Performance guarantees for policy learning - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2020

Performance guarantees for policy learning

Résumé

This article gives performance guarantees for the regret decay in optimal policy estimation. We give a margin-free result showing that the regret decay for estimating a within-class optimal policy is second-order for empirical risk minimizers over Donsker classes when the data are generated from a fixed data distribution that does not change with sample size, with regret decaying at a faster rate than the standard error of an efficient estimator of the value of an optimal policy. We also present a result giving guarantees on the regret decay of policy estimators for the case that the policy falls within a restricted class and the data are generated from local perturbations of a fixed distribution, where this guarantee is uniform in the direction of the local perturbation. Finally, we give a result from the classification literature that shows that faster regret decay is possible via plug-in estimation provided a margin condition holds. Three examples are considered. In these examples, the regret is expressed in terms of either the mean value or the median value, and the number of possible actions is either two or finitely many.
Fichier principal
Vignette du fichier
main.pdf (637.82 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02886222 , version 1 (18-07-2024)

Identifiants

Citer

Alexander Luedtke, Antoine Chambaz. Performance guarantees for policy learning. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (3), pp.2162-2188. ⟨10.1214/19-AIHP1034⟩. ⟨hal-02886222⟩
28 Consultations
3 Téléchargements

Altmetric

Partager

More