ther experiments.

2 Settings

Suppose we have determined an architecture for our
Dynamic Bayesian Network. This may be inspired by
combinations of simple network architectures such as
those in Figures 1, 2, 3. This model is used for some
specific goal. In our case, it is used to forecast some
times series. But this is not our final objective! We are
interested in using this forecast to perform a specific ac-
tion. In the case of a financial market algorithmic trading
strategy, we will use the forecast to make an informed
decision and decide whether we should buy, sell or do
nothing with a financial asset. To keep things simple, we
will assume that when we take our decision, we target a
pre-determined movement amplitude, materialized by a
profit target and a stop loss level. The signal for the action
is given by the difference between the forecast generated
by our graphical model and the last price. To avoid
false signals, we add an additional threshold parameter
for our action and consider that there is an uptrend
signal (respectively a downtrend signal) if the forecast
is above the last price plus a threshold (respectively
below the last price minus a threshold). Using a fixed
price target, a stop loss and a threshold is quite realistic
and is done by many practitioners as presented in
various papers, e.g. [Labadie and Lehalle, 2010],
[Giuseppe Di Graziano, 2014], [Fung, 2017], or
[Vezeris et al., 2018]. The profit target ensures
that the strategy locks the profit in real money and is
technically corresponding to a limit order while the stop
loss, technically corresponding to a stop order, safeguards
the overall risk by limiting losses whenever the market
backfires and contradicts the presumed direction.

The price target, stop loss and threshold are three addi-
tional parameters that govern our action. These parame-
ters are closely interconnected to our network parameters.

If the network’s prediction is accurate enough, we should
aim for a large price movement, hence a large price target
and a small stop loss. If it is not accurate enough, on the
contrary, we should reduce the price target and increase
the stop loss. We hold the position until either the trade
reaches the profit target and exits in a profit or it touches
the stop loss level and exits with a loss. The objective
function to measure the performance of the model is the
eponymous Sharpe ratio (introduced in [Sharpe, 1966])
that corresponds to the ratio of the strategy net return
over its standard deviation. We add an L1 regularization
term to ensure sparsity of the dynamic graphical model
parameters. Although this approach may recall reinforce-
ment learning theory, the dynamic nature of our graphical
model makes the usage of standard reinforcement learning
tools such as Q-learning inappropriate.

On this simple example, we clearly see that optimizing
graphical model parameters in a standalone fashion is not
optimal and that these parameters should be evaluated
together with the action parameters at the light of our loss
function as represented by figure 4. We want to maximize
the Sharpe ratio of our trading strategy over time. This
optimization problem is non convex with potentially many
local optima. Moreover, the binary nature of our action,
i.e. we sell or buy as soon as our forecast hits the past
level plus or minus the threshold, leads to discontinuities.

The fundamental difference between EM method and ours
is to jointly optimize the model and the action parameters,
learning (θ, τ). Because model and action parameters are
interconnected, this approach well fits our initial desider-
ata. It optimizes our final criteria, the loss function, and
not the maximum likelihood of our graphical model. We
will present in the next section some important results
from information geometric optimization that allow us to
tackle this complex optimization problem using a natural
gradient descent.

Graphical model
parameters θ

Trading
Strategy τ

Algorithm

Loss
function

Natural Gradient
Optimization

Figure 4: Learning process for our graphical model. De-
cide an architecture for our graphical model with parame-
ters θ, combine with a strategy with parameters τ to create
a systematic algorithm. Select a loss function. Use natural
gradient optimization to find best parameters (θ?, τ?)



3 Information Geometric Optimization

3.1 Natural gradient descent

Compared to the usual gradient descent method, the
natural gradient takes into account the intrinsic geo-
metric structure of the underlying Riemmanian space.
Since the seminal work of [Amari, 1998], it has been
widely adopted by the machine learning community
[Pascanu and Bengio, 2014], [Bernacchia et al., 2018].
In gradient descent, the usual update step is
θt+1 = θt − νt

∂U(θ)
∂θt where θt is the optimization

parameter at iteration t, νt the learning rate, and U
the cost function. The method of natural gradients
replacement proposes to change the gradient descent
with θt+1 = θt − νtG

−1(θt)∂U(θ)
∂θt where G(θt) is a

matrix that defines the Riemannian metric in the space
of the parameters. This is very powerful as it computes
the fastest descent when looking at the Riemannian
metric induced by the parameters. In distributions
space, the Riemannian metric is associated with the
Fisher information matrix [Rao, 1945, Jeffreys, 1946].
In general, it is difficult to apply the natural gradient
descent because we need to invert the Fisher information
matrix, which is computationally heavy, except in some
particular cases where there exists a closed form like for
instance for exponential family distributions. We will
follow the seminal works of [Ollivier et al., 2017] and
[Akimoto, 2012] and present a stochastic optimization
method that performs numerically natural gradients
efficiently.

We denote by X a metric space and associate to X a
Borel σ-field and a measure on X denoted by F and µ
respectively. Typically X is Rd and µ is the Lebesgue
measure on Rd. We are interested in minimizing a µ-
measurable real value function f : X → R. In order to
make our optimization invariant with respect to various
standard transformations of f , instead of minimizing f ,
it is better to find the minimum of a loss (also referred
to as an invariant cost) function that is invariant to any
strictly increasing transformation of f . We define Lf as
the µ-measured volume of the unit ball in the functional
space f with radius f(x), that is

Lf : x 7→ µ[y : f(y) 6 f(x)].

Said differently, Lf is the measure of all the elements
whose value is less or equal to f(x). We are inter-
ested in finding the optimum of the loss function with
respect to a family of probability distributions Pθ on
X, θ ∈ Θ. Compared to standard optimization, we de-
fine a quasi-objective function, sometimes referred to
as a utility function, Uf , on the parameter space Θ de-
fined as the expected value of our loss function Lf over

the space of distributions to the power 2/d: Pθ, namely
Uf (θ) = EX∼Pθ

[
L

2/d
f (X)

]
. The intuition behind the

exponent 2/d is to ensure that the utility is in a sense
dimensionless and homogeneous to the square of a Eu-
clidean distance. This is because in dimension d, a unit
ball is homogeneous to a radius of dimension d, where as
the square of a Euclidean distance is of dimension 2. We
will see in the practical example of a a quadratic function
(see subsection 3.5) that this choice of exponent makes
the explicit computation of the natural gradient easy.

In [Ollivier et al., 2017], this utility function is defined
as the opposite of the weighted quantile, U IGOf (x) =
−w(Pθt [y : f(y) 6 f(x)]), where w : [0, 1] 7→ R
is non-increasing weight function. This choice is not
easy to analyze as the quantile Pθt [y : f(y) 6 f(x)]
depends on the current parameter θt. At each iter-
ation, the loss function LIGOf (x) changes making it
hard to analyze. In [Akimoto, 2012], the utility (re-
ferred to as the quasi objective) function is defined as
UNGAf = EX∼Pθ [ν[y : f(y) 6 f(x)]] where ν repre-
sents any monotonically increasing set function on F ,
i.e., ν(A) 6 ν(B) for any A, B ∈ F s.t. A ⊆ B. Our
function is somehow simpler as the loss function is just
the expected volume of all the elements whose value is
less or equal to f(X) for X ∼ Pθ while the Utility func-
tion is similar but homogeneous to a Euclidean distanced
squared.

We are interested in performing a natural gradient descent
on a Riemannian manifold given by (Θ, G(θ)) equipped
with the Fisher information metric Gθ. We choose the
Fisher metric because it is the unique metric that does not
depend on the choice of parameterization as explained in
[Amari and Nagaoka, 2007]. The natural gradient is easy
to obtain and is just the gradient with respect to the Fisher
information matrix metric. One can “easily” compute it
and get that it is provided by the product of the inverse
of the Fisher information matrix Gθ with the standard or
vanilla gradient∇Uf (θ) of the function to minimize. We
can then apply a natural gradient descent as follows:

θt+1 = θt − νtG−1
θt ∇Uf (θt), (1)

where νt is the learning rate. Compared to the vanilla
gradient, we have an additional term given by G−1

θt . We
present below an algorithm that allows performing the
natural gradient descent in a general case. To make things
clearer, we will present the algorithm in the case where
we can explicitly compute the inverse of the Fisher in-
formation matrix and the standard gradient∇Uf (θ). We
will call this the Closed form Natural Gradient or (NGD).
We will then present the Monte-Carlo NGD that allows
performing the natural gradient descent in a general frame-
work efficiently.



Historically, this approach of computing a natural
gradient in the space of distributions was done empir-
ically and without strong theoretical arguments in the
Evolution Strategies community. The most prominent
approach belonging to this work which is indeed a
natural gradient method is the CMA-ES algorithm
[Hansen and Ostermeier, 2001]. Although CMA-ES has
been state of the art in this line of research as shown by the
various benchmarks of the Comparing Continuous Opti-
misers (COCO) INRIA platform for ill-posed functions, it
was only later, after the works of [Akimoto et al., 2010],
[Glasmachers et al., 2010], [Akimoto et al., 2012],
[Akimoto, 2012], and the deep theoretical study of
[Ollivier et al., 2017]) that the community realizes that
this algorithm performs a natural gradient descent.
In the following we adapt these theoretical proofs to
the setting of our graphical model learning problem.
The CMA-ES algorithm has led to a large number of
papers and articles and we refer the interesred reader
to [Hansen and Ostermeier, 2001], [Auger et al., 2004],
[Igel et al., 2007], [Auger and Hansen, 2009],
[Hansen and Auger, 2011], [Auger and Hansen, 2012],
[Hansen and Auger, 2014], [Akimoto et al., 2015],
[Akimoto et al., 2016], [Ollivier et al., 2017] and
[Varelas et al., 2018] to cite a few.

3.2 Closed Form (CF) NGD Algorithm

In order to study the key property of the CMA-ES, we
focus on the case where X = Rd and suppose the measure
µ to be the Lebesgue measure on Rd, denoted µLeb, while
F denotes the Borel σ-field Bd on Rd.

Concerning the sampling distribution, we will work with
the Gaussian distribution as it has the maximum entropy
among distributions with known first two moments. Our
distribution space, denoted by Pθ is parameterized by
the parameter θ ∈ Θ. We adopt the traditional moment
parameters, that is the mean vector µ(θ), which is in Rd
and the covariance matrix Σ(θ), which is a symmetric and
positive definite matrix of dimension d× d, which leads
that Pθ is indeed the normal written as N (µ(θ),Σ(θ)).

The loss function Lf (x) is naturally associated to the
Lebesgue measure µLeb and defined as Lf (x) = µLeb[y :
f(y) 6 f(x)]. In order to optimize our function, we look
at the infimum of

Uf (θ) = EX∼Pθ
[
L

2/d
f (X)

]
.

If there is only one optimum, this translates into finding
the domain Θ where the mean vector equals the global
minimum of f while the covariance matrix is null.

It is worth noticing that the choice of the moment pa-
rameterization of Gaussian distributions does affect the

behavior of the natural gradient update (1) with finite
learning rate νt. However, the steepest direction of Uf
on the statistical manifold Θ is invariant under the choice
of parameterization as explained in [Ollivier et al., 2017].
Using explicit computation for the normal, we get the
natural gradient descent summarized by proposition 3.1
below.

Proposition 3.1. If the loss function is squared integrable
(EX∼Pθ

[
L2
f (X)

]
< ∞), using two different learning

rates (νtµ, ν
t
Σ) for the mean vector and the covariance,

the natural gradient descent (1) writes:

µt+1 = µt − νtµδµt,
Σt+1 = Σt − νtΣδΣt,

(2)

with δµt = EX∼Pθt [L
2/d
f (X)(X − µt)]

δΣt = EX∼Pθt
[
L

2/d
f (X)

(
(X − µt)(X − µt)T − Σt

)]
Proof. Refer to A in the supplementary material for more
details.

Equations (2) defines the closed-form or deterministic
natural gradient descent (NGD) method, which is an ideal
case where we know the optimum solution. This ideal
case is useful for deriving fruitful properties of our opti-
mization method but is useless in practice.

3.3 Monte-Carlo (MC) NGD Algorithm

We now turn to the real algorithm that is efficient in
real-world situations. It tackles the issue of unknown
and untractable gradient for our quasi objective function:
∇Uf (θ). The last resort solution is to estimate the gradi-
ent with Monte Carlo simulations. We approximate the
natural gradient and simulate the natural gradient descent
with the algorithm 1.

This algorithm is the Monte Carlo version of our NGD
algorithm. In [Ollivier et al., 2017], this is referred as the
stochastic NGD algorithm. Compared to the closed-form
NGD algorithm, we evaluate∇Uf (θ) thanks to a Monte
Carlo simulation. This makes this algorithm stochastic in
nature. In order to have the same behavior each time we
run this algorithm, we freeze random seeds to ensure sim-
ilar results for the normal random numbers. The core of
the algorithm is to generate n samples xi from a multivari-
ate Gaussian distribution N (µt,Σt), evaluate their value,
computes the loss functions Lf (xi) afterwards. The esti-
mates L̂f (xi) are obtained as follows. In order to get the
intuition of the Monte Carlo approximation, recall that

http://coco.gforge.inria.fr/
http://coco.gforge.inria.fr/


Algorithm 1 Monte-Carlo NGD Algorithm
while Not Converged do

Simulate n random normal vectors denoted by zi
according N (0, Idd), infer xi = mt +

√
Σtzi, and

evaluate their values f(x1), . . . , f(xn)
Estimate the Loss function Lf (xi) as

L̂f (xi) =

√
(2π)d det(Σ)

n

∑
j:f(xj)6f(xi)

exp

(
‖zj‖2

2

)

Estimate the natural gradient δµt and δΣt as

δ̂µt =
1

n

n∑
i=1

(
L̂f (xi)

)2/d

(xi − µt)

δ̂Σt =
1

n

n∑
i=1

(
L̂f (xi)

)2/d (
(xi − µt)(xi − µt)T − Σt

)
.

(3)

Update parameters with ngd as
µt+1 = µt − νµδ̂µt

and Σt+1 = Σt − νΣδ̂Σt.
end while

the loss function is given by:

Lf (x) =

∫
1{f(y)6f(x)}dy)

=

∫
1{f(y)6f(x)}

pθt(y)
pθt(y)dy

In our Monte-Carlo algorithm, a first step consists in
computing the integral as the corresponding Riemann
sum:

L̂f (x) =
1

n

n∑
j=1

1{f(xj)6f(x)}

pθt(xj)
(4)

For the multivariate Gaussian, the probability weights are
given by pθt(xj) = 1/

√
(2π)d det(Σ) exp

(
−‖zj‖2/2

)
where the zi are standardized normalN (0, Idd) draws. It
is worth noticing that these weights are not the traditional
ones of the CMA-ES algorithm. CMA-ES relies rather on
logarithmic weights [Hansen and Auger, 2014] and takes
a fraction (denoted by µ, that means something different
from our mean vector) out of λ candidates. In this setting,
we use all the candidates to compute the new mean and
covariance. From a theoretical point of view, the weights
introduced in [Akimoto, 2012] are more meaningful and
make the study of the property of this stochastic optimiza-
tion algorithm simpler. The next step is to estimate the

natural gradient according to equations (2) as follows:

EX∼Pθt
[
L

2/d
f (X)(X − µt)

]
=

1

n

n∑
i=1

(
L̂f (xi)

)2/d

(xi − µt) (5)

EX∼Pθt
[
L

2/d
f (X)

(
(X − µt)(X − µt)T − Σt

)]
=

1

n

n∑
i=1

(
L̂f (xi)

)2/d (
(xi − µt)(xi − µt)T − Σt

)
(6)

In the final natural gradient update, it is important to
have both the mean and the covariance learning rates not
too large. We will see in the next section the reason of
the limitation of the learning rates when looking at the
positivity of the covariance matrix at each step as well as
when examining convergence properties.

3.4 Basic Properties

Invariance. Invariance properties are fundamental for
the efficiency of optimization algorithm. Our stochastic
optimization has two major invariance properties: un-
der monotonic transformations of the objective function
and under affine transformations of the search space. In-
variance under monotonic transformation means the algo-
rithm performs equally well on the function f and on g◦f ,
the composition of f with any function g strictly increas-
ing. This explains why it performs well on ill-conditioned
functions whereas conventional gradient methods like
Newton method relies on convexity properties of the ob-
jective function and handles this non-convex problems
less well. This invariance property is a direct consequence
of the loss function. Invariance under affine transforma-
tions of the search space is the key idea behind the New-
ton’s method. The adapation of the covariance matrix at
each step explains the performance of this algorithm on
ill-conditioned objective functions.

Positivity. The covariance matrix must be positive
definite and symmetric at each iteration. Although
[Krause et al., 2016] recently took the additional con-
straint to Cholesky decompose the covariance matrix, we
can explicitly compute the condition on the learning rate
νtΣ to ensure that in our NGD algorithms the covariance
matrix always remains positive definite symmetric. Propo-
sition 3.2 shows that the learning rate has too be small
enough. Should the learning rate be larger than the critical
value, the covariance matrix would be be non positive.

Proposition 3.2. Provided that the matrix Σ0 and the var-
ious matrices Id − νtΣ

√
Σt
−1
δΣt
√

Σt
−1

are positive def-
inite, the covariance matrix Σt remains positive definite



(and symmetric) for each t in the closed form NGD algo-
rithm. Should the matrix Id−νtΣ

√
Σt
−1
δΣt
√

Σt
−1

not be
positive (with eigen values negative or null), Σt+1 would
not be positive. In the Monte-Carlo NGD algorithm,
the condition is modified into Id − νtΣ

√
Σt
−1
δ̂Σt
√

Σt
−1

should be positive definite for any t.

Proof. Refer to B in the supplementary material for more
details.

Remark 3.1. In case, the matrix
√

Σt
−1
δΣt
√

Σt
−1

for
the Closed Form case and

√
Σt
−1
δ̂Σt
√

Σt
−1

for the
Monte-Carlo case has some positive eigen values, this
result can be re-expressed trivially in terms of eigen-
values and state that the learning rate is bounded by
νtΣ < 1/λ1(

√
Σt
−1
δΣt
√

Σt
−1

) for the Closed Form

case and νtΣ < 1/λ1(
√

Σt
−1
δ̂Σt
√

Σt
−1

) for the Monte
Carlo case where λ1(M) denotes the largest eigenvalue
of a matrixM . This is quite intuitive. The greater the criti-
cal largest eigenvalue is, the bigger the gradient is. Hence
the learning rate should not be too large to go too far. Re-
ciprocally the smaller the critical largest eigenvalue is,
the smaller the gradient is. Should the matrices previ-
ously mentioned have only negative values, there would
be no bound on the learning rate. This result is already
presented in [Akimoto, 2012] but without mentioning that
the two matrices shall not be necessarily positive. We
will see in the trivial case of the quadratic function in
subsection 3.5, that the matrix in the Closed Form case
can be explicitly computed and given by κΣtHΣt with κ
given by proposition 3.4. Should H not be positive, the
matrix

√
Σt
−1
δΣt
√

Σt
−1

would not be neither.

Convergence. Although the gradient estimator de-
fined in (3) may not be necessarily unbiased, yet it con-
verges to the true natural gradient as proved by propo-
sition 3.3. This implies in particular that the Monte-
Carlo NGD approximates well the closed-form NGD
when we increase the sample size n. Let us denote by
∇ : U 7→ G−1

θ ∇U the natural gradient operator, and by
∇̃θn : Û 7→ G−1

θ ∇Û the Monte Carlo estimate of the
natural gradient.

Proposition 3.3. Let X1, . . . , Xn be independent and
identically distributed (i.i.d) random vectors following
Pθ. Let us denote vec(M) the vectorization of ma-
trix M , that is the vector obtained by stacking ma-
trix columns on top of one another. Let L̂f (x) and
∇̃θn = [(δ̂µt)T, vec(δ̂Σt)T]T be the loss function es-
timator given by (4) and the natural gradient estimator
where in (3) the x1, . . . , xn are replaced by X1, . . . , Xn.

If the loss function is squared integrable: E[L2
f (X)] <

∞, then the gradient estimator of our utility function

converges almost surely: ∇̃θnÛ
a.s.→ ∇Uf (θ), where a.s.→

represents almost sure convergence.

Proof. Refer to C in the supplementary material. This re-
sult was proved as early as 2011 by [Ollivier et al., 2017]
although their final manuscript was published a few years
latter. Our approach though is quite original as we use
the fundamental property of almost sure convergence that
implies also Cesaro convergence. As Monte Carlo esti-
mates are in nature Cesaro sums, this remarkable property
ensures convergence of the MC NGD algorithm. Intrin-
sically, it means our Monte Carlo estimate is consistent.
This is the theoretical foundation for our algorithm. The
square integrability condition E[L2

f (X)] <∞ is crucial
to guarantee the convergence of the algorithm.

3.5 Convergence Properties

Since the MC NGD algorithm is quite complex, we
are forced to simplify the problem and look at conver-
gence properties only for the CF NGD algorithm. We
additionally restrict ourselves to the canonical convex-
quadratic function f(x) = 1

2x
THx, as introduced in

[Auger et al., 2004], where H is a positive definite sym-
metric matrix. We also make assumptions on our learning
rates: there exist νµ,min > 0 and νΣ,min > 0 such that

νµ,min 6 νtµλ1((Σt)−1δΣt) 6 1, (7)

νΣ,min 6 νtΣλ1((Σt)−1δΣt) 6 1/2. (8)

A way to satisfy these inequalities is to
set νtµ = αµ/λ1((Σt)−1δΣt) (respectively
νtΣ = αΣ/λ1((Σt)−1δΣt) with αµ (resp. αΣ) be-
ing a learning rate constant for µ (resp. C) such that
0 < αµ 6 1 (resp. 0 < αΣ 6 1/2).

With these assumptions, we can prove the global con-
vergence of µ and C with linear convergence speed as
stated by the proposition 3.4 below. The optimum of
our quadratic test function is zero. In the following,
we denote by ‖M‖ the Frobenius norm of M , namely
‖M‖ = Tr1/2(MTM).

Proposition 3.4. For the canonical quadratic optimiza-
tion, the natural gradient descent is explicit and given
by

µt+1 = µt − νtµ κΣtHµt

and Σt+1 = Σt − νtΣ κΣtHΣt (9)

where
κ =

2π(
Γ
(
d
2 + 1

)√
det(H)

)2/d
(10)

with Γ(z) =
∫ +∞

0
tz−1 e−t dt the regular Gamma func-

tion. Suppose (7) and (8) hold, then ‖µt‖ (resp. ‖Σt‖)



converges to zero with a rate of convergence defined as
the lim sup of the ratio of two consecutive terms upper
bounded by 1− νµ,min (respectively 1− νΣ,min).

Proof. Refer to D in the supplementary material.
The intuition of the result of the convergence
appeared as early as in [Auger et al., 2004] and
was progressively improved and more detailled
in [Arnold and Hansen, 2010], [Akimoto, 2012],
[Beyer, 2014] and lately [Hansen, 2016] among others.
The novelty of our proof is the explicit computation of the
natural gradient descent update equations with the true
computation of the constant κ in the update equations
(9).

Remark 3.2. Proposition 3.4 is remarkable because it
indicates that the rate of convergence is linear, which is
unexpectedly fast for this kind of algorithms and explains
why the CMA-ES is currently the state of the art solution
for several complex optimization settings.

4 Numerical Results

In order to test the efficiency of our optimization proce-
dure that results in a CMA-ES optimization for Learning
parameters of our graphical model and the price target and
stop loss, we look at a trend following algorithm where
we enter a long (respectively short) trade if the dynamic
Bayesian network forecast is above (respectively below)
the previous day closing price. For each comparison, we
add an offset µ to avoid triggering false alarm signals. We
set for each trade a pre-determined profit and stop loss
target in ticks. The chosen architecture for our graphical
model is a combination of model of Figure 2 and 3 and
given in Figure 5.

Latent x11 x21 xt1

x12 x22 xt2

z1 z2 zt
Observed

. . .

. . .

Figure 5: Combination of a multi state Kalman filter
and echo neural networks (ESN) with feedback effet of
observable variable on next latent variables

The corresponding dynamic is composed of two latent
variables representing short and long term effects, denote
respectively: x.1 and x.2. We assume that long term effect
impacts the next long term latent variable while there is
no influence of short term latent variable on the next long

term effect latent variable. This results in the following
equations:

xt+1 = Φxt + ct + wt (11)
zt = Hxt + vt (12)

We assume that the observation noise vt follows a multi-
variate normal distribution with zero mean and covari-
ance matrix given by Rt: vt ∼ N (0,Rt). In ad-
dition, the initial state, and noise vectors at each step
x0,w1, . . . ,wt,v1, . . . ,vt are assumed to be all mutu-
ally independent. We also denote by Pt = Cov(xt) the
covariance matrix of xt. We assume the following param-
eters:
Φ(x)=

[
p1 p2

0 p3

]
,H=

[
p4

p5

]
,Qt=0 =

[
p2

6 p6p7

p7p6 p
2
8

]
,

Rt=0 =
[
p9

]
,Pt=0 =

[
p10 0
0 p11

]
, ct=

[
p12(.5+p13−kt)
p14(.5+p15−kt)

]
(13)

The variable kt is computed as the ratio of the difference
between the last price observation and the running mini-
mum over the difference between the running maximum
and minimum observed over 20 periods. The pseudo code
is given in Algorithm 2.

Algorithm 2 Graphical model Trend following algorithm
Initialize common trade details
SetProfitTarget( target)
SetStopLoss( stop loss )
while Not In Position do

if DBN( p1, . . . , pn).Predict[0] ≥ Close[0] + µ
then

EnterLong()
else if DBN( p1, . . . , pn).Predict[0] ≤ Close[0] + µ
then

EnterShort()
end if

end while

Our resulting algorithm depends on the following param-
eters p1, . . . , pn, the parameters of our dynamic graphical
model, the profit target, the stop loss and the signal thresh-
old µ. We could estimate the graphical model parameters
with the EM procedure, then optimize the profit target,
stop loss and signal threshold separately. However, if by
bad luck, the dynamics of the graphical model is incorrect,
the noise induced by wrong specification will be factored
in these three parameters.

We opt rather for a combined optimization of all the pa-
rameters. We use one minute data for the S&P 500 index
futures from 01Jan2017 to 01Jan2018 but take daily de-
cisions. We train our model on the first 6 months repre-
senting about 170,000 data points and test it on the next



six months. For a model given by equations (11) and
(12) and parameters specified in (13), the optimization
encompasses 18 parameters: p1, . . . , p15, the profit target,
the stop loss and the signal offset µ, making it non triv-
ial. We use the CMA-ES algorithm to find the optimal
solution. In our optimization, we add a L1 penalty to
enforce sparsity of our parameters. Obtained parameters
are summarized in Table 1. Out of 18 parameters, only 10
are not null. Table 2 shows that statistics for train and test
are very similar, which is a good sign for little overfitting.
Figures 6 and 7 are very similar confirming our intuition
of reduced overfitting.

Figure 6: Graphical model algorithm on train data set

Figure 7: Graphical model algorithm on test data set

Table 1: Optimal non null parameters
Parameters p01 p03 p04 p05 p06 p07 p12 threshold stop target

Value 24.8 11.8 46.2 77.5 67 99.9 99.9 5 80 150

We compare our algorithm with a classical EM and a
traditional Moving Average (MA) crossover approach
to test the efficiency of our graphical model for trend
detection. The MA algorithm generates a buy (resp. sell)
signal when the fast moving average crosses above (resp.
below) the long moving average. Table 3 details the
results of this comparison. We see that on the train dataset,
the three algorithms share similar performances (similar
first two columns) but they perform quite differently on
the test set and only our graphical model manages to
have a Sharpe ratio over 1 on the test period. Overall,
the MA algorithm seems to suffer from overfitting as it
performance in the test set is very different from the one
on the train. This is confirmed by Figure 8 and 9, with
sharp contrast between train and test.

Figure 8: Moving Average Crossover algorithm on train
data set

Figure 9: Moving Average Crossover algorithm on test
data set

Table 2: Train/Test statistics for NGD graphical model
Performance Net Profit Avg. Trade Tot. Net Profit (%) Ann. Net Profit (%)

Train 5,086 e 339.05 e 5.09% 10.59%

Test 4,266 e 284.38 e 4.27% 8.69%

Performance Vol Sharpe Ratio Max. Drawdown Recovery Factor

Train 6.54% 1.62 -2,941 e 3.510

Test 6.20% 1.40 -1,721 e 4.948

Performance Profit Factor # of Trades # of Contracts Avg. Winning Trade Max. conseq. Winners

Train 1.75 e 15 1,692.09 e 3

Test 1.62 e 15 1,588.92 e 2

Table 3: Graphical Model versus EM and MA crossover
Algo Train: Percent Profitable Train: Total Net Profit Test: Total Net Profit Test: Recovery Factor

MA Cross over 54 % 5,260.00 e 935 e 0.32

EM optimized model 42 % 5,165.72 e 2,250 e 0.56

NGD Graphical model 48 % 5,085.79 e 4,266 e 2.48

Algo Test: Sharpe Ratio Total # of Trades Overall Profit Factor Test: Max. Drawdown

MA Cross over 0.41 26 1.13 -e2,889

EM optimized model 0.85 28 1.25 -e2,523

NGD Graphical model 1.40 30 1.62 -e1,721

5 Conclusion

In this paper, we presented a novel approach for learn-
ing parameters in dynamic graphical models that tackles
the targeted usage of our dynamic graphical model and
incorporates them in the natural gradient optimization of
the loss function. Compared to EM method, this method
performs better in real scenarios and is less prone to over-
fitting.
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Supplementary
Materials

A Proof of proposition 3.1

Proof. The regularity condition that the expec-
tation of our loss function is square integrable
(EX∼Pθ

[
L2
f (X)

]
<∞) implies that for any d > 1, we

also have EX∼Pθ
[
L

2/d
f (X)

]
<∞.

Hence we can interchange the order of integration and
differentiation and compute the natural gradient update
as

∇Uf (θ) = EX∼Pθ
[
L

2/d
f (X)S(θ, x)

]
, (14)

where S(θ, x) = ∇ ln l(θ, x) is the score function, de-
fined as the gradient of the log-likelihood L(θ, x) =
ln l(θ, x) = ln pθ(x) of the multivariate Gaussian dis-
tribution with respect to its moment parameters.

For a multi variate normal distribution, the score function
is given by

S(θ, x)=

[
Σ−1(x− µ)

− 1
2 vec(Σ−1 − Σ−1(x− µ)(x− µ)TΣ−1)

]
For a multi variate normal distribution, the Fisher matrix
information has a closed form given by

Gθ =

[
Σ−1 0

0 1
2 (Σ−1 ⊗ Σ−1)

]
, (15)

where ⊗ denotes the Kronecker product operator. The
natural gradient writes

θt+1 = θt − νtG−1
θt ∇Uf (θt) (16)

Combining (14), (15) and (16), and splitting the learning
rate νt among the mean vector and the covariance matrix,
with two different learning rates, we obtained

µt+1 = µt − νtµδmt,

Σt+1 = Σt − νtΣδΣt .
(17)

with

δµt = EX∼Pθt [L
2/d
f (X)(X − µt)]

δΣt = EX∼Pθt
[
L

2/d
f (X)

(
(X − µt)(X − µt)T − Σt

)]
which concludes the proof.

B Proof of proposition 3.2

Proof. The symmetry is obvious. Let us prove that the
matrix Σt is positive definite for each t by mathematical
induction. The result is trivially true for t = 0 as Σ0 is
positive definite. Suppose that at step t the result is true
and that the matrix Ct is positive definite and symmetric.
Notice that the update 2 writes

Σt+1 =
√

Σt(Id − νtΣ
√

Σt
−1
δΣt
√

Σt
−1

)
√

Σt (18)

for the closed form (C) NGD and

Σt+1 =
√

Σt((Id − νΣ

√
Σt
−1
δ̂Σt
√

Σt
−1

)
√

Σt (19)

for the Monte Carlo case. Using the result that if A and
B are symmetric positive definite, then

√
AB
√
A is also

positive definite, we get that Σt+1 stays positive definite.
This concludes the proof that the matrix Σt is positive
definite for each t. Should the learning rate be too large
so that the inner term in 18 Id − νtΣ

√
Σt
−1
δΣt
√

Σt
−1

for the closed form case, and Id − νΣ

√
Σt
−1
δ̂Σt
√

Σt
−1

for the Monte Carlo case are not definite positive, the
next iteration Σt+1 would also be not definitive positive.
Should the previous matrices be non positive, the next
iteration Σt+1 would non positive, which concludes the
proof.

C Proof of proposition 3.3

We will decompose this proof into various elementary
lemmas. Usually, when proving convergence for Monte
Carlo, one relies on traditional statistical tools like the
strong law of large numbers as well as some measure
tools like Lebesgue’s dominated convergence, Cauchy
Schwartz inequality, etc... However, we take an original
approach and rather use connection between single term
convergence and Cesaro convergence. A first lemma that
is intuitive is that almost sure convergence implies almost
sure (a.s.) Cesaro convergence. To make things more
precise, let X be a random variable of Rd and fn : Rd →
R a series of real valued functions.

Lemma C.1. If (fn)n∈N converges almost surely to 0,
then its Cesaro sum obtained for n independent realiza-
tions of X converges almost surely to 0. In other words,

fn(X)
a.s.−−→ 0 =⇒ 1

n

n∑
i=1

fn(Xi)
a.s.−−→ 0

where Xi ∼ X are i.i.d. variables.



Proof. For m 6 n, we have

lim
n→∞

∣∣∣ 1
n

n∑
i=1

fn(Xi)
∣∣∣ 6 lim

n→∞

1

n

n∑
i=1

sup
j>n
|fj(Xi)|

6 lim
n→∞

1

n

n∑
i=1

sup
j>m
|fj(Xi)|.

(20)

By assumption, fn(x)
a.s.→ 0 almost everywhere in x as n

tends to infinity. This implies that supj>m|fj(x)| a.s.→ 0
almost everywhere in x as µ tends to infinity. We can
apply the Lebesgue’s dominated convergence theorem to
prove that E[supj>m|fj(X)|] → 0 as m → ∞. This
implies that E[supj>m|fj(X)|] is finite for µ sufficiently
large. The strong law of large numbers (LLN) applies
and proves that the right hand side of (20) converges
to E[supj>m|fj(X)|] when n becomes large. The last
expectation converges to 0 when µ grows to infinity. This
concludes the proof.

Remark C.1. That convergence implies Cesaro conver-
gence relies strongly on the almost sure convergence na-
ture. Should the initial convergence only be in probability,
the convergence of our series of functions (fn)n∈N would
not imply Cesaro convergence. Take for instance a stan-
dard Gaussian variable X ∼ N (0, 1) and the series of
function(fn)n∈N where fn is equal to 0 everywhere ex-
cept when X > n and takes the value 1/(1 − Φ(n))
where Φ is the cumulative density function (c.d.f). Take
X1, X2, ... n independent standard Gaussian variables, it
is easy to see that the Cesaro sum

∑n
k=1 fn(Xk)

n does not
converge to 0 as its mean is by construction equal to 1,
while (fn) converges in probability to 0. This is because
the function fn takes non zero value on a smaller and
smaller interval measure: X > n but with a value that
explodes and is given by 1/(1−Φ(n)) to compensate for
the reduced interval on which the function fn is not null.

The second lemma concerns the almost sure consistency
of our estimator of the loss function.

Lemma C.2. L̂nf
2/d

(x) converges a.s. to L2/d
f (x)

Proof. The estimator L̂nf
2/d

(x) writes as

L̂nf
2/d

(x) =

(
1

n

n∑
j=1

1{f(xj)6f(x)}

pθt(xj)

)2/d

.

hence, we have

lim
n→∞

L̂nf
2/d

(x) =

 lim
n→∞

1

n

n∑
j=1

1f(Xj)6f(x)

pθ(Xj)

2/d

.

We know that E[L2
f (X)] < ∞ which implies

E[L
2/d
f (X)] < ∞ for any dimension d. This implies in

particular taht L2/d
f (X) = (µLeb[y : f(y) 6 f(x)])2/d is

finite almost everywhere. We can safely apply the strong
law of large numbers to get

lim
n→∞

L̂nf
2/d

(x) = (µLeb[y : f(y) 6 f(x)])2/d = L
2/d
f (x)

almost surely and almost everywhere in x, which con-
cludes the proof.

We are now ready to prove proposition 3.3.

Proof. The assumption in proposition 3.3 is that Lf (X)
is square integrable, that is E[L2

f (X)] < ∞, hence

L
2/d
f (X) is also integrable, which leads trivially that the

expectation of L2/d
f (X) is finite

E[L
2/d
f (X)] 6∞. (21)

The variance of L2/d
f (X) being non negative, we have the

trivial inequality between the first two moments:(
E[L

2/d
f (X)]

)2

6 E[L
4/d
f (X)].

Moreover, Cauchy-Schwarz inequality gives us that

E[‖L2/d
f (X)∇̃L(θ, x)‖]2 < E[L

4/d
f (X)]E[‖∇̃L(θ, x)‖2].

Using the relationship between the variance of the
score and the information Fisher, we can notice that
E[‖∇̃L(θ, x)‖2] = Tr(G−1

θ ) < ∞. This implies also
that the expectation of ‖L2/d

f (X)∇̃L(θ, x)‖ is finite

E[‖L2/d
f (X)∇̃L(θ, x)‖] <∞ (22)

Let us take the function series (fn) as the difference be-
tween our estimated loss function and the loss function:

fn(x) = L̂nf
2/d

(x)− L2/d
f (X).

Let us decompose ∇̃θnÛ in three terms as follows:

∇̃θnÛ =
1

n

n∑
i=1

L
2/d
f (Xi)∇̃L(θ;Xi)

−
(

1

n

n∑
i=1

L̂nf
2/d

(Xi)︸ ︷︷ ︸
=b

)(
1

n

n∑
i=1

∇̃Lθ;Xi)

)

+
1

n

n∑
i=1

fn(Xi)∇̃L(θ;Xi) (23)



We want to prove that ∇̃θnÛ
a.s.→ ∇Uf (θ) almost surely.

We can examine successively the three terms.

Using (22) and the strong law of large numbers, the first
term converges to E[L

2/d
f (X)∇̃L(θ, x)] = ∇Uf (θ) al-

most surely as n tends to infinity.

We now examine the second and third terms in (23). To
conclude the proof, we need to prove that these two terms
converge a.s. to zero.

Let us tackle the second term. By lemma C.2, we know
that our estimated loss function is almost surely consistent,
which implies that fn(x) converges almost surely to 0.
By lemma C.2, this implies that we have the almost surely
Cesaro convergence of

1

n

n∑
i=1

fn(Xi)
a.s.→ 0 as n→∞. (24)

The almost sure convergence (24) implies that

the limit limn→∞
∑n
i=1 L̂

n
f

2/d
(Xi)/n agrees with

limn→∞
∑n
i=1 L

2/d
f (Xi)/n. We also have from (21) and

from the strong law of large numbers that the Cesaro sum∑n
i=1 L̂

n
f

2/d
(Xi)/n converges almost surely to the ex-

pectation E[L
2/d
f (X)]. The latter is finite by assumption.

Also, by the strong law of large numbers we have that
the Cesaro sum

∑n
i=1 ∇̃L(θ;Xi)/n also converges to 0

when n tends to infinity. We can conclude that the second
term of (23) converges to zero almost surely.

We are now left with the third term of (23). The proof of
its almost sure convergence to zero is similar. A Cauchy-
Schwarz inequality applied to the second term of (23)
gives us a way to control the third term as follows:

∣∣∣∣∣
n∑
i=1

fn(Xi)∇̃L(θ;Xi)

n

∣∣∣∣∣
2

6
n∑
i=1

fn(Xi)
2

n

n∑
i=1

‖∇̃L(θ;Xi)‖2

n
.

We can take of the two terms in this inequality success-
fully. The strong law of large numbers proved that the
second term of the right hand side converges to the expec-
tation E[‖∇̃L(θ, x)‖2], which can be expressed in terms
of the trace of the inverse of the Fisher information ma-
trix: Tr(G−1

θ ) which is finite. This means that the second
term of the right hand side converges to a constant. We
are left to prove that the first term on the right hand side
converges to zero almost surely. By lemma C.2, we have
that fn

a.s.→ 0 almost everywhere in x as n → ∞, which
implies that f2

n
a.s.→ 0 almost everywhere in x as n→∞.

By lemma C.1, this implies the Cesaro convergence of∑n
i=1

fn(Xi)
2

n to 0 almost everywhere in x as n → ∞
which concludes the proof.

D Proof of proposition 3.4

Like for proposition 3.3, we will first prove a few lemma
and the result will become easy. Since our objective
function is explicit and given by a parabola, which is
a very simple function, we can explicitly compute the
natural gradient ascent. This is the subject of the first
lemma:

Lemma D.1. The closed-form NGD algorithm on the
benchmark quadratic function 1

2x
THx writes as

µt+1 = µt − νtµδµt, (25)

with δµt = κ ΣtHµt (26)

and Σt+1 = Σt − νtΣδΣt, (27)

with δΣt = κ ΣtHΣt, (28)

with the constant κ > 0 given by

κ =
2π(

Γ
(
d
2 + 1

)√
det(H)

)2/d

where Γ(z) the Gamma function.

Proof. The natural gradient is directly related to the in-
verse Fisher information matrix times the gradient of the
loss function:

µt+1 = µt − νtµ(G−1
θ ∇Uf (θ))µ (29)

Σt+1 = Σt − νtΣ(G−1
θ ∇Uf (θ))Σ (30)

To fully make explicit the above formula, we need to
compute explicitly G−1

θ ∇Uf (θ) and prove that it is given
by

G−1
θ ∇Uf (θ) = κ

[
ΣHµ

vec(ΣHΣ)

]
. (31)

We can remark that µLeb[y : f(y) 6 f(x)] is equiva-
lent to the volume of the ellipsoid given {y : yTHy 6

xTHx}, or equivalently, {y : ‖
√
Hy‖

‖
√
Hx‖ 6 1}. The last

set is the image of unit ball {v : ‖v‖ 6 1} under the
transformation given by

√
Hy

‖
√
Hx‖ = v or equivalently

y = ‖
√
Hx‖
√
H
−1
v. The change of volume under this

linear map is given by the determinant of the transform
which is ‖

√
Hx‖d det(H)−1/2, hence,

µLeb[y : f(y) 6 f(x)] = ‖
√
Hx‖d det(H)−1/2Vd(1),

where Vd(1) is the volume of the unit ball in dimension
d. The utility or quasi objective function is defined as the



expectation of the loss function to the power 2/d. Hence,
we get

Uf (θ) : = EX∼Pθ
[
L

2/d
f (X)

]
= EX∼Pθ

[
(µLeb[y : f(y) 6 f(x)])

2/d
]

=

(
Vd(1)√
det(H)

)2/d

EX∼Pθ
[
XTHX

]
=

(
Vd(1)√
det(H)

)2/d

(µTHµ+ Tr(HΣ)).

Differentiating the both side of the above relation, we
have

∇Uf (θ) = 2

(
Vd(1)√
det(H)

)2/d [
Hµ

1
2 vec(H)

]
.

We can use the fact that the volume of the unit ball is
given by

Vd(1) =
πd/2

Γ
(
d
2 + 1

) ,
to get

∇Uf (θ) = κ

[
Hµ

1
2 vec(H)

]
. (32)

with
κ =

2π(
Γ
(
d
2 + 1

)√
det(H)

)2/d

For a multi variate Gaussian distribution, the inverse of
the Fisher information matrix is given by

Gθ =

[
Σ 0
0 2(Σ⊗ Σ)

]
, (33)

where ⊗ denotes the Kronecker product operator. Mul-
tiplying the gradient of our utility function (32) by the
inverse of the Fisher information matrix (33), we get equa-
tion (31), which concludes the proof.

The second lemma relates to the condition number of a
diagonal matrix series (Λt)t∈N that satisfies a particular
recursive relationship given by

Λt+1 = Λt − νt(Λt)2. (34)

We also take the convention that λti is the ith largest value
of the matrix Λt. We recall that for a symmetric matrix
M , its condition number denoted by Cond(M) is defined
by the ratio of its maximal to its minimal eigen value. For
the specific case of a diagonal matrix, this is simply the
ratio of its largest to its smallest value.

Lemma D.2. Let a diagonal matrix series (Λt)t∈N that
satisfies (34), with the constraint on the learning rate at
each step given by:

0 < νmin 6 νtλ1(Λt) 6 1/2. (35)

Then, the series of condition number of the matrix Λt
satisfies for any t > 0 the following inequalities:

Cond(Λt+1)− 1

Cond(Λt)− 1
6 1− νmin. (36)

Proof. We can remark that νt(λti + λtj) 6 1 for any i, j.
This is trivially obtained by the fact that as by definition,
λ1 is the largest eigen value, we have λti 6 λ1 for any i,
which combined with the constraint (34) implies νt(λti +
λtj) 6 2νtλ1 6 1.

Let suppose without loss of generality that we have sorted
the diagonal matrix elements by their value so that the
first element of the diagonal matrix value is the largest
eigen values, the second element the second largest value,
etc.. Let us now prove that the mapping between the
matrix position and the eigen values ranking order stays
the same between step t and t+ 1.

Let us prove the result by mathematical induction. The
result is true for step t = 0. Suppose the result is true
at step t and λti > λtj . From (34) and the inequality
νt(λ

t
i + λtj) 6 1, we have

λt+1
i − λt+1

j = λti(1− νtλti)− λtj(1− νtλtj)
= (1− νt(λti + λtj)︸ ︷︷ ︸

61

)(λti − λtj︸ ︷︷ ︸
>0

) > 0

with equality holding if and only if λti = λtj . Therefore,
if λti > λtj , then λt+1

i > λt+1
j , which implies the result

holds also at time t+ 1.

As by convention there is mapping between diagonal
element position and their eigen value rank, the condition
number of matrix Cond(Λt) is computed at each step
as the ratio of the first and last element of the diagonal
matrix Λt given by λt1/λ

t
d. According to our recursive

equation (34) we have

λt+1
1 − λt+1

d

λt+1
d︸ ︷︷ ︸

Cond(Λt+1)−1

=
λt1(1− νtλt1)− λtd(1− νtλtd)

λtd(1− νtλtd)

=
(λt1 − λtd)

λtd︸ ︷︷ ︸
Cond(Λt)−1

1− νt(λt1 + λtd)

(1− νtλtd)
. (37)

We can notice that the second term in the right hand side
is bounded as follows:
1− νt(λt1 + λtd)

1− νtλtd
= 1− νtλ

t
1

1− νtλt1 Cond−1(Λt)
6 1−νtλt1.



Because of the lower bound on the learning rate in (35),
the right term in the above inequality is bounded by 1−
νΣ,min. This leads to the result:

Cond(Λt+1)− 1

Cond(Λt)− 1
6 1− νΣ,min. (38)

This concludes the proof.

Remark D.1. As the condition number defined as the
ratio of the maximum with the minimum eigen value con-
verges to 1, this implies that the diagonal matrix Λt con-
verges to the identity matrix in the sense of the Frobenius
norm times its maximal eigen value (or equivalent its
minimal eigen value as they get similar as t tends to infin-
ity). This is not by magic. The proportional convergence
to the identity matrix is forced by the inequalities (35),
satisfied by the learning rate at each step which forces
all the matrix eigen values to progressively converge to a
common number. We can also note that the largest eigen
value converges to zero as t tends to infinity and is de-
creasing. This means in particular that in order to satisfy
the condition (35), the learning rate νt needs to be not
too small and specifically not below νmin/λ1(Λt). This
implies that the learning rate makes a trade-off between
a small value to ensure that it is below 1

2λ1(Λt)
but above

νmin/λ1(Λt), with the latter becoming larger and larger
as λ1(Λt) becomes smaller and smaller.

A third lemma concerns the relationship between largest
singular values and matrix norm. We denote by σi(M)
the ith largest singular value of a matrix M , and σ1(M)
its largest singular value.
Lemma D.3. LetM ∈ Rd×d be a positive definite matrix
and S ∈ Rd×d a positive definite symmetric matrix, then
we have the following matrix norm inequality:

‖MS‖2 6 σ2
1(M)‖S‖2. (39)

Proof. Using trace commutation property and relation-
ship between the norm and the trace, we have

‖MS‖2 = Tr(SMTMS) = Tr(MTMS2) (40)

Additionally, the J. von Neumann’s trace inequality
[Mirsky, 1975] gives us

|Tr(M1M2)| 6
d∑
i=1

σi(M1)σi(M2) 6 σ1(M1)

d∑
i=1

σi(M2),

(41)
where M1 and M2 are any matrices in Rd×d. Combining
(40) and (41), we get

‖MS‖2 6 σ1(MTM)

d∑
i=1

σi(S
2) = σ2

1(M)‖S‖2.

Remark D.2. Indeed, this lemma is quite obvious when
looking at the variational definition of singular matrix,
that is for a matrix M , the first or largest singular value
is written as the solution of the following maximization
program

σmax(M) = sup
x,y 6=0

xTMy

‖x‖2‖y‖2
= sup

y 6=0

‖My‖2
‖y‖2

Said differently, it also says that the maximum singular
value is the L2 operator norm of the matrix M .

A powerful result that was initially proved in
[Akimoto, 2012] is that the covariance matrix of the NGD
algorithm converges proportionally to the inverse of the
Hessian matrix of our quadratic problem which is given
by H . To prove this convergence, we shows that the con-
dition number of ΣtH converges to 1 with a linear speed.
This is the subject of the following lemma:

Lemma D.4. If the learning rate νtΣ for the covariance
matrix satisfies inequalities (8), then the condition number
of ΣtH converges to one with a linear rate of convergence
given by

lim sup
t→∞

Cond(Σt+1H)− 1

Cond(ΣtH)− 1
6

1− 2νΣ,min

1− νΣ,min
. (42)

Remarkably, we also have that the condition number is
upper bounded by

Cond(ΣtH) 6 1 + (1− νΣ,min)t(Cond(Σ0H)− 1).
(43)

Finally, if the limit νΣ,lim = limt→∞ νtΣλ1((Σt)−1δΣt)
exists, in equation (42), νΣ,min can be replaced by νΣ,lim

Proof. We are interested in the condition number of the
matrix ΣtH . To make the form more symmetric, we can
notice that it is better to look at the symmetrized term√
HΣt
√
H . This term does exist because H is a positive

definite and symmetric matrix, hence it admits a square
root
√
H . As

√
HΣt
√
H is a positive definite and sym-

metric matrix, we can decompose it in an orthogonal ma-
trix Ot and a diagonal matrix Dt as follows: OtDt(Ot)T,
where the diagonal elements of Dt = diag(Dt

1, . . . , D
t
d)

are the eigenvalues of
√
HΣt
√
H and each column of

Ot is the eigenvector corresponding to each diagonal el-
ement of Dt. The orthogonal and diagonal matrix de-
composition may not be unique but we will first prove
that if we find an initial orthogonal matrix O0 that diag-
onalizes

√
HΣ0

√
H , it will also diagonalize the matrix√

HΣt
√
H for any t > 0.

Let us prove this result by mathematical induction The
result is true for step t = 0 as

√
HΣ0

√
H is a positive def-

inite and symmetric matrix, hence it admits an orthogonal



and diagonal matrix decomposition O0D0(O0)T, such
that the diagonal elements of D0 = diag(D0

1, . . . , D
0
d)

are the eigenvalues of
√
HΣ0

√
H and each column ofO0

is the eigenvector corresponding to each diagonal element
of Dt. Let us assume that at the result holds at step t, that
is
√
HΣt
√
H admits an orthogonal and diagonal matrix

decomposition such that
√
HΣt
√
H = OtDt(Ot)T

Using first lemma D.1, we can use the covariance matrix
update (27). If we multiply both the right and the left side
of the covariance matrix update (27) by

√
H , we get:

√
HΣt+1

√
H =

√
HΣt
√
H − νtΣ κ (

√
HΣt
√
H)2.

Reformulating the above equation in terms of the orthog-
onal and diagonal matrix decomposition, we get:
√
HΣt+1

√
H = Ot

(
Dt − νtΣ κ (Dt)2

)
(Ot)T.

As Dt − νtΣ κ (Dt)2 is trivially a diagonal matrix, the
above equation proves that the orthogonal Ot also diag-
onalizes

√
HΣt+1

√
H . This proves that the result holds

for step t+ 1. In addition, we get as a by product that the
next step diagonal matrix Dt+1 is related to the previous
step diagonal matrix Dt as follows:

Dt+1 = Dt − νtΣ κ (Dt)2. (44)

which is very interesting and is almost the update equation
of our lemma D.2. To get exactly the update equation,
the trick is to introduce the diagonal matrix Λt = cDt

as the constant c > 0 and remark that equation (44) is
transformed into:

Λt+1 = Λt − νtΣ(Λt)2. (45)

which is exactly the update of the lemma D.2. At this
stage, we can notice various interesting remarks:

• the condition number of matrix ΣtH is also equal to
the one of the matrix

√
HΣt
√
H itself equal to the

condition number of Dt itself equal to the condition
number of Λt

• the diagonal matrix series (Λt)t∈N satisfies the as-
sumption of lemma D.2, hence we get

Cond(Λt+1)− 1

Cond(Λt)− 1
6 1− νmin (46)

or equivalently

Cond(Σt+1H)− 1

Cond(ΣtH)− 1
6 1− νmin (47)

These remarks imply that the following upper bound for
the condition number of ΣtH

Cond(ΣtH) 6 1 + (1− νΣ,min)t(Cond(Σ0H)− 1)

which exactly the equation (43). Moreover a trivial usage
of squeeze (also known as the pinching or sandwich)
theorem proves that

lim
t→∞

Cond(ΣtH) = 1

as the condition number of a matrix is always lower
bounded by 1. Using our first remark about the equality
of the condition number of the matrix ΣtH with the one
of matrix Λt and equation (37), we also get

lim sup
t→∞

Cond(Σt+1H)− 1

Cond(ΣtH)− 1
= lim sup

t→∞

1− 2νtΣλ
t
1

1− νtΣλt1

6
1− 2νΣ,min

1− νΣ,min
.

This proves the equation (42). Moreover, if the limit
νΣ,lim exists, from (36), we see that one can replace
νΣ,min by νΣ,lim in (42). This concludes the proof.

Remark D.3. Lemma D.4 is remarkable as it proves that
the covariance gradually adapts to the inverse of the Hes-
sian of our optimization problem, performing something
quite similar to a Newton decrement.

We can now prove the speed convergence part of proposi-
tion 3.4 as follows:

Proof. Using lemma D.1 and lemma D.3, we can ap-
ply the matrix and vector norm inequality ‖Mx‖2 6
σ1(M)2‖x‖2 to (25) and (26), we get

‖µt+1‖
‖µt‖

6 σ1(I − κνtµΣtH).

Likewise, the same applies for the update of the covari-
ance matrix Σ given by equations (27) and (28), leading to
a similar inequality for the matrix norm of the covariance

‖Σt+1‖
‖Σt‖

6 σ1(I − κνtΣΣtH).

Let us look at the maximum singular value as follows:

lim sup
t

σ1(I − κνtµΣtH)

= lim sup
t

σ1

(
I − νtµλ1(κΣtH)

ΣtH

λ1(ΣtH)

)
We can tackle these terms one by one. Using the lemma
D.4, we have that

lim
t→∞

ΣtH

λ1(ΣtH)
= Id



while assumptions (7) states that

νtµλ1(κΣtH) > νµ,min

leading to

lim sup
t

σ1(I − cνtµΣtH)

= lim sup
t

σ1

(
I − νµ,minId

)
6 1− νµ,min.

This implies linear convergence of µ with rate of conver-
gence at most 1− νµ,min, that is

lim sup
‖µt+1‖
‖µt‖

6 1− νµ,min, (48)

Likewise, the reasoning is almost the same for the covari-
ance matrix, and we also get

lim sup
t

σ1(I − κνtΣΣtH) 6 1− νΣ,min.

which proves the linear convergence of Σ with rate of
convergence at most 1− νΣ,min, that is

lim sup
‖Σt+1‖
‖Σt‖

6 1− νΣ,min, (49)

which ends the proof.
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