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Abstract

This article gives performance guarantees for the regret decay in optimal policy estimation. We 

give a margin-free result showing that the regret decay for estimating a within-class optimal policy 

is second-order for empirical risk minimizers over Donsker classes when the data are generated 

from a fixed data distribution that does not change with sample size, with regret decaying at a 

faster rate than the standard error of an efficient estimator of the value of an optimal policy. We 

also present a result giving guarantees on the regret decay of policy estimators for the case that the 

policy falls within a restricted class and the data are generated from local perturbations of a fixed 

distribution, where this guarantee is uniform in the direction of the local perturbation. Finally, we 

give a result from the classification literature that shows that faster regret decay is possible via 

plug-in estimation provided a margin condition holds. Three examples are considered. In these 

examples, the regret is expressed in terms of either the mean value or the median value, and the 

number of possible actions is either two or finitely many.

Résumé
Cet article présente des garanties de performance concernant la vitesse à laquelle le regret 

s’amenuise dans le cadre de l’estimation d’une politique d’action optimale. Si la politique 

optimale est définie comme optimale relativement à un ensemble de politiques formant une classe 

de Donsker, et si elle est estimée par minimisation sur cet ensemble d’une estimation du regret 

vu comme une fonction sur celui-ci, alors un premier résultat révèle que la vitesse est de second 

ordre dès lors que les observations sont générées sous une loi qui ne change pas à mesure que 

leur nombre augmente. Plus spécifiquement, le regret de l’estimateur de la politique optimale 

s’amenuise plus rapidement que l’écart type d’un estimateur efficace de la valeur d’une politique 

optimale. Ce résultat ne nécessite pas le recours à une hypothèse de marge. Un second résultat 

porte sur la vitesse à laquelle le regret de l’estimateur de la politique optimale s’amenuise lorsque 

les observations sont générées sous des lois définies comme des perturbations locales d’une loi 

de référence fixe, la garantie de performance étant alors uniforme relativement aux directions de 

perturbation. Finalement, un troisième résultat montre qu’il est possible d’atteindre des vitesses 

plus rapides en mettant en œuvre une procédure d’estimation par substitution à la condition 

qu’une hypothèse de marge soit satisfaite. Ce résultat s’inspire de la littérature consacrée à la 

classification. Trois exemples illustrent nos trouvailles. Dans ceux-ci, le regret s’exprime en termes 

de valeur moyenne ou de valeur médiane, et les actions envisageables sont au nombre de deux ou 

bien en nombre fini.

HHS Public Access
Author manuscript
Ann I H P Probab Stat. Author manuscript; available in PMC 2022 March 22.

Published in final edited form as:
Ann I H P Probab Stat. 2020 August ; 56(3): 2162–2188. doi:10.1214/19-aihp1034.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

individualized treatment rules; personalized medicine; policy learning; precision medicine

1 Introduction

1.1 Objective

We consider an experiment where a player repeatedly chooses and carries out one among 

two actions to receive a random reward (the case of finitely many actions is also considered) 

in a batch setting. Each time, the reward depends on both the action undertaken and a 

random context preceding it, which is given to the player before she makes her choice. The 

law of the context and conditional law of the reward given the context and action are fixed 

throughout the experiment. The player’s objective is to obtain as large an expected reward as 

possible.

In this framework, a policy is a rule that maps any context to an action. The value of a policy 

is the expectation of the reward in the experiment where the action carried out is the action 

recommended by the policy. Given a class Π of candidate policies, the regret of a policy π ∈ 
Π is the difference between the largest value achievable within Π and the value of π.

Learning the optimal policy within a class of candidate policies is meaningful whenever 

the goal is to make recommendations. This is, for instance, the case in personalized 

medicine, also known as precision medicine. There, the context would typically consist 

of the description of a patient, the actions would correspond to two strategies of treatment, 

and the policies are rather called individualized treatment rules.

The objective of this article is not to establish optimal regret bounds for optimal policy 

estimators. It is, rather, to show that rates faster than n−1/2 can be demonstrated under 

much more general conditions than have previously been discussed in the policy learning 

literature.

1.2 A Brief Literature Review

There has been a surge of interest in developing flexible methods for estimating optimal 

policies in recent years. Here we give a deeply abbreviated overview, and refer the reader to 

[1] for a recent overview of the literature. Exciting developments in policy learning over the 

last several years include outcome weighted learning (OWL) [2, 3, 4], ensemble techniques 

[5], and empirical risk minimizers (ERMs) [1], to name a few. Each of these works has 

established some form of regret bound for the estimator, with most of these regret rates 

no faster than n−1/2. Notable exceptions to this n−1/2 restriction occur for OWL methods 

under a hard margin [2] and rates attainable by plug-in estimation strategies [6, 7, 8, 9, 10]. 

Asymptotically minimax results that scale as n−1/2 when the covariate distribution is discrete 

have also been established [11]. Stoye [12] furthered this line of work by establishing 

finite-sample minimax results for certain classes of distributions, and also noted that a 

data-free rule is finite-sample minimax when the policy class is not restricted [12] – we note 

here that these results will not impact the results in our work, given that we primarily focus 
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on restricted policy classes (except in Section 2.3, where we consider unrestricted policy 

classes).

We give our results in Section 2. Our first result pertains to empirical risk minimization 

within a Donsker class, where the optimal policy is defined as the so-called value maximizer 

within this class. These estimators were recently studied in [1], and were also discussed for 

continuous treatments in [13]. The second result studies the performance of these estimators 

under local fluctuations of the data generating distribution. These sort of local results were 

studied for unconstrained policy classes in [14], and are also studied for restricted classes 

starting in version 2 of Athey and Wager’s technical report [2017]. The third result links 

the optimal policy problem to the classification literature, which has shown that faster 

regret decay rates are attainable by plug-in estimators under certain margin conditions 

[15]. Section 3 gives three remarks, one relating our results to the pioneering results of 

Koltchinskii [16], another studying which term in our regret bound dominates the rate, and 

the third relating our results to those of Athey and Wager [1]. Section A proves our results 

regarding empirical risk minimization.

Two of our results are for the regret under a fixed data generating distribution. The faster-

than-n−1/2 rate that we will establish for ERMs (independent of any margin assumption) 

will not transfer to the minimax setting unless some form of margin assumption is imposed. 

Indeed, the results that we establish under local asymptotics do not scale faster than n−1/2. 

We do not give high probability results, though these are often a straightforward extension 

of convergence in probability results when working within Donsker classes. Throughout this 

work, when we refer to Donsker classes, we are referring to P-Donsker classes, where P is 

the data generating distribution, rather than universal/uniform Donsker classes [17]. While 

our ERM results are not useful for non-P-Donsker classes, we note that they also serve as 

an oracle guarantee for an ensemble procedure, such as [5], so that one needs not know in 

advance whether or not all of the classes over which they are optimizing are P-Donsker for 

the result to be useful.

The so-called empirical process plays a prominent role in our study. More specifically, 

several key events under scrutiny concern suprema of the empirical process over a variety 

of well-chosen classes of functions. In order to circumvent measurability issues that are 

potentially delicate, we assume that two pivotal classes of functions are separable (for 

instance, countable). Alternatively, we might have relied on a separable version of the 

empirical process or on convergence in outer probability [18].

1.3 Formalization

Let X ∈ X denote a vector of covariates describing the context preceding the action, A ∈ 
{ −1, 1} denote the action undertaken, and Y denote the corresponding reward, where here 

larger rewards are preferable. We denote by P the distribution of O ≡ (X, A, Y) and by E
and V  the expectation and variance under P (the expectation under a generic distribution P′ 
of O is denoted by EP′). For simplicity we assume throughout that, under P, Y is uniformly 

bounded and that there exists some δ ∈ (0, 1/2] so that P(A = 1∣X) falls in [δ, 1 – δ] with 
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probability one. The second assumption is known as the strong positivity assumption. While 

stronger than we need, these assumptions simplify our analysis.

Let P be the class of all policies, the subset of L2(P) consisting of functions mapping X to 

{−1, 1}. The value of a policy π ∈ P is given by

V(π) ≡ E [E[Y ∣ A = π(X), X]] . (1)

We emphasize here that, though not indicated in the notation, V(π) is a functional of the 

distribution P. Under some causal assumptions that we will not explore here, V(π) can be 

identified with the mean reward if, possibly contrary to fact, action π(X) is carried out in 

context X.

Now, let Π ⊂ P be the class of candidate policies. By choice, Π is separable, in that there 

exists a countable Π0 ⊂ Π such that every π ∈ Π is the pointwise limit of a sequence of 

elements of Π0 (for instance, Π itself could be countable). The regret (within class Π) of π is 

defined as the difference between V(π) and the optimal value V⋆ ≡ supπ ∈ ΠV(π): for all π 
∈ Π,

ℛ(π) ≡ V⋆ − V(π) . (2)

We extend the definition of ℛ to P. Obviously, ℛ(π) ≥ 0 for all π ∈ Π, but ℛ is not 

necessarily nonnegative over P.

For every π ∈ P, V(π) can be viewed as the evaluation at P of the real-valued functional

P′ EP′ [EP′[Y ∣ A = π(X), X]]

from the nonparametric model of distributions P′ satisfying the same constraints as P. This 

functional is pathwise differentiable at P relative to the maximal tangent space with an 

efficient influence function fπ given by

fπ(o) ≡ 1{a = π(x)}
P(A = a ∣ X = x) (y − E[Y ∣ A = a, X = x]) + E[Y ∣ A = π(x), X = x]

− V(π) .
(3)

By the bound on Y and the strong positivity assumption, there exists a universal constant M 
> 0 such that P(supπ∈Π ∣fπ(O)∣ ≤ M) = 1. As stated earlier, the strong positivity assumption 

is stronger than required. In particular, if we make the weaker positivity assumption that 

P(A = 1∣X) ∈ (0, 1) with probability one and E[P(A = 1 ∣ X)−2] < ∞ then, by boundedness 

of Y, {fπ : π ∈ Π} will still have an envelope function in L2(P), which will suffice for the 

conclusion of our main result (Theorem 1) to remain valid, though the proof would need to 

be modified.
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We refer the interested reader to [19, Section 25.3] and [8] for definitions and proofs of these 

facts. Although the class

ℱ ≡ {fπ :π ∈ Π} ⊂ L2(P) (4)

will play a central role in the rest of this article, it is not necessary to master the derivation 

or properties of efficient influence functions to appreciate the contributions of this work. 

Note that the separability of Π implies that the closure Π of Π under L2(P) norm, ℱ and 

{fπ :π ∈ Π} are separable too. Therefore, all the forthcoming suprema of the empirical 

process are measurable.

2 Main Results

2.1 Preliminary

Suppose that we observe mutually independent and identically distributed (i.i.d.) data-

structures O1 ≡ (X1, A1, Y1),… , On ≡ (Xn, An, Yn) drawn from P. We denote the 

corresponding empirical measure by Pn ≡ n−1∑i = 1
n  Dirac(Oi). For every function f mapping 

an observation to the real line, we set Pf ≡ E[f(X, A, Y )] and Pnf ≡ n−1∑i = 1
n f(Oi).

Our theorem will attain fast rates under the assumption that one has available an estimator 

{V(π) :π ∈ Π} of {V(π) :π ∈ Π} that makes the following term small:

Remn ≡ sup
π ∈ Π

V(π) − V(π) − (Pn − P)fπ . (5)

If empirical process conditions are imposed on the estimators for the reward regression, 

E[Y ∣ A, X], and the action mechanism, P(A∣X), then V could be defined using estimating 

equations [20] or targeted minimum loss-based estimation (TMLE) [21, 22]. Without 

imposing empirical process conditions, one could use cross-validated estimating equations 

[23, 24], now also called double machine learning [25], or a cross-validated TMLE [26]. 

Note that cross-validated estimating equations in this scenario represent a special case of 

a cross-validated TMLE, where one uses the squared cross-validated efficient influence 

function as loss [27]. For any of these listed approaches, obtaining the above uniformity over 

π is straightforward if Π is a Donsker class. It is plausible that Remn will be small for these 

listed approaches precisely because they make use of an estimate of fπ, a function which is 

known to be a gradient of the parameter taking as input a distribution P and returning the 

value of the rule π at P. If one either uses a cross-validated approach or enforces Donsker 

conditions on (consistent) estimators of the nuisance functions (a, x) E[Y ∣ A = a, X = x]
and (a, x) ↦ P(A = a∣X = x), then the fact that fπ is a gradient ensures that Remn is equal 

to an oP (n−1/2) term plus a second-order term that can be upper bounded by a constant times 

the product of the L2(P) distances between the estimated and true (a, x) E[Y ∣ A = a, X = x]
and (a, x) ↦ P(A = a∣X = x) functions [20], which is OP(n−1) in a correctly specified 

parametric model.
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2.2 Empirical Risk Minimizers

Our first objective will be to establish a faster than n−1/2 rate of regret decay for a value-

based estimator π of an optimal policy, given by any ERM π ∈ Π satisfying

V(π) ≥ sup
π ∈ Π

V(π) − oP(Remn) . (6)

Note that (6) is a requirement on the behavior of the optimization algorithm on the realized 

sample, rather than a statistical or probabilistic condition. The oP(Remn) term allows us 

to obtain an approximate solution to the ERM problem, which is useful because the 

optimization on the right is non-concave. In practice, it is possible that the approximation 

error will converge to zero more slowly than Remn. We discuss this case briefly following 

Theorem 1.

2.2.1 Main, Fixed-P ERM Result—We now present a result providing regret decay 

guarantees under data generated from the fixed distribution P that is similar to the 

groundbreaking results for ERMs based on general losses given in [16]. In Section 3.1, 

we discuss how our result relates to those in [16].

Recall that Π is the closure of Π under L2(P) norm. The set

Π⋆ ≡ {π⋆ ∈ Π :V(π⋆) = V⋆}
= {π⋆ ∈ Π :ℛ(π⋆) = 0} ⊂ {π⋆ ∈ Π :ℛ(π⋆) ≤ 0}

(7)

also plays an important role. If Π is Donsker, then Lemma A.3 in Section A guarantees that 

Π⋆ is nonempty and coincides with the right-hand side (RHS) set in the above display. It 

may be the case that Π⋆ contain more than one policy.

To develop an intuition, let us derive an initial upper bound on the regret ℛ(π) of π. In light 

of (5) and (6)

0 ≤ ℛ(π) = V(π⋆) − V(π)
= [V(π⋆) − V(π⋆)] + [V(π) − V(π)] + [V(π⋆) − V(π)]
≤ [V(π⋆) − V(π⋆)] + [V(π) − V(π)] + oP(1) Remn
≤ (Pn − P)(fπ − fπ⋆) + (2 + oP(1)) Remn .

Much of the challenge of the proof of the upcoming theorem is to control the first RHS term. 

It turns out that the pivotal random expression of interest is

ℰn ≡ lim inf
s 0

inf
π⋆ ∈ Π⋆

sup
π ∈ Π:‖π − π⋆‖ ≤ s

(Pn − P)(fπ − fπ),

where ∥·∥ denotes the L2(P) norm and the dependence of ℰn on π is suppressed in the 

notation. The above roughly corresponds to the best approximation in Π of the closest 

optimal policy π⋆ ∈ Π⋆ to the estimated policy π.
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Critically, ℰn will allow us to transfer the study of the regret ℛ(π) of π to the study of an 

empirical process, an object that we will be able to study using asymptotic equicontinuity 

arguments. This is similar to how classical semiparametric estimation schemes of pathwise 

differentiable, but possibly nonlinear, functionals transform the estimation problem to that 

of a linear functional [28], thereby enabling a proof of n−1/2 convergence rates and the 

application of well-established central limit theorems. Indeed, in our case we will show 

via well-established asymptotic equicontinuity arguments that ℰn = oP(n−1 ∕ 2) under mild 

assumptions. We note that the form of our ℰn is slightly more complicated than that of 

empirical process terms in classical semiparametric estimation settings because Π⋆ may not 

be a singleton.

Theorem 1 (Main Fixed-P ERM Result). If π satisfies (5), (6), and if Π is Donsker, then

0 ≤ ℛ(π) ≤ ℰn + [2 + oP(1)] Remn . (8)

If also Remn = oP(n−1/2), then ℰn = oP(n−1 ∕ 2), and therefore ℛ(π) = oP(n−1 ∕ 2).

The proof of Theorem 1 is given in Section A. If the oP(Remn) term in (6) is 

replaced by an arbitrary approximation error term AEn, then the above result changes to 

ℛ(π) ≤ ℰn + Remn + AEn, and the conclusion that ℛ(π) = oP(n−1 ∕ 2) remains valid if Remn 

and AEn are oP(n−1/2).

We note that the size of the class Π never shows up explicitly in the bound in Theorem 

1. All we used about Π was that it was Donsker, which allowed us to invoke asymptotic 

equicontinuity to control the term ℰn, which appears as a part of the oP(n−1/2) second-order 

term in the bound on the right-hand side of (8). One could apply maximal inequalities 

[e.g., Chapter 2.14 in 18] to get explicit bounds on how changing the size of the class 

Π will impact the rate of convergence of the term ℰn. Nonetheless, in some cases the ℰn
term will not be the dominant term on the right-hand side of (8). Indeed, if the reward 

regression, (a, x) E[Y ∣ A = a, X = x], and/or the action mechanism, (a, x) ↦ P(A = a∣X 
= x), is difficult to estimate (e.g., very nonsmooth), then the term Remn may dominate the 

right-hand side of (8) unless the Donsker class Π is very large.

The above rate on ℛ(π) is faster than the rate of convergence of the standard error of an 

efficient estimator of the value V(π) of a policy π ∈ Π, which converges at rate n−1/2 in all 

but degenerate cases. Note that our proof of the first result of the above theorem only uses 

that Π is totally bounded in L2(P) (a notion defined in Appendix A.1) whereas that of the 

second result uses the stronger assumption that Π is Donsker (see [18, Example 1.5.10] or 

[19, Lemma 18.15]).

2.2.2 Main Uniform Local ERM Result—The next result concerns the local properties 

of the ERM estimator. Local properties of policy estimators within unrestricted classes Π 
were studied in [14].
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Define L1
2(P) as the set of functions x ↦ ϕ1(x) in L2(P) satisfying E[ϕ1(X)] = 0, L2

2(P)
as the set of functions (a, x) ↦ ϕ2(a, x) in L2(P) satisfying P (E[ϕ2(A, X) ∣ X] = 0) = 1, 

and L3
2(P) as the set of functions (y, a, x) ↦ ϕ3(y, a, x) in L2(P) satisfying 

P (E[ϕ3(Y , A, X) ∣ A, X] = 0) = 1. In a slight abuse of notation, for o = (y, a, x) we will 

sometimes write ϕ1(o) to denote ϕ1(x), and similarly for ϕ2(o) and ϕ3(o). For j = 1, 2, 3, 

let Φj ⊂ Lj
2(P) be a separable (for instance, countable) class of functions ϕj that satisfy a 

uniformly sub-exponential property in the sense that there exist parameters (b1, σ1
2), (b2, σ2

2) 

and (b3, σ3
2) in (0, ∞)2 such that, P-almost surely,

log E[exp{λϕ1(X)}] ≤
λ2σ1

2

2 for all ∣ λ ∣ ≤ 1 ∕ b1, (9)

log E[exp{λϕ2(A, X)} ∣ X] ≤
λ2σ2

2

2 for all ∣ λ ∣ ≤ 1 ∕ b2, (10)

log E[exp{λϕ3(Y , A, X)} ∣ A, X] ≤
λ2σ3

2

2 for all ∣ λ ∣ ≤ 1 ∕ b3 . (11)

We impose that Φ2 contain the zero function. Let Φ = Φ1 × Φ2 × Φ3, and note that Φ is also 

separable.

For ϵ ∈ ℝ, ∣ϵ∣ ≤ 1/max{b1, b2, b3}, and ϕ = (ϕ1, ϕ2, ϕ3) ∈ Φ, define a fluctuation Pϕ,ϵ of P by 

its conditional densities:

dPϕ, ϵ
dP (x) = c1, ϕ(ϵ) exp{ϵϕ1(x)}, (12)

dPϕ, ϵ
dP (a ∣ x) = c2, ϕ(ϵ ∣ x) exp{ϵϕ2(a, x)}, (13)

dPϕ, ϵ
dP (y ∣ a, x) = c3, ϕ(ϵ ∣ a, x) exp{ϵϕ3(y, a, x)}, (14)

where above cj,ϕ are normalizing constants that ensures that the (conditional) densities 

define probability measures. We think of Pϕ,ϵ as a fluctuation of P in the direction of 

∑j = 1
3 ϕj (the one-dimensional parametric collection of distributions thus defined goes 

through P at ϵ = 0 with a score equal to ∑j = 1
3 ϕj). We will be particularly interested 

in Pϕ,ϵ for ϵ = n−1/2. For notational simplicity, we will proceed as if maxj∈{1,2,3} bj ≤ 1 

instead of assuming that n is large enough to guarantee that n−1/2 ≤ 1/maxj∈{1,2,3} bj. In 

Lemma A.11 in the appendix, we show that the sequence of collections of distributions 
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{Pϕ, ϵ = n−1 ∕ 2
n :ϕ ∈ Φ}n ≥ 1 is what we call uniformly contiguous with respect to (w.r.t.) the 

sequence {Pn}n≥1, in the sense that, for any sequence {Bn}n≥1 of measurable sets with 

limn→∞ Pn(Bn) = 0,

lim
n ∞

sup
ϕ ∈ Φ

Pϕ, ϵ = n−1 ∕ 2
n (Bn) = 0 . (15)

Note that uniform contiguity of the collection {Pϕ, ϵ = n−1 ∕ 2
n :ϕ ∈ Φ}n ≥ 1 w.r.t. {Pn}n≥1 

implies that, for any ϕ ∈ Φ, {Pϕ, ϵ = n−1 ∕ 2
n }n ≥ 1 is contiguous w.r.t. {Pn}n≥1 as developed by 

Le Cam [29].

In what follows, for ϕ ∈ Φ and a real-valued ϵ, we denote expectations over Pϕ,ϵ by Eϕ, ϵ, 

and we respectively define the value, the optimal value, and the regret of a rule π ∈ Π
under Pϕ,ϵ as Vϕ, ϵ(π) ≡ Eϕ, ϵ [Eϕ, ϵ[Y ∣ A = π(X), X]], supπ⋆ ∈ ΠVϕ, ϵ

⋆ ≡ supπ⋆ ∈ ΠVϕ, ϵ(π⋆), 

and ℛϕ, ϵ(π) ≡ supπ⋆ ∈ ΠVϕ, ϵ
⋆ − Vϕ, ϵ(π). We continue to use ∥·∥ to denote the L2(P) norm 

and also use the notation ⟨·, ·⟩ to denote the inner product that this norm induces.

For ϕ ∈ Φ, we define Πϕ, ϵ
⋆  as the set of rules in Π maximizing the value under the 

distribution Pϕ,ϵ:

Πϕ, ϵ
⋆ ≡ {π⋆ ∈ Π :Vϕ, ϵ(π⋆) = Vϕ, ϵ

⋆ } .

We note that Lemma A.3, which applies to any distribution in our model, not just to the 

distribution P, shows that Πϕ, ϵ
⋆ , is nonempty and that the regret is zero at the minimizer.

The below theorem assumes that Π is totally bounded in L2(P). We note that Π is compact 

if Π is totally bounded (see Lemma A.1), and recall that Π is totally bounded in L2(P) if 

Π is P-Donsker. Furthermore, we note here that the below theorem applies to any policy 

estimator π1 satisfying the given condition, including the ERM π or the plug-in estimators 

that will be presented in Section 2.3 provided they achieve the required rate of convergence. 

Finally, for a given π⋆ ∈ Π⋆, introduce

V ∗
1 ∕ 2(π⋆) ≡ ‖fπ⋆ − f−π⋆‖ . (16)

As was noted in version 1 of [1], V ∗
1 ∕ 2(π⋆) does not depend on the choice of π⋆ ∈ Π⋆. 

Hence, we will write V ∗
1 ∕ 2 ≡ V ∗

1 ∕ 2(π⋆), where π* is any arbitrary element of Π⋆.

Theorem 2 (Main Uniform Local ERM Result). Suppose that n1 ∕ 2ℛ(π1) converges to zero 

in probability under sampling from P and that Π is totally bounded. Let ϵn ≡ n−1/2 for all n ≥ 

1. For any t > 0, it holds that
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o(1) = sup
ϕ ∈ Φ

Pϕ, ϵn
n n1 ∕ 2ℛϕ, ϵn(π1) > sup

π⋆ ∈ Π⋆
inf

π ∈ Πϕ, ϵn
⋆

〈fπ − fπ⋆, ϕ1 + ϕ3〉 + t

≥ sup
ϕ ∈ Φ

Pϕ, ϵn
n {n1 ∕ 2ℛϕ, ϵn(π1) > ‖ϕ1 + ϕ3‖ V ∗

1 ∕ 2 + 2t} − o(1) .

The uniform nature of the above result may help to make it more informative of finite-

sample performance of π1 than would be a non-uniform result. If π1 is the empirical risk 

minimizer π, then, by Theorem 1 and the fact that Π Donsker implies that Π is totally 

bounded, the two conditions in the first sentence of the above theorem statement can be 

replaced by the condition that Π is Donsker. Also note that the inequality stated in the 

theorem is a simple consequence of the preceding equality, the Cauchy-Schwarz inequality 

and Lemma A.14 stated and proven in Appendix A.2. Moreover, noting that Lemma A.8 in 

the appendix shows that the L2(P)-magnitude of the perturbations in Φ is uniformly bounded 

by some C > 0, the above shows that, for all t > 0,

sup
ϕ ∈ Φ

Pϕ, ϵn
n {n1 ∕ 2ℛϕ, ϵn(π1) > CV ∗

1 ∕ 2 + t} = o(1) .

As such, any policy estimator with fixed-P regret decaying at a rate faster than n−1/2 has 

local regret that is uniformly bounded by a (C, P)-dependent constant in probability.

For certain distributions P, this result may be of limited interest. For example, [14] focused 

on perturbations of distributions P for which E[Y ∣ A = 1, X] − E[Y ∣ A = − 1, X] = 0 almost 

surely. In this setting, any policy estimator π1 will have regret zero, thereby achieving 

n1 ∕ 2ℛ(π1) = oP(1) with much to spare. The results of [14] are more informative in this 

setting, since they provide a n−1/2 rate bound on the regret that does not require the 

L2(P)-magnitude of perturbations in Φ to be bounded. However, our Theorem 2 provides 

guarantees under local perturbations of any distribution P, where we have shown that these 

conditions are always satisfied for ERMs over Donsker classes. Moreover, our asymptotics 

are uniform over perturbations in Φ, which may make our results more reflective of finite-

sample performance.

The above theorem results in the following important corollary, which shows that the regret 

decays faster than n−1/2 whenever Π⋆ is a singleton, and furthermore that this convergence is 

uniform over local fluctuation directions ϕ ∈ Φ.

Corollary 3. If the conditions of Theorem 2 hold and Π⋆ is a singleton, then, for all t > 0,

sup
ϕ ∈ Φ

Pϕ, ϵn
n {n1 ∕ 2ℛϕ, ϵn(π1) > t} = o(1) .

The above result follows immediately from Theorem 2 once it is noted that 

supπ1
⋆, π2

⋆ ∈ Π⋆〈fπ1
⋆ − fπ2

⋆, ϕ1 + ϕ3〉 = 0 if Π⋆ is a singleton. Hence, the proof is omitted.

Luedtke and Chambaz Page 10

Ann I H P Probab Stat. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Three detailed remarks on Theorems 1 and Theorem 2 are given in Section 3.

2.3 Plug-In Estimators

Section 3.1 discusses why we do not expect a faster than OP(n−1) rate of regret decay for π, 

even within a parametric model. A notable exception to this rule of thumb occurs if Π is of 

finite cardinality and P(A∣X) is known, since in this case large deviation bounds suggest very 

fast rates of convergence for ERMs. The same phenomenon has been noted and extensively 

studied in the classification literature [see the review in 30].

We now show that faster rates are attainable under some conditions if one uses a 

different estimation procedure. We point this out because, in our experience, this alternative 

estimation strategy can sometimes yield better estimates than a value-based strategy [5].

Let γ(X) ≡ E[Y ∣ A = 1, X] − E[Y ∣ A = − 1, X] denote the conditional average action effect. In 

this subsection, we assume that Π is an unrestricted class, i.e., that Π contains all functions 

mapping X to {−1, 1}. Audibert and Tsybakov [15] presented the surprising fact that plug-in 

classifiers can attain much faster rates (faster than n−1). In our setting, the plug-in policy that 

we will study first defines an estimator γ  of γ, and then determines the action to undertake 

based on the sign of the resulting estimate. Formally, πγ  is given by

πγ(x) ≡ 1{γ(x) > 0} − 1{γ(x) ≤ 0} .

Extensions of the result of [15] have previously been presented in both the reinforcement 

learning literature [6] and in the optimal individualized treatment literature [7, 8, 9, 10]. We 

therefore omit any proof, and refer the reader to [15, Lemma 5.2] for further details.

The upcoming theorem uses ∥·∥∞ to denote the L∞(P) norm. Let ≲ denote “less than 

or equal to up to a universal positive multiplicative constant” and consider the following 

“margin assumption”:

MA) For some α > 0, P(0 ≤ ∣ γ(X) ∣ ≤ t) ≲ tα for all t > 0 .

Theorem 4. Suppose MA holds. If ‖γ − γ‖ = oP(1), then 0 ≤ ℛ(πγ) ≲ ‖γ − γ‖2(1 + α) ∕ (2 + α). 

If ‖γ − γ‖∞ = oP(1), then 0 ≤ ℛ(πγ) ≲ ‖γ − γ‖∞
1 + α.

We now briefly describe this result, though we note that it has been discussed thoroughly 

elsewhere [15, 8, 9]. Note that MA does not place any restriction on the decision boundary 

{x ∈ X :γ(x) = 0} where no action is superior to the other, but rather only places a restriction 

on the probability that γ(X) be near zero.

If α = 1 and γ(X) is absolutely continuous (under P), then MA corresponds to γ(X) having 

bounded density near zero. The case that α = 1 is of particular interest for the sup-norm 

result because then the regret bound is quadratic in the rate of convergence of γ  to γ. As 

α → 0, more mass is placed near the decision boundary (zero) and the above result yields 

the rate of convergence of γ  to γ. As α → ∞, a vanishingly small amount of mass is 
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concentrated near zero and the above result recovers very fast rates of convergence when γ
converges to γ uniformly.

Remark 5 (Estimating γ). Doubly robust unbiased transformations [31] provide one way to 

estimate γ (Section 3.1 of [32]). In particular, one can regress (via any desired algorithm) 

the pseudo-outcome

Γ(O) ≡ A
P(A ∣ X)

Y − E[Y ∣ A, X] + E[Y ∣ A = 1, X] − E[Y ∣ A = − 1, X]

against X, both for double robustness and for efficiency gains. Above 

(a, x) P(A = a ∣ X = x) and (a, x) E[Y ∣ A = a, X = x] are estimators of (a, x) ↦ P(A = 

a∣X = x) and (a, x) E[Y ∣ A = a, X = x]. One can use cross-validation to avoid dependence 

on empirical process conditions for the estimators of (a, x) ↦ P(A = a∣X = x) and 

(a, x) E[Y ∣ A = a, X = x]. In practice, one can ensure that P(A ∣ X) is bounded away from 

zero and one by truncating this quantity in [δ , 1 − δ ] for δ > 0. To ensure that the truncation 

does not destroy the good statistical properties of P(A ∣ X), one could select δ  via cross-

validation w.r.t. the cross-entropy loss, which heavily penalizes estimators for selecting 

P(A = a ∣ X) near zero when an individual with covariate level X has observed action A = 1 – 

a. □

3 Three Remarks on ERM Results

3.1 Relation to the Rates of Koltchinskii [16]

Our Theorem 1 is related to [16, Theorem 4] and to the discussion of classification problems 

in Section 6.1 of this landmark article, although we (i) make no assumptions on the behavior 

of γ near the decision boundary (“margin assumptions”), (ii) give a fixed-P rather than 

a minimax result, (iii) do not require that the regret minimizer belong to the set Π, and 

(iv) make a slightly weaker complexity requirement on the class Π (only requiring Π 
Donsker). We thus have weaker conditions (only constrain the complexity of Π using a 

general Donsker condition) and, consequently, a weaker implication. Our result also differs 

from that of [16] due to the need for us to control the extra remainder term arising from (5).

Our Lemmas A.4 and A.6 in Section A are key to giving this general “Donsker implies 

fast rate” implication, even when Π does not achieve the infimum on the regret. Once this 

crucial lemma is established and one has dealt with the existence of the Remn remainder 

term, one could use similar arguments to those used in [16, Section 4] to control the regret 

(though, the proofs in our work are self-contained). We were not able to find a similar 

result in the classification literature that shows that Π Donsker suffices to attain a fast rate 

on misclassification error (the classification analogue of our regret). A result that makes a 

similarly weak complexity requirement (it only uses a Donsker condition) was given for 

general result for ERMs in [33, Theorem 4.5]. In particular, that result shows that, if Π is 

Donsker and Π⋆ is a singleton, then one attains a fast rate. In the policy learning context, 

this is a weaker result than what we have stated: Π Donsker implies a fast rate, without any 

assumption on the cardinality of Π⋆. We note also that our result could readily be extended 
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to standard classification problems: the lack of a remainder term Remn only makes the 

problem easier.

3.2 Tightening Theorem 1

Tightening Theorem 1 would require careful consideration of the rate of convergence of 

two oP(n−1/2) terms, namely Remn and ℰn. On the one hand, if one uses a cross-validated 

estimator, then the rate of Remn is typically dominated by the rate of a doubly robust term, 

which is in turn upper bounded by the product of the L2(P) norm rates of convergence 

of the estimated action mechanism (a, x) ↦ P(A = a∣X = x) and reward regression 

(a, x) E(Y ∣ A = a, X = x). It is thus sufficient to assume that this product is oP(n−1/2) to 

guarantee that Remn = oP(n−1/2). It is worth noting that the product is typically OP(n−1) in 

a well-specified parametric model. On the other hand, the magnitude of ℰn is controlled by 

both the size of class Π and the behavior of γ near the decision boundary, hence the need for 

a margin assumption like MA.

We do not believe there is a general ordering between the rate of convergence of Remn and 

ℰn that applies across all problems, and so it does not appear that the size of Π nor the use 

of an efficient choice of influence function fully determines the rate of regret decay of π
under fixed-P asymptotics, even when Remn = oP(n−1/2). A notable exception to this lack of 

strict ordering between Remn and ℰn occurs when the action mechanism is known: in this 

case, the size of Π and the behavior of γ on the decision boundary fully control the rate of 

regret decay whenever a cross-validated estimator is used. We also note that, as far as we can 

tell, there does not appear to be any cost to using an efficient value function estimator when 

the model is nonparametric. It is not clear if using the efficient influence function is always 

preferred in more restrictive, semiparametric models: there may need to be a careful tradeoff 

between the efficiency of the influence function and the corresponding Remn.

3.3 Relation to Results of Athey and Wager [1]

In a recent technical report [1], Athey and Wager showed that policy learning regret rates on 

the order of OP(n−1/2) are attainable by ERMs. Here we focus on the latest version (version 

4) of that report. In that work, Athey and Wager derive high-probability regret upper bounds, 

with leading constants that scale with the standard error S∗
1 ∕ 2 of an estimator for policy 

evaluation. When a semiparametric efficient estimator is used, their leading constant scales 

with V ∗
1 ∕ 2 (16). The results were shown to remain valid under uniform asymptotics in 

which the magnitude of the conditional average action effect changes with the sample size 

n. Section 4 of that report studies local asymptotics under a fixed policy class Π when 

the conditional average action effect decays at rate n−1/2. There, the authors argue that, 

under these local asymptotics, the appearance of S∗
1 ∕ 2 in the leading constant of their regret 

guarantee demonstrates the importance of using semiparametric efficient value estimators 

when defining a policy ERM, as compared to using inefficient value estimators such as those 

based on inverse probability weighting in settings where the propensity score is known. 

In contrast to the results of Athey and Wager, our findings in Theorems 1 and 2 do not 

indicate this improvement in performance of ERMs based on efficient value estimators over 
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those based on inefficient value estimators. Specifically, Theorem 1 or, more precisely, its 

generalization in Theorem 6, can be used to show that the regret of an ERM based on 

an inverse probability weighted value estimator is oP(n−1/2) under sampling from a fixed 

distribution P. Our Theorem 2 shows that this ERM based on an inefficient value estimator 

will achieve a regret guarantee that scales with the efficient standard error V ∗
1 ∕ 2 times the 

L2(P)-magnitude of the score indexing the perturbation of the fixed distribution P.

This apparent discrepancy between our result and those of Athey and Wager appears to 

occur for several reasons. In contrast to their result, our Theorem 1 is able to indicate faster 

than n−1/2 rates for ERMs because it focuses on the fixed-P setting, whereas their result is 

uniform over a large collection of distributions. Our Theorem 2 is able to indicate a uniform 

local regret bound that scales with V ∗
1 ∕ 2 for a (possibly inefficient) ERM because the regret 

bound scales with the L2(P)-magnitude of the perturbation ϕ of P. Notably, this bound 

can be made arbitrarily loose by simply increasing the L2(P)-magnitude of ϕ. Nonetheless, 

this bound provides a tighter result than does the result of Athey and Wager when ∥ϕ∥ is 

small. This is not too surprising, since decreasing the L2(P)-magnitude of ϕ has the effect 

of making the estimation problem behave more like the fixed-P setting, where Theorem 1 

shows that faster than n−1/2 rates are possible.

4 Extension of Main Fixed-P ERM Result and Two More Examples

4.1 Higher Level Result

Suppose we observe (O1,…, On) drawn from a distribution νn, where each Oi ≡ (Xi, Ai, 

Y) takes its values in O ≡ X × A × Y with A ⊂ [ − 1, 1]. Like in Section 1.3, Xi ∈ X denotes 

a vector of covariates describing the context preceding the ith action, Ai ∈ A denotes the 

action undertaken in this context and Y i ∈ Y is the corresponding reward. Unlike in Section 

1.3, there may be more than two actions and the observations are not necessarily i.i.d. This 

extends the setting introduced in Section 1.3, which can be recovered with A = { − 1, 1} and 

νn equal to a product measure. Throughout we also assume that there exists a distribution 

P with support on O that will have to do with our limit process. The requirements of this 

distribution P will become clear in what follows and the worked examples of Sections 4.2 

and 4.3.

Let Π be a class of policies, i.e., a set of mappings from X to A, and let Π be its L2(P) 

closure. We request that Π is not too large, in the sense that

Π is totally bounded w.r.t. ‖ ⋅ ‖ . (17)

The value of a policy π ∈ Π is quantified via V(π). As in our earlier result, the regret is 

defined as ℛ(π) ≡ V⋆ − V(π), where V⋆ ≡ supπ ∈ ΠV(π).

We also introduce the condition

V( ⋅ ) is uniformly continuous on Π w.r.t. to ‖ ⋅ ‖ . (18)
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Let ℓ∞(ℱ) denote the metric space of all bounded functions z :ℱ ℝ, equipped with the 

supremum norm. We assume that there exists a class {fπ :π ∈ Π} ⊂ L2(P) of mappings from 

O to [−M, M] (M not relying on π), an estimator {V(π) :π ∈ Π} of {V(π) :π ∈ Π} and a 

process Gn ∈ ℓ∞(ℱ) such that, for a (possibly stochastic) rate rn → +∞,

π fπ is uniformly continuous from Π to L2(P), and (19)

sup
π ∈ Π

rn V(π) − V(π) − Gnfπ = oP(1) . (20)

In (19), both spaces are equipped with ∥·∥. In (20), Gn ∈ ℓ∞(ℱ) is a stochastic process on 

ℱ ≡ {fπ :π ∈ Π} that may or may not be equal to the empirical process, but must satisfy

Gn GP in ℓ∞(ℱ), (21)

where almost all sample paths of GP  are uniformly continuous w.r.t. ∥·∥.

Finally we also assume that, for the same rate rn as in (20), π ∈ Π satisfies the ERM property

V(π) ≥ sup
π ∈ Π

V(π) − oP(rn−1) . (22)

Like (6), (22) is a requirement on the behavior of the optimization algorithm on the realized 

sample, rather than a statistical or probabilistic condition. The following result generalizes 

Theorem 1.

Theorem 6 (More General ERM Result). If (17) through (22) hold, then ℛ(π) = oP(rn−1).

A sketch of the proof is given in Appendix B. We only outline where the proof would 

deviate from that of Theorem 1.

Remark 7. If GP  is equal to the zero-mean Gaussian process with covariance given by 

E[GPfGPg] = Pfg − PfPg, then GP  has almost surely uniformly continuous sample paths. 

In particular, [18, Example 1.5.10] shows that GP  has almost surely uniformly continuous 

sample paths w.r.t. the standard deviation semimetric, and Section 2.1 in that same reference 

shows that, for bounded ℱ, one can replace this semimetric by that on L2(P). □

In the remainder of this section, we give a taste of the broad applicability of Theorem 6 via 

two more examples. The first example is a simple extension of the framework of Section 2 

that allows for more than two possible actions. The second example substitutes the median 

reward for the mean reward [for a similar setting, see 34].
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4.2 Example 1: Maximizing the Mean Reward of a Discrete Action

In this example, there are card(A) ∈ [2, ∞) (finitely many) candidate actions to undertake 

(think of a discretized dose in the personalized medicine framework). Without loss of 

generality, we assume that A ⊂ [0, 1]. We assume that under the distribution P of O ≡ 
(X, A, Y), the reward Y is uniformly bounded and there exists some δ > 0 so that 

mina ∈ A P(A = a ∣ X) ≥ δ with probability one. Here too, the value of a policy π ∈ Π is given 

by (1), the (within class Π) optimal value is V⋆ ≡ supπ ∈ ΠV(π) and the regret of π ∈ Π is 

defined as in (2). Finally, we observe O1 ≡ (X1, A1, Y1),… ,On ≡ (Xn, An, Yn) drawn i.i.d. 

from P.

For each π ∈ Π and o ∈ O, let fπ(o) be given by (3). Let Gn ≡ n1 ∕ 2(Pn − P) ∈ ℓ∞(ℱ) be the 

empirical process on ℱ = {fπ :π ∈ Π}. Note the equality between the LHS of (20) with rn ≡ 

n1/2 and n1/2 Remn from (5).

We prove the next lemma in Section B.2:

Lemma 8. If Π is Donsker, then (17), (18), (19) and (21) are met.

Therefore, Theorem 6 yields the following corollary:

Corollary 9. In the context of Section 4.2, suppose that π satisfies (22) with rn ≡ n1/2 and 
that

sup
π ∈ Π

n1 ∕ 2 V(π) − V(π) − Gnfπ = oP(1) .

If Π is Donsker, then ℛ(π) = oP(n−1 ∕ 2).

4.3 Example 2: Maximizing the Median Reward of a Binary Action

In this example, we use the same i.i.d. (from P) observed data structure as in Section 

1.3, including the strong positivity assumption and the bounds on A and Y. For every 

policy π ∈ P, define Fπ :ℝ ℝ pointwise by Fπ(m) ≡ E[P(Y ≤ m ∣ A = π(X), X)]. Under 

some causal assumptions, Fπ is the cumulative distribution function of the reward in the 

world where action π(x) is taken in each context x ∈ X.

We define the value of π as the median rather than the mean reward, i.e., as

V(π) ≡ inf {m ∈ ℝ :1 ∕ 2 ≤ Fπ(m)} . (23)

Let Π ⊂ P be the class of candidate policies. Recall that the regret (within class Π) of π ∈ Π 
takes the form ℛ(π) ≡ supπ ∈ ΠV(π) − V(π).
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Let us now turn to (18). Assume that there exists c > 0 such that, for each π ∈ Π, Fπ is 

continuously differentiable in the neighborhood [V(π) ± c] with derivative F
.
π(m) at m in this 

neighborhood, where

0 < inf
π ∈ Π

inf
m ∈ [V(π) ± c]

F
.
π(m) ≤ sup

π ∈ Π
sup

m ∈ [V(π) ± c]
F
.
π(m) < ∞ . (24)

In addition, assume that there exists a function ω : [0, ∞) → [0, ∞) with limm↓0 ω(m) = 

ω(0) = 0 such that

sup
π ∈ Π

sup
∣ u ∣ ≤ c

F
.
π(V(π) + u) − F

.
π(V(π)) − ω( ∣ u ∣ ) ≤ 0 . (25)

Remark 10. A sufficient, but not necessary, condition for such an ω to exist is that Fπ is 

twice continuously differentiable with the absolute range of the second derivative F̈π, on 

[V(π) ± c] bounded away from infinity uniformly in π ∈ Π. Indeed, Taylor’s theorem then 

shows that one can take

ω(m) ≡ m × sup
π ∈ Π

sup
m ∈ [V(π) ± c]

∣ F̈π(m) ∣ .

The next lemma gives conditions under which (18) holds. Its proof is given in Appendix B.3.

Lemma 11. If (24) and (25) are met, then (18) holds.

For every π ∈ P, V(π) defined in (23) can be viewed as the evaluation at P of the real-valued 

functional

P′ inf {m ∈ ℝ :1 ∕ 2 ≤ EP′[P′(Y ≤ m ∣ A = π(X), X)] }

from the nonparametric model of distributions P′ satisfying the same constraints as P. This 

functional is pathwise differentiable at P relative to the maximal tangent space with an 

efficient influence function fπ given by

fπ(o) ≡ 1{a = π(x)}
P(A = a ∣ X = x)F

.
π(V(π)) [1{y ≤ V(π)} − P{Y ≤ V(π) ∣ A = a, X

= x}]
+ P{Y ≤ V(π) ∣ A = π(x), X = x} − 1 ∕ 2

F
.
π(V(π)) .

(26)

Observe that above F
.
π(V(π)) only enters fπ as a multiplicative constant, and therefore an 

estimating equation-based estimator or TMLE for V(π) can be asymptotically linear for 

V(π) without estimating F
.
π. We, in particular, suppose that we have an estimator satisfying 

(20) with rn = n1/2 and Gn ≡ n1 ∕ 2(Pn − P) ∈ ℓ∞(ℱ) with ℱ ≡ {fπ :π ∈ Π}, see Remark 13 at 

the end of the present section.
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With this choice of Gn, (21) is met and Π Donsker yields (17), as seen in the proof of 

Theorem 1 (the same argument applies because the range of each π ∈ P is bounded in [−1, 

1]). Theorem 6 yields the following corollary:

Corollary 12. In the context of Section 4.3, suppose that (24) and (25) are met. Let π satisfy 
(22) with rn ≡ n1/2 and

sup
π ∈ Π

n1 ∕ 2 V(π) − V(π) − Gnfπ = oP(1) .

If Π is Donsker and (19) holds, then ℛ(π) = oP(n−1 ∕ 2).

Since Π is Donsker, (19) can be derived under regularity conditions by using essentially 

the same techniques as in the proof of Theorem 1. A slight modification to Lemma A.5 

is needed. The main regularity condition consists in assuming that the real-valued function 

π F
.
π(V(π)) over Π equipped with ∥·∥ is uniformly continuous, see Corollary B.17 in 

Appendix B. It is tedious, though not difficult, to complement this main regularity condition 

with secondary conditions. It would suffice to restrict the (uniform in π) behavior for all 

P{Y ≤ v∣A = π(x), X = x} across all real v.

Remark 13. One can, for example, establish conditions under which the estimating 

equation-based estimator defined as a solution in v to

1{a = π(x)} 1{Y ≤ v} − P{Y ≤ v ∣ A = π(X), X}
P(A = a ∣ X = x)

+ P{Y ≤ v ∣ A = π(X), X} = 1 ∕ 2,

satisfies (20). In the above display, P  denotes an estimate of (certain conditional 

probabilities under) P. One could use cross-validated estimating equations to avoid the need 

for any empirical process conditions on P . □

5 Discussion

We have presented fast rates of regret decay in optimal policy estimation, i.e., rates of decay 

that are faster than the rate of decay of the standard error of an efficient estimator of the 

value of any given policy in the candidate class. Our method of proof for our primary result, 

Theorem 1, leverages the fact that the empirical process over a Donsker class converges in 

distribution to a Gaussian process, and that the sample paths of this limiting process are 

(almost surely) uniformly continuous. The downside of our analysis, namely passing to the 

limit and then studying the behavior of the limiting process, is that it does not appear to 

allow one to obtain a faster than oP(n−1/2) rate of convergence for the regret.

It would be of interest to replace our limiting argument by finite sample results that would 

allow one to exploit the finite sample equicontinuity of the empirical process to demonstrate 

faster rates. Nonetheless, we note that the problem-dependent margin condition will often 

have a major impact on the extent to which the rate can be improved. Furthermore, as we 

discussed in Section 3.2, the existence of the remainder term Remn necessitates a careful 
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consideration of whether or not the empirical process term represents the dominant error 

term, or whether the second-order remainder that appears due to the non-linearity of the 

value parameter represents the dominant error term. In restricted, semiparametric models, 

we suspect that, depending on the underlying margin, an inefficient estimator of the value 

may yield a faster rate of regret decay than an efficient estimator in the fixed-P setting. 

Despite this surprising phenomenon, we continue to advocate the use of first-order efficient 

value estimators.
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Appendix

A Proofs of Main ERM Results

A.1 Proof of Fast Rate of Convergence at Fixed P (Theorem 1)

We begin this section with six lemmas and a corollary. The proofs of Lemmas A.1, through 

A.4, Lemma A.6 and Corollary A.7 only require results from functional analysis. The proofs 

of Lemma A.5 and Theorem 1 use results from empirical process theory.

In Lemmas A.1 through A.4 and Lemma A.6 to follow, all topological results make use 

of the strong topology on L2(P). A set S ⊂ L2(P) is called totally bounded if, for every 

ϵ > 0, there exists a finite collection of radius-ϵ open balls that covers S. When we refer 

to convergence in these lemmas, we refer to convergence w.r.t. ∥·∥. A set S is sequentially 

compact if every sequence of elements of S has a convergent subsequence. A set S ⊂ 
L2(P) is compact if every open cover has a finite subcover. Sequential compactness and 

compactness are equivalent for subsets of metric spaces. Lemma A.6 and the proof of 

Theorem 1 use several additional definitions, which are given immediately before Lemma 

A.6.

Lemma A.1. If Π is totally bounded, then Π is compact.

Proof. The Hilbert space L2(P) is a complete metric space. Therefore, [35, Corollary 6.65] 

implies that Π is relatively compact. In other words, Π is compact. □

For brevity, introduce Q(A, X) ≡ E(Y ∣ A, X). Note that γ(X) = Q(1, X) – Q(−1, X).

Lemma A.2. Both V and ℛ are continuous on Π.

Proof. The key to this proof is the following simple remark: for every policy 

π :X { − 1, 1},
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2Q(π(X), X) = (1 + π(X))Q(1, X) + (1 − π(X))Q( − 1, X) . (A.1)

Choose arbitrarily π1, π2 ∈ Π. By (A.1) and the Cauchy-Schwarz inequality, it holds that

2 ∣ V(π1) − V(π2) ∣ = ∣ E[γ(X)(π1 − π2)(X)] ∣ ≤ ‖γ‖ × ‖π1 − π2‖ . (A.2)

This proves the continuity of V. That of ℛ follows immediately. □

Lemma A.3. If Π is totally bounded, then infπ ∈ Πℛ(π) = 0, Π⋆ ≡ {π⋆ ∈ Π :ℛ(π⋆) = 0} is 

equal to {π⋆ ∈ Π :ℛ(π⋆) ≤ 0}, and Π⋆ ≠ ∅.

Proof. By Lemma A.1, Π is compact. By Lemma A.2, ℛ is continuous. Thus, ℛ admits 

and achieves a minimum ℛ(π̄) = infπ ∈ Πℛ(π) on Π. Since infπ ∈ Πℛ(π) = 0, we know 

that ℛ(π̄) ≤ 0. In fact, a contradiction argument shows that ℛ(π̄) = 0. In other words, 

Π⋆ = {π⋆ ∈ Π :ℛ(π⋆) ≤ 0} and π̄ ∈ Π⋆, hence Π⋆ ≠ ∅.

Indeed, assume that ℛ(π̄) < 0. Because π̄ ∈ Π, there exists a sequence {πm}m≥1 of elements 

of Π such that ‖πm − π̄‖ 0. By continuity of ℛ (see Lemma A.2), ℛ(πm) ℛ(π̄) < 0. Thus, 

infπ ∈ Πℛ(π) < 0. Contradiction. □

Lemma A.4. If Π is totally bounded, then

lim sup
r 0

sup
π ∈ Π:ℛ(π) ≤ r

inf
π⋆ ∈ Π⋆

‖π⋆ − π‖ = 0 .
(CA)

Proof. We argue by contraposition. Suppose CA does not hold. Then there exists a sequence 

{πm}m≥1 of elements of Π and t > 0 such that ℛ(πm) 0 and, for all m ≥ 1,

inf
π⋆ ∈ Π⋆

‖πm − π⋆‖ > t .
(A.3)

We now give a contradiction argument to show that {πm}m≥1 does not have a convergent 

subsequence. Suppose there exists a subsequence {πmk}k≥1 such that ∥πmk – π∞∥ → 0 for 

some π∞ ∈ L2(P). Now, note that (i) π∞ ∈ Π, the closure of Π, (ii) ℛ(πmk) 0, and (iii) 

ℛ(πmk) ℛ(π∞) by Lemma A.2. Consequently, ℛ(π∞) = 0. Since π∞ ∈ Π, this reveals that 

π∞ ∈ Π⋆ and

inf
π⋆ ∈ Π⋆

‖πmk − π⋆‖ ≤ ‖πmk − π∞‖ 0,
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in contradiction with (A.3). Thus, there does not exist a convergent subsequence {πmk}k≥1 

of {πm}m≥1, completing the contradiction argument.

We now return to the contraposition argument. The existence of a sequence {πm}m≥1 of 

elements of Π not having a convergent subsequence implies that Π is not sequentially 

compact and, therefore, that it is not compact. By Lemma A.1, Π is not totally bounded. This 

completes the proof. □

Lemma A.5. If Π is Donsker, then ℱ is also Donsker.

Proof. Similar to (A.1), the key is the following remark: for every policy π :X { − 1, 1},

2fπ(O) = ∣ A + π(X) ∣ Y − Q(A, X)
P(A ∣ X)

+ (1 + π(X))Q(1, X) + (1 − π(X))Q( − 1, X) − 2V(π) .
(A.4)

For future use, we first note that (A.2) implies, for any π1, π2 ∈ Π, that

∣ fπ1(O) − fπ2(O) ∣ ≲ ∣ π1(X) − π2(X) ∣ + ‖π1 − π2‖

hence

‖fπ1 − fπ2‖ ≲ ‖π1 − π2‖ . (A.5)

Introduce ψ :ℝ5 ℝ given by 2ψ(u) = u1∣u2 + u3∣ + (1 + u3)u4 + (1 + u3)u5 and let f1, f2, f4, 

f5 be the functions given by f1 (o) ≡ (y – Q(a, x))/P(A = a∣X = x), f2(o) ≡ x, f4(o) ≡ Q(1, x) 

and f5(o) ≡ Q(−1, x). Let ℱ1, ℱ2, ℱ4, ℱ5 be the singletons {f1}, {f2}, {f4} and {f5}, each 

of them a Donsker class. Let ℱ ≡ ℱ1 × ℱ2 × Π × ℱ4 × ℱ5 and note that ψ ∘ f = f π if f ∈ ℱ
writes as f = (f1, f2, π, f4, f5). In light of (A.4), observe now that, for every f1 = (f1, f2, π1, f4, 

f5), f2 = (f1, f2, π2, f4, f5) ∈ ℱ, it holds that

∣ ψ ∘ f1(o) − ψ ∘ f2(o) ∣ ≲ ∣ π1(x) − π2(x) ∣

(the bound on Y implies that ∥γ∥∞ is finite). By [18, Theorem 2.10.6], of which the 

conditions are obviously met, ψ ∘ ℱ = {f π :π ∈ Π} is Donsker. Because Λ ≡ {V(π) :π ∈ Π}
(viewed as a set of constant functions with a uniformly bounded sup-norm) is also Donsker, 

[18, Example 1.10.7] it follows that {f π − λ :π ∈ Π, λ ∈ Λ} is Donsker, and so is its subset ℱ. 

□

Recall the definition (4) of ℱ. The next lemma uses the following definition: for any r 

> 0, Πr ≡ {π ∈ Π :ℛ(π) ≤ r}. If Π⋆ is nonempty (for instance, if Π is totally bounded by 

Lemma A.3) we let, for any π⋆ ∈ Π⋆ and s > 0, BΠ(π⋆, s) ≡ {π ∈ Π :‖π⋆ − π‖ ≤ s} denote the 
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intersection of the radius-s L2(P) ball centered at π* and the collection Π. Because Π⋆ ⊂ Π, 

BΠ(π*, s) is nonempty.

Lemma A.6. Define g :ℓ∞(ℱ) × (0, ∞) ℝ as

g(z, r) ≡ sup
π ∈ Πr

z(fπ) − lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, s)

z(fπ) .

Let z ∈ ℓ∞(ℱ) be ∥·∥-uniformly continuous and let {(zm, rm)}m≥1 be a sequence with values 

in ℓ∞(ℱ) × (0, ∞) such that supf ∈ ℱ ∣ zm(f) − z(f) ∣ + ∣ rm ∣ 0. If Π is totally bounded, 

then

lim sup
m ∞

g(zm, rm) ≤ 0 .

The following corollary will prove useful.

Corollary A.7. Recall the definition of g from Lemma A.6. Let ℎ :ℓ∞(ℱ) × [0, ∞) ℝ be 

such that, for all z ∈ ℓ∞(ℱ),

ℎ(z, r) ≡ max (g(z, r), 0) if r > 0 and ℎ(z, 0) ≡ 0 .

Let z ∈ ℓ∞(ℱ) be ∥·∥-uniformly continuous. If Π is totally bounded, then h is continuous at 
(z, 0).

Proof of Lemma A.6 and Corollary A.7. Fix a sequence {(zm, rm)}m≥1 satisfying the 

conditions of the Lemma A.6. Observe that, for every m ≥ 1,

∣ g(zm, rm) − g(z, rm) ∣ ≤ sup
π ∈ Πrm

zm(fπ) − sup
π ∈ Πrm

z(fπ)

+ lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, s)

zm(fπ) − lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, s)

z(fπ)

≤ 2 sup
π ∈ Π

∣ zm(fπ) − z(fπ) ∣

where the above RHS expression is o(1) because zm → z in ℓ∞(ℱ). Therefore,

g(zm, rm) = g(zm, rm) − g(z, rm) + g(z, rm)

= g(zm, rm) − g(z, rm) + sup
π ∈ Πrm

z(fπ) − lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, s)

z

(fπ) .

≤ sup
π ∈ Πrm

z(fπ) − lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, s)

z(fπ) + o(1) .

(A.6)
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Let us show now that the RHS expression in (A.6) is o(1).

For any r > 0, there exists a πr ∈ Πr such that

sup
π ∈ Πr

z(fπ) ≤ z(fπr) + r .
(A.7)

Furthermore, there exists a πr⋆ ∈ Π⋆ such that

‖πr⋆ − πr‖ ≤ inf
π⋆ ∈ Π⋆

‖π⋆ − πr‖ + r ≤ sup
π ∈ Πr

inf
π⋆ ∈ Π⋆

‖π⋆ − π‖ + r .
(A.8)

Likewise, there exists πr ∈ BΠ(πr⋆, r) such that

z(fπr) ≤ inf
π ∈ BΠ(πr⋆, r)

z(fπ) + r ≤ sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, r)

z(fπ) + r

= lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, r)

z(fπ) + or(1) + r,
(A.9)

where the above equality holds by the definition of the limit superior (the or(1) above 

represents the term’s behavior as r → 0). In light of (A.7) and (A.9), we thus have

sup
π ∈ Πr

z(fπ) − lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, r)

z(fπ) ≤ z(fπr) − z(fπr) + 2r + or(1) .
(A.10)

By the ∥·∥-uniform continuity of z, ∣ z(fπr) − z(fπr) ∣ = or(1) if ‖fπr − fπr‖ = or(1). Let us 

show that the latter condition is met. Because πr ∈ BΠ(πr⋆, r), the triangle inequality, (A.5) 

and (A.8) imply that

‖fπr − fπr‖ ≤ ‖fπr − fπr⋆‖ + ‖fπr⋆ − fπr‖
≲ ‖πr − πr⋆‖ + ‖πr⋆ − πr‖ ≤ sup

π ∈ Πr
inf

π⋆ ∈ Π⋆
‖π⋆ − π‖ + 2r . (A.11)

Because Πr ⊂ {π ∈ Π :ℛ(π) ≤ r}, Lemma A.4 (which applies because Π is totally bounded) 

implies that

lim sup
r 0

sup
π ∈ Πr

inf
π⋆ ∈ Π⋆

‖π − π⋆‖ = 0,

from which we deduce that the RHS of (A.11) is or(1). In summary, ‖fπr − fπr‖ = or(1), 

hence ∣ z(fπr) − z(fπr) ∣ = or(1) and consequently, by (A.10),
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sup
π ∈ Πr

z(fπ) − lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, s)

z(fπ) = or(1) .

Taking r = rm and using the above result reveals that the RHS expression in (A.6) is o(1) 

indeed. This completes the proof of Lemma A.6.

In the context of Corollary A.7, let {(zm, rm)}m≥1 be a sequence with values in 

ℓ∞(ℱ) × [0, ∞) and such that supf ∈ ℱ ∣ zm(f) − z(f) ∣ + ∣ rm ∣ 0. Lemma A.6 implies that 

h(zm, rm) → h(z, 0) ≡ 0. Since the sequence was arbitrarily chosen, h is indeed continuous at 

(z, 0) and the proof of Corollary A.7 is complete. □

Proof of Theorem 1. In this proof, we make the dependence of π on n explicit by 

writing πn. By Lemma A.5, Π Donsker implies ℱ Donsker. Consider the empirical process 

Gn as the element of ℓ∞(ℱ) characterized by Gnf ≡ n1 ∕ 2(Pn − P)f for every f ∈ ℱ. 

We let GP ∈ ℓ∞(ℱ) denote the zero-mean Gaussian process with covariance given by 

E[GPfGPg] = Pfg − PfPg.

Since Π Donsker implies Π totally bounded, Lemma A.3 guarantees the existence of a 

π⋆ ∈ Π⋆. For any s > 0 and πs⋆ ∈ BΠ(π⋆, s) ⊂ Π, (6) then (5) combined with (A.2) yield in 

turn the first and second inequalities below:

0 ≤ ℛ(πn) = V⋆ − V(πn) = [V(πs⋆) − V(πn)] + [V(π⋆) − V(πs⋆)]
= (V − V)(πn) − (V − V)(πs⋆) + [V(πs⋆) − V(πn)] + [V(π⋆)

− V(πs⋆)]
≤ (V − V)(πn) − (V − V)(πs⋆) + [V(π⋆) − V(πs⋆)] + oP(Remn)
≤ n−1 ∕ 2[Gnfπn − Gnfπs⋆] + s + [2 + oP(1)] Remn

(A.12)

≤ 2n−1 ∕ 2 sup
f ∈ ℱ

∣ Gnf ∣ + s + [2 + oP(1)] Remn (A.13)

(we already derived the three first lines in Section 2.2 to develop an intuition about Theorem 

1).

Since z supf ∈ ℱ ∣ z(f) ∣ is continuous and ℱ is Donsker, the continuous mapping theorem 

[18, Theorem 1.3.6] implies that the leftmost term in the above RHS sum is OP(n−1/2). 

Therefore, (A.13) and Remn = oP(n−1/2) imply

0 ≤ ℛ(πn) ≲ s + OP(n−1 ∕ 2) + [1 + oP(1)]oP(n−1 ∕ 2)

where the random terms do not depend on s. By letting s go to zero, we obtain 

ℛ(πn) = OP(n−1 ∕ 2). The remainder of the proof tightens this result to ℛ(πn) = oP(n−1 ∕ 2).

Let us go back to (A.12). Since Remn = oP(n−1/2), it also yields the tighter bound

Luedtke and Chambaz Page 24

Ann I H P Probab Stat. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0 ≤ ℛ(πn) ≲ n−1 ∕ 2lim inf
s 0

inf
π⋆ ∈ Π⋆

sup
πs⋆ ∈ BΠ(π⋆, s)

Gnfπn − Gnfπs⋆ + [2 + oP(1

)]oP(n−1 ∕ 2) .
(A.14)

Let g be defined as in Lemma A.6. Note that the second term in the RHS of (A.14) does not 

depend on πn. Let {tn}n≥1 be a sequence with positive values such that tn ↓ 0. As πn trivially 

falls in Πℛ(πn) + tn, we can take a supremum over π ∈ Πℛ(πn) + tn. Multiplying both sides of 

(A.14) by n1/2, we see that

0 ≤ n1 ∕ 2ℛ(πn) ≤ sup
π ∈ Πℛ(πn) + tn

Gnfπ − lim sup
s 0

sup
π⋆ ∈ Π⋆

inf
π ∈ BΠ(π⋆, s)

Gn(fπ) + oP(1)

= g(Gn, ℛ(πn) + tn) + oP(1) .

Above we used ℛ(πn) + tn rather than ℛ(πn) to avoid separately handling the cases where 

Π⋆ ∩ Π is and is not empty.

The conclusion is at hand. Recall the definition of h from Corollary A.7. Clearly the 

previous display yields the bounds

0 ≤ n1 ∕ 2ℛ(πn) ≤ ℎ(Gn, ℛ(πn) + tn) + oP(1) . (A.15)

We have already established that ℛ(πn) = oP(1), hence 0 < tn ≤ ℛ(πn) + tn = oP(1)

as well. Because ℱ is Donsker, Gn GP  in distribution on ℓ∞(ℱ). Therefore, 

(Gn, ℛ(πn) + tn) (GP , 0) in distribution on ℓ∞(ℱ) × [0, ∞). Almost all sample paths of 

GP  are uniformly continuous on ℱ w.r.t. ∥·∥ [18, Section 2.1], so Corollary A.7 applies 

almost surely and the continuous mapping theorem yields ℎ(Gn, ℛ(πn) + tn) ℎ(GP , 0) in 

distribution in ℓ∞(ℱ). This convergence also occurs in probability since the limit is almost 

surely constant (zero). By (A.15), 0 ≤ ℛ(πn) = oP(n1 ∕ 2). This completes the proof. □

A.2 Proof of Uniform Local Convergence Results (Theorem 2)

Eight lemmas precede the proof of Theorem 2. Except for one lemma, the statements are 

followed by the proofs. The long proof of Lemma A.12 is postponed at the end of the 

section.

Lemma A.8. Let b ≡ 3 maxj∈{1,2,3} bj and σ2 ≡ maxj ∈ {1, 2, 3} σj2. For all ϕ = (ϕ1, ϕ2, ϕ3) ∈ Φ 

and ϕ̄(O) ≡ ϕ1(X) + ϕ2(A, X) + ϕ3(O), the following sub-exponential property is satisfied:

log E[exp{λϕ̄(O)}] ≤ λ2σ2

2 for all ∣ λ ∣ ≤ 1 ∕ b . (A.16)
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Consequently, supϕ ∈ Φ ϕ̄  is finite and there exists a constant c > 0 that depends only on b 

and σ2 such that

log E[(ϕ̄(O)2 + ϕ̄(O)4) exp{λϕ̄(O)}] ≤ c + λ2σ2 for all ∣ λ ∣ ≤ 1 ∕ 2b . (A.17)

Proof. For all λ with ∣λ∣ < 1/b, the convexity of the exponential function yields

E[exp{λϕ̄(O)]}] ≤ 1
3 ∑

j = 1

3
E[exp{3λϕj(O)]}] ≤ max

j ∈ {1, 2, 3}
E[exp{3λϕj(O)]}] . (A.18)

By the monotonicity of the logarithm, this shows that

log E[exp{λϕ̄(O)}] ≤ max
j ∈ {1, 2, 3}

log E[exp{3λϕj(O)]}] .

Using that ∣λ∣ < 1/b implies that 3∣λ∣ < 1/bj for all j ∈ {1, 2, 3}, (9), (10), (11), the tower 

rule and (A.18) imply that

log E[exp{λϕ̄(O)}] ≤ max
j ∈ {1, 2, 3}

λ2σj2

2 = λ2σ2
2 ,

thus proving (A.16).

To prove that supϕ ∈ Φ ϕ̄  is finite and (A.17), introduce U ≡ ϕ̄(O) ∕ b, note that

U2
2! + U4

4! + U8
8! ≤ eU + e−U

2 ,

and recall that both E[exp{U}] and E[exp{ − U}] are upper bounded by exp{σ2/2b2}. 

Therefore, E[ϕ̄(O)2] = ϕ̄ 2, E[ϕ̄(O)4] and E[ϕ̄(O)8] are upper bounded by 2b2exp{σ2/2b2}, 

(4!)b4exp{σ2/2b2} and (8!)b8exp{σ2/2b2}, respectively, all uniformly w.r.t. ϕ ∈ Φ. Then 

(A.17) follows from the Cauchy-Schwarz and triangle inequalities and (A.16). □

Lemma A.9. For all ϕ ∈ Φ and ϵ ∈ ℝ, ∣ϵ∣ ≤ 1/max{b1, b2, b3},

0 < c1, ϕ(ϵ), c2, ϕ(ϵ ∣ X), c3, ϕ(ϵ ∣ A, X) ≤ 1

P-almost surely. Moreover, P-almost surely,

lim
ϵ 0

inf
ϕ ∈ Φ

min{c1, ϕ(ϵ), c2, ϕ(ϵ ∣ X), c3, ϕ(ϵ ∣ A, X)} = 1 .

Proof. We show that 0 < c2,ϕ(ϵ∣X) ≤ 1 and limϵ→0 infϕ∈Φ c2,ϕ(ϵ∣X) P-almost surely. The 

proofs of the counterparts to that result for c1,ϕ and c3,ϕ are analogous.
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Fix ϕ ∈ Φ and ϵ ∈ ℝ, ∣ϵ∣ ≤ 1/ max{b1, b2, b3}. It is easy to see that c2,ϕ(ϵ∣X) is well-defined 

and positive P-almost surely (indeed, E[exp{ϵϕ2(A, X)} ∣ X} is finite by (10), and it is positive 

because exp{ϵϕ2(A, X)} is positive — the three statements are meant P-almost surely), and 

therefore c2,ϕ(ϵ∣X)−1 is well-defined P-almost surely. By Jensen’s inequality, and because 

E[ϕ2(A, X) ∣ X] = 0 P-almost surely,

c2, ϕ(ϵ ∣ X)−1 = E[exp {ϵϕ2(A, X)} ∣ X] ≥ exp {ϵ E[ϕ2(A, X) ∣ X]} = 1

with P-probability one. Moreover, in view of (10)

sup
ϕ ∈ Φ

c2, ϕ(ϵ ∣ X)−1 = sup
ϕ ∈ Φ

E[exp {ϵϕ2(A, X)} ∣ X] ≤ exp{ϵ2σ2
2 ∕ 2} ϵ 0 1

P-almost surely. This completes the proof. □

Lemma A.10. For every ϕ = (ϕ1, ϕ2, ϕ3) ∈ Φ with and ϵ ∈ (0, 1/b], where b is the same 
quantity as that appearing in Lemma A.8, the conditional expectation Qϕ,ϵ(A, X) of Y given 
(A, X) under Pϵ,ϕ satisfies

Qϕ, ϵ(A, X) = c3, ϕ(ϵ ∣ A, X) E[eϵϕ3(O)Y ∣ A, X] (A.19)

Pϵ,ϕ-almost surely.

Proof. Let Eϕ, ϵ denote the expectation under Pϕ,ϵ and cϕ(ϵ) :{ − 1, 1} × X ℝ be the function 

given by cϕ(ϵ)(A, X) ≡ c1,ϕ(ϵ)c2,ϕ(ϵ∣X)c3,ϕ(ϵ∣A, X). Set arbitrarily η :{ − 1, 1} × X ℝ+, a 

nonnegative, measurable function. By definition of Pϕ,ϵ (14) and the tower rule, the next 

equalities hold true:

Eϕ, ϵ[Y η(A, X)] = E cϕ(ϵ)(A, X)eϵ(ϕ1(X) + ϕ2(A, X) + ϕ3(O))Y η(A, X)

= E cϕ(ϵ)(A, X)eϵ(ϕ1(X) + ϕ2(A, X))E eϵ(ϕ3(O)Y ∣ A, X η(A, X)

= Eϕ, ϵ c3, ϕ(ϵ ∣ A, X) E eϵϕ3(O)Y ∣ A, X η(A, X) .

The result follows by definition of the conditional expectation. □

Lemma A.11. The sequence of collections of distributions {Pϕ, ϵ = n−1 ∕ 2
n :ϕ ∈ Φ}n ≥ 1 is 

uniformly contiguous w.r.t. the sequence {Pn}n ≥ 1, i.e. (15) holds.

Proof. Let {Bn}n≥1 be a sequence of measurable sets for which limn→∞Pn(Bn) = 0. For 

notational convenience, for ϕ = (ϕ1, ϕ2, ϕ3) ∈ Φ, we let ϕ̄ denote o ∑j = 1
3 ϕj(o). For any 

n ∈ ℕ, ϕ ∈ Φ,
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Pϕ, ϵ = n−1 ∕ 2
n (Bn) = ∫ ∏

i = 1

n
{c1, ϕ(ϵ)c2, ϕ(ϵ ∣ xi)c3, ϕ(ϵ ∣ ai, xi)} ×

exp n−1 ∕ 2 ∑
i = 1

n
ϕ̄(oi) 1Bn dPn(o1, …, on)

≤ ∫ exp n−1 ∕ 2 ∑
i = 1

n
ϕ̄(oi) 1Bn dPn(o1, …, on)

≤ Pn(Bn)1 ∕ 2 E exp 2n−1 ∕ 2 ∑
i = 1

n
ϕ̄(oi)

1 ∕ 2

= Pn(Bn)1 ∕ 2 E [exp {2n−1 ∕ 2ϕ̄(O)}]n ∕ 2,

where the first inequality holds by Lemma A.9, the second inequality holds by the Cauchy-

Schwarz inequality, and the final equality holds because O1,… ,On on the line above are 

i.i.d. Using the sub-exponential property of ϕ̄ given in Lemma A.8 at λ = 2n−1/2, we have

E exp {2n−1 ∕ 2ϕ̄(O)} n ∕ 2 ≤ exp{σ2}

whenever n ≥ 4b2, thereby showing that {Pϕ, ϵ = n−1 ∕ 2
n (Bn) ≤ Pn(Bn)1 ∕ 2exp{σ2} for n large 

enough. We take the supremum over ϕ ∈ Φ then let n go to infinity to complete the proof. □

Lemma A.12. It holds that

sup
ϕ ∈ Φ

sup
π1, π2 ∈ Π

{Vϕ, ϵ(π1) − Vϕ, ϵ(π2) − V(π1) + V(π2) − ϵ〈ϕ1 + ϕ3, fπ1 − fπ2〉

} ≤ o(ϵ) .
(A.20)

Moreover, there exists a constant C depending only on the bounds on the support of Y ~ P, 

the bounds from the strong positivity assumption, and on the parameters (b1, σ1
2), (b2, σ2

2), 

(b3, σ3
2) of (9), (10) and (11) such that, for all ϵ > 0 small enough,

sup
ϕ ∈ Φ

sup
π1, π2 ∈ Π

{Vϕ, ϵ(π1) − Vϕ, ϵ(π2) − V(π1) + V(π2) − Cϵ‖π1 − π2‖} ≤ 0 .
(A.21)

The proof of Lemma A.12 is postponed at the end of the section.

Lemma A.13. If Π is totally bounded and π1 is such that ℛ(π1) = oP(1) under sampling from 

P, then infπ⋆ ∈ Π⋆ ‖π⋆ − π1‖ converges to zero in probability under sampling from P.

Proof. Fix t > 0. For any r > 0, we have that
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P inf
π⋆ ∈ Π⋆

‖π⋆ − π1‖ > t

≤ P {ℛ(π1) > r} + P ℛ(π1) ≤ r, inf
π⋆ ∈ Π⋆

‖π⋆ − π1‖ > t

≤ P {ℛ(π1) > r} + P ℛ(π1) ≤ r, sup
π ∈ Π:ℛ(π) ≤ r

inf
π⋆ ∈ Π⋆

‖π⋆ − π1‖ > t

≤ P {ℛ(π1) > r} + 1 sup
π ∈ Π:ℛ(π) ≤ r

inf
π⋆ ∈ Π⋆

‖π⋆ − π1‖ > t .

By Lemma A.4, there exists a small enough r0 > 0 such that 

supπ ∈ Π:ℛ(π) ≤ r infπ⋆ ∈ Π⋆ ‖π⋆ − π‖ ≤ t for all r < r0. Consequently, the indicator function 

above is equal to zero if r is sufficiently small. By assumption, ℛ(π1) converges to zero in 

probability under sampling from P, and so P {ℛ(π1) > r} = o(1).

Lemma A.14. It holds that supϕ ∈ Φ, π⋆ ∈ Π⋆, πϕ, ϵ
⋆ ∈ Πϕ, ϵ

⋆ fπϕ, ϵ
⋆ − fπ⋆ 2 ≤ V ∗.

Proof of Lemma A.14. We show that ∥fπ1 – fπ2∥
2 ≤ V* for all π1, π2 ∈ Π⋆, hence the 

result. Fix π1, π2 ∈ Π⋆, hence V(π1) = V(π2) = V⋆, and recall that f π : o fπ(o) + V(π) for 

all π ∈ Π. By using that π1 and π2 take their values in {−1, 1}, we first derive the following 

equalities:

P 1{π1 ≠ π2}(f π1 − f −π1)2 = P (f π1 − f π2)2

= P [(fπ1 − fπ2 + V(π1) − V(π2))2]
= ‖fπ1 − fπ2‖2

(A.22)

and P 1{π1 ≠ π2}(f π1 − f −π1) = P f π1 − f π2
= P [fπ1 − fπ2 + V(π1) − V(π2))] = 0 . (A.23)

Combining (A.22), (A.23) and Lemma A.15 below then yields

‖fπ1 − fπ2‖2 = V 1{π1 ≠ π2}(f π1 − f −π1) (O)
≤ V (f π1 − f −π1)(O)
= V [(fπ1 − f−π1)(O)] = V ∗,

hence the result. □

Lemma A.15. If the random variables A ∈ {0, 1} and B ∈ ℝ are such that E(AB) = 0, then 
V(AB) ≤ V(B).
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Proof. If E(B2) is infinite, then the inequality obviously holds. Otherwise, we note that

[B − E(B)]2 ≥ A[B − E(B)]2 = AB2 − 2 E(B)AB + [E(B)]2A

hence

V(B) ≥ E[AB2] + E(A)[E(B)]2 ≥ E[AB2] = V(AB) .

This completes the proof. □

We are now in a position to prove the main locally uniform ERM result from the main text.

Proof of Theorem 2. Fix ϕ ∈ Φ, ϵ ∈ ℝ, and t > 0. Let ϕ̄ be given by ϕ̄(O) ≡ ϕ1(X) + ϕ3(O). 

Fix π⋆ ∈ Π⋆ and πϕ, ϵ
⋆ ∈ Πϕ, ϵ

⋆ . First, we note that (A.21) in Lemma A.12 implies the first 

inequality below:

ℛϕ, ϵ(π1) = Vϕ, ϵ
⋆ − Vϕ, ϵ(π1)

= [Vϕ, ϵ
⋆ − Vϕ, ϵ(π⋆)] + [Vϕ, ϵ(π⋆) − Vϕ, ϵ(π1) − V(π⋆) + V(π1)] + ℛ(π1)

≤ [Vϕ, ϵ
⋆ − Vϕ, ϵ(π⋆)] + Cϵ‖π1 − π⋆‖ + ℛ(π1)

≤ [Vϕ, ϵ(πϕ, ϵ
⋆ ) − Vϕ, ϵ(π⋆) − V(πϕ, ϵ

⋆ ) + V(π⋆)] + Cϵ‖π1 − π⋆‖ + ℛ(π1),

the second inequality being due to V(π⋆) − V(πϕ, ϵ
⋆ ) ≥ 0. Second, we use (A.20) in Lemma 

A.12 to derive from the previous display the following key-inequality:

ℛϕ, ϵ(π1) ≤ ϵ〈ϕ̄, fπϕ, ϵ
⋆ − fπ⋆〉 + Cϵ‖π1 − π⋆‖ + ℛ(π1) + o(ϵ),

where the term o(ϵ) is deterministic and does not depend on (ϕ, π1, π*). The above holds for 

any πϕ, ϵ
⋆ ∈ Πϕ, ϵ

⋆ , hence

ℛϕ, ϵ(π1) ≤ ϵ inf
πϕ, ϵ

⋆ ∈ Πϕ, ϵ
⋆

〈ϕ̄, fπϕ, ϵ
⋆ − fπ⋆〉 + Cϵ‖π1 − π⋆‖ + ℛ(π1) + o(ϵ) .

Taking suprema over unspecified quantities gives the bound

ℛϕ, ϵ(π1) ≤ ϵ sup
π⋆ ∈ Π⋆

inf
πϕ, ϵ

⋆ ∈ Πϕ, ϵ
⋆

〈ϕ̄, fπϕ, ϵ
⋆ − fπ⋆〉 + Cϵ‖π1 − π⋆‖ + ℛ(π1) + o(ϵ) .

Noting that π⋆ ∈ Π⋆ was arbitrary, we see that

ℛϕ, ϵ(π1) ≤ ϵ sup
π⋆ ∈ Π⋆

inf
πϕ, ϵ

⋆ ∈ Πϕ, ϵ
⋆

〈ϕ̄, fπϕ, ϵ
⋆ − fπ⋆〉 + Cϵ inf

π⋆ ∈ Π⋆
‖π1 − π⋆‖ + ℛ(π1) + o(ϵ) .
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Thus, for ϵn = n−1/2,

Pϕ, ϵn
n n1 ∕ 2ℛϕ, ϵn(π1) > sup

π⋆ ∈ Π⋆
inf

πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
〈ϕ̄, fπϕ, ϵn

⋆ − fπ⋆〉 + 3t

≤ 1 {o(1) > t} + Pϕ, ϵn
n C inf

π⋆ ∈ Π⋆
‖π1 − π⋆‖ > t + Pϕ, ϵn

n {n1 ∕ 2ℛ(π1) > t},

which implies

sup
ϕ ∈ Φ

Pϕ, ϵn
n n1 ∕ 2ℛϕ, ϵn(π1) > sup

π⋆ ∈ Π⋆
inf

πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
〈ϕ̄, fπϕ, ϵn

⋆ − fπ⋆〉 + 3t

≤ o(1) + sup
ϕ ∈ Φ

Pϕ, ϵn
n C inf

π⋆ ∈ Π⋆
‖π1 − π⋆‖ > t + sup

ϕ ∈ Φ
Pϕ, ϵn

n {n1 ∕ 2ℛ(π1) > t} .

We know on the one hand that Pn {C infπ⋆ ∈ Π⋆ ‖π1 − π⋆‖ > t} = o(1) by Lemma A.13 

(which can be applied because Π is totally bounded and ℛ(π1) = oP(n−1 ∕ 2) by assumption) 

and on the other hand that Pn {n1 ∕ 2ℛ(π1) > t} = o(1) by assumption. Hence, by the uniform 

contiguity of {Pϕ, ϵn
n :ϕ ∈ Φ}n ≥ 1 w.r.t. {Pn}n≥1, both the second and third terms in the above 

display are o(1). This gives the first inequality in the theorem statement.

We now obtain the second inequality. Let {tn}n≥1 be a real-valued sequence such that tn = 

o(1). Noting that, for all π⋆ ∈ Π⋆ and πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆  it holds that

〈ϕ̄, fπϕ, ϵn
⋆ − fπ⋆〉 ≤ ‖ϕ̄‖ × fπϕ, ϵn

⋆ − fπ⋆ ,

we see that
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Pϕ, ϵn
n n1 ∕ 2ℛϕ, ϵn(π1) > sup

π⋆ ∈ Π⋆
inf

πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
〈ϕ̄, fπϕ, ϵn

⋆ − fπ⋆〉 + t

≥ Pϕ, ϵn
n n1 ∕ 2ℛϕ, ϵn(π1) > ‖ϕ̄‖ sup

π⋆ ∈ Π⋆
inf

πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
fπϕ, ϵn

⋆ − fπ⋆ + t

≥ Pϕ, ϵn
n {n1 ∕ 2ℛϕ, ϵn(π1) > ‖ϕ̄‖ (V ∗

1 ∕ 2 + tn) + t}

× 1 V ∗
1 ∕ 2 > sup

π⋆ ∈ Π⋆
inf

πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
fπϕ, ϵn

⋆ − fπ⋆ − tn

≥ Pϕ, ϵn
n {n1 ∕ 2ℛϕ, ϵn(π1) > ‖ϕ̄‖ (V ∗

1 ∕ 2 + tn) + t}

× 1 V ∗
1 ∕ 2 > sup

ϕ ∈ Φ, π⋆ ∈ Π⋆
inf

πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
fπϕ, ϵn

⋆ − fπ⋆ − tn

≥ Pϕ, ϵn
n n1 ∕ 2ℛϕ, ϵn(π1) > ‖ϕ̄‖ V ∗

1 ∕ 2 sup
ϕ ∈ Φ

ϕ1 + ϕ3 tn + t

× 1 V ∗
1 ∕ 2 > sup

ϕ ∈ Φ, π⋆ ∈ Π⋆, πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
fπϕ, ϵn

⋆ − fπ⋆ − tn .

By Lemma A.14, it is possible to choose {tn}n≥1 in such a way that the indicator on the 

right is one for all n large enough. Moreover, for n large enough, it is also the case that 

supϕ ∈ Φ ‖ϕ1 + ϕ3‖tn ≤ t hence, in conclusion,

Pϕ, ϵn
n n1 ∕ 2ℛϕ, ϵn(π1) > sup

π⋆ ∈ Π⋆
inf

πϕ, ϵn
⋆ ∈ Πϕ, ϵn

⋆
〈ϕ̄, fπϕ, ϵn

⋆ − fπ⋆〉 + t

≥ Pϕ, ϵn
n {n1 ∕ 2ℛϕ, ϵn(π1) > ‖ϕ̄‖ V ∗

1 ∕ 2 + 2t}

for n large enough. This completes the proof. □

Proof of Lemma A.12. Set arbitrarily ϕ = (ϕ1, ϕ2, ϕ3) ∈ Φ, ϵ ∈ (0, 1/b] and π1, π2 ∈ Π. We 

can assume without loss of generality that ϕ2 is the zero function because, for any π ∈ Π, 

Vϕ, ϵ(π) = V(ϕ1, 0, ϕ3), ϵ(π). For notational simplicity, let Q ∘ πj(X) and Qϕ,ϵ ∘ πj(X) stand for 

Q(πj(X), X) and Qϕ,ϵ(πj(X), X), respectively, for j = 1, 2. Moreover, let Qa(X) and Qϕ,ϵ,a(X) 

stand for Q(a, X) and Qϕ,ϵ(a, X), respectively, for a = −1, 1. Recall the definition of cϕ(ϵ) 

given in the proof of Lemma A.10 and let c3,ϕ(ϵ) be the function given by c3,ϕ(ϵ)(A, X) ≡ 
c3,ϕ(ϵ∣A, X). Finally, let η, ϕ̄ and sgn denote the functions given by η(O) ≡ AY/P(A∣X), 

ϕ̄(O) ≡ ϕ1(X) + ϕ3(O), and sgn{u} ≡ 1{u > 0} – 1{u < 0}.

For simplicity, we show (A.21) then build upon its proof to derive (A.20). First, we note that
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Vϕ, ϵ(π1) − Vϕ, ϵ(π2) − V(π1) + V(π2)
= P cϕ(ϵ)eϵϕ̄(Qϕ, ϵ ∘ π1 − Qϕ, ϵ ∘ π2) − Q ∘ π1 − Q ∘ π2)
= P(cϕ(ϵ)eϵϕ̄ − 1) (Qϕ, ϵ ∘ π1 − Qϕ, ϵ ∘ π2)

+ P[(Qϕ, ϵ − Q) ∘ π1 − (Qϕ, ϵ − Q) ∘ π2]
= P(cϕ(ϵ)eϵϕ̄ − 1) (Qϕ, ϵ, 1 − Qϕ, ϵ, − 1) sgn{π1 − π2}

+ P[(Qϕ, ϵ, 1 − Q1) − (Qϕ, ϵ, − 1 − Q−1)] sgn{π1 − π2}
= P(cϕ(ϵ)eϵϕ̄ − 1 − ϵcϕ(ϵ)ϕ̄) (Qϕ, ϵ, 1 − Qϕ, ϵ, − 1) sgn{π1 − π2}

(A.24)

+ ϵPcϕ(ϵ)ϕ̄ (Qϕ, ϵ, 1 − Qϕ, ϵ, − 1 sgn{π1 − π2} (A.25)

+ ϵPc3, ϕ(ϵ)ϕ3η sgn{π1 − π2} (A.26)

+ P[(Qϕ, ϵ, 1 − Q1) − (Qϕ, ϵ, − 1 − Q−1) − ϵc3, ϕ(ϵ)ϕ3η] sgn{π1 − π2} . (A.27)

Below, we study in turn the four terms in the RHS of the above display in order to prove 

(A.21). Afterwards, the study of (A.25) and (A.26) will be resumed and refined to derive 

(A.20).

Studying term (A.24). Because ∣Y∣ is bounded under P by, say, B the Cauchy-Schwartz 

inequality implies that the absolute value of (A.24) is upper bounded by

2B cϕ(ϵ)eϵϕ̄ − 1 − ϵcϕ(ϵ)ϕ̄ × P 1{π ≠ π2}
= 2B ‖π1 − π2 × cϕ(ϵ)eϵϕ̄ − 1 − ϵcϕ(ϵ)ϕ̄ .

By the triangle inequality and Lemma A.9, we first note that

cϕ(ϵ)eϵϕ̄ − 1 − ϵcϕ(ϵ)ϕ̄ ≤ ‖cϕ(ϵ) − 1‖ + cϕ(ϵ)(eϵϕ̄ − 1 − ϵϕ̄)
≤ ‖cϕ(ϵ) − 1‖ + eϵϕ̄ − 1 − ϵϕ̄ .

Second, invoking Lemma A.9 and the triangle inequality again,

∣ cϕ(ϵ)(O) − 1 ∣ = c1, ϕ(ϵ)[c3, ϕ(ϵ ∣ A, X) − c1, ϕ(ϵ)−1]
≤ c3, ϕ(ϵ ∣ A, X) − c1, ϕ(ϵ)−1

≤ c3, ϕ(ϵ ∣ A, X)[1 − c3, ϕ(ϵ ∣ A, X)−1] + c1, ϕ(ϵ)−1 − 1
≤ c3, ϕ(ϵ ∣ A, X)−1 − 1 + c1, ϕ(ϵ)−1 − 1 .

In light of Lemma A.9 and (9), if 0 < ϵ ≤ 1/b1 then

0 ≤
c1, ϕ(ϵ)−1 − 1

ϵ = Peϵϕ1 − 1
ϵ ≤

exp{ϵ2σ1
2 ∕ 2} − 1
ϵ ϵ 0 0 .
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Likewise, in light of (11), if 0 < ϵ ≤ 1/b3 then

0 ≤ c3, ϕ(ϵ ∣ A, X)−1 − 1
ϵ = E[eϵϕ3(O) ∣ A, X] − 1

ϵ ≤
exp{ϵ2σ3

2 ∕ 2} − 1
ϵ ϵ 0

0,
(A.28)

P-almost surely. Therefore, supϕ ∈ Φ, , ϕ2 = 0 ϵ−1‖cϕ(ϵ) − 1‖ = o(1). Furthermore, the Taylor--

Lagrange theorem guarantees the existence, for every o ∈ O, of ϵ (o) ∈ (0, ϵ) such that

4(eϵϕ̄(o) − 1 − ϵϕ̄(o))2 = ϵ4ϕ̄(o)4e2ϵ (o)ϕ̄(o)
≤ ϵ4ϕ̄(o)4 e2ϵ (o)ϕ̄(o) + e−2ϵ (o)ϕ̄(o)

≤ ϵ4ϕ̄(o)4 e2ϵϕ̄(o) + e−2ϵϕ̄(o) .

If 0 < ϵ ≤ 1/4b it then follows from (A.17) in Lemma A.8 that

4ϵ−2 eϵϕ̄ − 1 − ϵϕ̄ 2 ≤ 2ϵ2 exp{c + 4ϵ2σ2} ϵ 0 0,

hence supϕ ∈ Φ, ϕ2 = 0 ϵ−1 eϵϕ̄ − 1 − ϵϕ̄ = o(1). In conclusion

sup
ϕ ∈ Φ

P(cϕ(ϵ)eϵϕ̄ − 1 − ϵcϕ(ϵ)ϕ̄) (Qϕ, ϵ, 1 − Qϕ, ϵ, − 1) sgn{π1 − π2} ≤ 2B
‖π1 − π2‖ o(ϵ) .

(A.29)

Studying term (A.25) (first pass). Because ∣Y∣ is upper bounded by B under P, the Cauchy-

Schwarz inequality implies that the absolute value of (A.25) is upper bounded by

2Bϵ ‖π1 − π2‖ × cϕ(ϵ)ϕ̄ ≤ 2Bϵ ‖π1 − π2‖ × ‖ϕ̄‖
≤ 2Bϵ ‖π1 − π2‖ × sup

ϕ ∈ Φ
‖ϕ̄‖,

where cϕ(ϵ)ϕ̄ ≤ ϕ̄  is a consequence of Lemma A.9 and Lemma A.8 guarantees that 

supϕ ∈ Φ ϕ̄  is finite. In conclusion,

sup
ϕ ∈ Φ

ϵPcϕ(ϵ)ϕ̄ (Qϕ, ϵ, 1 − Qϕ, ϵ, − 1) sgn{π1 − π2} ≤ 2B ‖π1 − π2‖ ϵ . (A.30)

Studying term (A.26) (first pass). The same argument as in the study of term (A.25) applies, 

because ∣η∣ is upper bounded by Bδ−1 under P. It yields

sup
ϕ ∈ Φ

∣ ϵPc3, ϕ(ϵ)η sgn{π1 − π2} ∣ ≤ 2Bδ−1 ‖π1 − π2‖ ϵ . (A.31)

Studying term (A.27). For both a ∈ {−1, 1}, introduce
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Ta ≡ P[Qϕ, ϵ, a − Qa − ϵc3, ϕ(ϵ)ϕ3ηa 1{A = a}] sgn{π1 − π2}

and note that term (A.27) equals T1 – T−1. In light of Lemma A.10, using repeatedly the 

tower rule yields that, for each a ∈ {−1, 1}, Ta equals

E (Qϕ, ϵ, a − Qa)(X) − a 1{A = a}A
P(A = a ∣ X)ϵc3, ϕ(ϵ ∣ A, X)E[ϕ3(O)Y ∣ A, X] sgn{(π1 − π2)(X)}

= E[((Qϕ, ϵ, a − Qa)(X) − ϵc3, ϕ(ϵ ∣ A = a, X)E[ϕ3(O)Y ∣ A = a, X]) sgn{(π1 − π2)(X)}]
= E (E [(c3, ϕ(ϵ ∣ A, X)eϵϕ3(O) − 1 − ϵc3, ϕ(ϵ ∣ A, X)ϕ3(O)) Y ∣ A = a, X] sgn{(π1 − π2)(X)})
= E 1{A = a}Y

P(A = a ∣ X) (c3, ϕ(ϵ ∣ A, X)eϵϕ3(O) − 1 − ϵc3, ϕ(ϵ ∣ A, X)ϕ3(O)) sgn{(π1 − π2(X)} .

Therefore, applying the Cauchy-Schwarz inequality implies that the absolute value of term 

(A.27) is upper bounded by

2Bδ−1 P(c3, ϕ(ϵ)eϵϕ3 − 1 − ϵc3, ϕ(ϵ)ϕ3)sgn{π1 − π2}
≤ 2Bδ−1 c3, ϕ(ϵ)eϵϕ3 − 1 − ϵc3, ϕ(ϵ)ϕ3 × P 1{π ≠ π2}
= 2Bδ−1 ‖π1 − π2‖ × c3, ϕ(ϵ)eϵϕ3 − 1 − ϵc3, ϕ(ϵ)ϕ3 .

Looking back at the study of term (A.24), we finally conclude that

sup
ϕ ∈ Φ

∣ P[(Qϕ, ϵ, 1 − Q1) − (Qϕ, ϵ, − 1 − Q−1) − ϵc3, ϕ(ϵ)ϕ3η] sgn{π1 − π2} ∣

≤ 2Bδ−1 ‖π1
− π2‖ o(ϵ) .

(A.32)

We are in a position to conclude. In view of (A.29), (A.30), (A.31), (A.32) and because 

supπ1,π2 ∣π1 – π2∥ ≤ 2, (A.21) holds with C = 8Bδ−1 + 1, for instance. This completes the 

first part of the proof, and we now move on to the second part of the proof.

Studying terms (A.25) and (A.26) (second pass). We first note that

〈ϕ̄, fπ1 − fπ2〉 = 〈cϕ(ϵ)ϕ1, fπ1 − fπ2〉 + 〈c3ϕ(ϵ)ϕ3, fπ1 − fπ2〉
− 〈(cϕ(ϵ) − 1)ϕ1 + (c3ϕ(ϵ) − 1)ϕ3, fπ1 − fπ2〉 .

Applying the Cauchy-Schwarz and the triangle inequalities then reveals that the absolute 

value of the rightmost term in the above display is upper bounded by

(‖(cϕ(ϵ) − 1)ϕ1‖ + ‖(c3ϕ(ϵ) − 1)ϕ3‖) × ‖fπ1 − fπ2‖,

where it is easy to check that the first factor converges to 0 uniformly in ϕ ∈ Φ as ϵ goes to 

0. Indeed, for both j = 1, 3,

‖(cjϕ(ϵ) − 1)ϕj‖ ≤ ϕj2 × (cjϕ(ϵ) − 1)2 ≤ ec sup
ϕ ∈ Φ

(cjϕ(ϵ) − 1)2

Luedtke and Chambaz Page 35

Ann I H P Probab Stat. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by the Cauchy-Schwarz inequality and Lemma A.8, and the above RHS expression 

converges to 0 as ϵ goes to 0 by Lemma A.9 and the dominated convergence theorem. 

In summary,

sup
ϕ ∈ Φ

sup
π1, π2 ∈ Π

∣ 〈ϕ̄, fπ1 − fπ2〉 − 〈cϕ(ϵ)ϕ1, fπ1 − fπ2〉 − 〈c3ϕ(ϵ)ϕ3, fπ1 − fπ2〉

∣ = o(1) .
(A.33)

Introduce f π : o fπ(o) + V(π) for all π ∈ Π and note that

f π1 − f π2 (O) = A(Y − Q(A, X))
P(A ∣ X) + (Q1 − Q−1)(X) sgn{(π1 − π2)(X)} . (A.34)

Recall that E[ϕ3(O) ∣ A, X] = 0 P-almost surely, and the fact that η(O) ≡ AY/P(A∣X). It thus 

holds that

〈c3ϕ(ϵ)ϕ3, fπ1 − fπ2〉 = 〈c3ϕ(ϵ)ϕ3, f π1 − f π2〉 = Pc3ϕ(ϵ)ϕ3η sgn{π1 − π2} . (A.35)

Furthermore, recalling that ϕ1 is a function of X such that Pϕ1 = 0, it also holds that

〈cϕ(ϵ)ϕ1, fπ1 − fπ2〉 = 〈cϕ(ϵ)ϕ1, f π1 − f π2〉
= Pcϕ(ϵ)ϕ1(Q1 − Q−1) sgn{π1 − π2}
= Pcϕ(ϵ)ϕ̄(Qϕ, ϵ, 1 − Qϕ, ϵ, − 1) sgn{π1 − π2}

− Pcϕ(ϵ)ϕ1[(Qϕ, ϵ, 1 − Q1) − (Qϕ, ϵ, − 1 − Q−1)] sgn{π1
− π2} .

(A.36)

For both a ∈ {−1, 1}, introduce

T a ≡ Pcϕ(ϵ)ϕ1(Qϕ, ϵ, a − Qa) sgn{π1 − π2},

so that the above rightmost term equals T 1 − T −1. Let Cϕ(X) ≡ E[cϕ(O) ∣ X], and note that 

P(∣Cϕ(X)∣ ≤ 1) = 1 by Lemma A.9. In light of Lemma A.10 and the strong positivity 

assumption, applying the tower rule and the Cauchy-Schwarz and triangle inequalities yields 

that

∣ T a ∣ = E 1{A = a}
P(A ∣ X) Cϕ(X)ϕ1(X) sgn{(π1 − π2)(X)}(c3ϕ(ϵ ∣ A, X)eϵϕ3(O) − 1)Y

≤ Bδ−1P ∣ ϕ1[c3ϕ(ϵ)eϵϕ3 − 1] ∣
≤ Bδ−1‖ϕ1‖ × c3ϕ(ϵ)eϵϕ3 − 1
≤ Bδ−1‖ϕ1‖ × eϵϕ3 − c3ϕ(ϵ)−1

≤ Bδ−1 sup
ϕ ∈ Φ

‖ϕ̄‖ × sup
ϕ ∈ Φ

c3ϕ(ϵ)−1 − 1 sup
ϕ ∈ Φ

‖eϵϕ3 − 1‖ .
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Now, Lemma A.8 guarantees that the first above supremum is finite and the bound (A.28) 

implies that the second one is o(ϵ). In addition, the mean value theorem guarantees the 

existence, for every o ∈ O, of ϵ (o) ∈ (0, ϵ) such that

(eϵϕ3(o) − 1)2 = ϵ2ϕ3(o)2e2ϵ (o)ϕ3(o)

≤ ϵ2ϕ3(o)2 e2ϵ (o)ϕ3(o) + e−2ϵ (o)ϕ3(o)

≤ ϵ2ϕ3(o)2 e2ϵϕ3(o) + e−2ϵϕ3(o) .

If 0 < ϵ ≤ 1/4b it then follows from (A.17) in Lemma A.8 that

‖eϵϕ3 − 1‖2 ≤ 2ϵ2 exp{c + 4ϵ2σ2} ϵ 0 0,

hence supϕ∈Φ ∥eεϕ3 – 1∥ = o(1). Going back to (A.36), we thus obtain that

sup
ϕ ∈ Φ

sup
π1, π2 ∈ Π

〈cϕ(ϵ)ϕ1, fπ1 − fπ2〉 − Pcϕ(ϵ)ϕ̄(Qϕ, ϵ, 1 − Qϕ, ϵ, − 1) sgn{π1

− π2} = o(1) .
(A.37)

In conclusion, by combining our initial decomposition of 

Vϕ, ϵ(π1) − Vϕ, ϵ(π2) − V(π1) + V(π2) as the sum of (A.24), (A.25), (A.26) and (A.27) with 

(A.29) and (A.32) on the one hand and (A.33) (A.35) and (A.37) on the other hand, we show 

that (A.20) holds true, and thus complete the proof. □

B Additional Proofs

B.1 Sketch of Proof of Theorem 6

The proof of Theorem 6 is very similar to that of Theorem 1. We only sketch it and point out 

the places where they differ.

Sketch of Proof of Theorem 6. Obviously (18) implies that ℛ( ⋅ ) is uniformly continuous 

on Π w.r.t. ∥·∥. Assumption (17) then shows that the implication of Lemma A.3 also holds 

in our context, i.e., that infπ ∈ Πℛ(π) = 0 and that Π⋆ is not empty. As ℛ( ⋅ ) is uniformly 

continuous and the implication of Lemma A.3 holds, (CA) from Lemma A.4 also holds. 

Furthermore, (19) yields Lemma A.6, for which Corollary A.7 remains a valid corollary. We 

will not make use of Lemma A.5: we will instead use directly (21).

We now have the tools needed to modify the proof of Theorem 1. Using the results we have 

obtained thus far, and replacing (6) by (22) and (5) by (20), we see that (A.13) from the 

proof of Theorem 1 can be replaced by

0 ≤ ℛ(πn) ≲ rn−1 Gnfπn − Gnfπs⋆ + [V(π⋆) − V(πs⋆)] + oP(rn−1)
≤ 2rn−1 sup

f ∈ ℱ
∣ Gnf ∣ + [V(π⋆) − V(πs⋆)] + oP(rn−1) . (B.38)
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By (21) and the continuous mapping theorem [18, Theorem 1.3.6], 

supf ∈ ℱ ∣ Gnf ∣ = OP(1). Hence, the leading term in the final inequality is OP(rn−1), where 

this term does not depend on s. The final term also does not depend on s. By (18), the middle 

term above goes to zero as s ↓ 0, where this convergence is uniform in both π⋆ ∈ Π⋆ and 

πs⋆ ∈ BΠ(π⋆, s). Thus, ℛ(πn) = OP(rn−1).

We tighten this result to ℛ(πn) = oP(rn−1) as in the proof of Theorem 1. In particular, nearly 

identical arguments to those used in that proof show that

0 ≤ rnℛ(πn) ≤ g(Gn, ℛ(πn) + tn) + oP(1) ≤ ℎ(Gn, ℛ(πn) + tn) + oP(1) .

The proof concludes by noting that (21) includes the condition that almost all sample paths 

of GP  are uniformly continuous on ℱ w.r.t. ∥·∥, and thus the right-hand side above is oP(1). 

In conclusion ℛ(πn) = oP(rn−1). □

B.2 Proof for Section 4.2

Proof of Lemma 8. If the bounded class Π is Donsker, then it is totally bounded in L2(P), 

so (17) is met. By Lemma A.1, Π is then compact. Let θ be a Lipschitz function from [−2, 

2] to [0, 1] such that θ(0) = 1 and θ(u) = 0 if ∣ u ∣ ≥ mina ≠ a′ ∈ A ∣ a − a′ ∣. Introducing θ is 

merely a trick to generalize Lemma A.2. In particular, (A.1) becomes

Q(π(X), X) = ∑
a ∈ A

θ(π(X) − a)Q(a, X)

for every policy π :X A, yielding

∣ V(π1) − V(π2) ∣ ≲ ‖π1 − π2‖ (B.39)

for every π1, π2 ∈ Π, hence (18). We also generalize (A.4), which becomes

fπ(O) = ∑
a ∈ A

θ(π(X) − a) θ(A − a)Y − Q(A, X)
P(A ∣ X) + Q(a, X) − V(π) (B.40)

for every π ∈ Π. The above equality and (B.39) imply ∥fπ1 – fπ2∥ ≲ ∥π1 – π2∥ for every π1, 

π2 ∈ Π, hence (19). The second part of the proof of Lemma A.5 can easily be generalized to 

derive that ℱ is Donsker from (B.40) and the fact that Π is itself Donsker. Therefore, (21) is 

met and the proof is complete. □

B.3 Proofs for Section 4.3

We start by proving Lemma 11.
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Proof of Lemma 11. Set arbitrarily π1, π2 ∈ Π and m ∈ [V(π2) ± c]. We suppose without 

loss of generality that V(π1) ≤ V(π2). We will use the fact that (24) implies that 

Fπ1(V(π1)) = Fπ2(V(π2)) = 1 ∕ 2 several times in this proof.

Firstly, note that

∣ Fπ1(m) − Fπ2(m) ∣ = E 1{A = π1(X)} − 1{A = π2(X)}
P(A ∣ X) 1{Y ≤ m}

≤ 1
2E ∣ π1(X) − π2(X) ∣

P(A ∣ X) 1{Y ≤ m} ≤ k1 ‖π1 − π2‖
(B.41)

where k1 is a finite, positive constant that only depends on the lower bound on P(A∣X) from 

the strong positivity assumption.

Secondly, the continuous differentiability of Fπ2 in [V(π2) ± c] and (24) imply the existence 

of m ∈ [m, V(π2)] such that

∣ Fπ2(V(π2)) − Fπ2(m) ∣ = ∣ V(π2) − m ∣ × F
.
π2(m)

≥ ∣ V(π2) − m ∣ × inf
π ∈ Π

inf
m ∈ [V(π) ± c]

F
.
π(m) .

Therefore, there exists a finite, positive constant k2 such that

∣ V(π2) − m ∣ ≤ k2 ∣ Fπ2(V(π2)) − Fπ2(m) ∣ . (B.42)

The remainder of this proof is broken into two parts: we will show that (i) V(π2) − V(π1) ≤ c
implies V(π2) − V(π1) ≤ k1k2 ‖π1 − π2‖, and (ii) ∥π1 – π2∥ < c/k1k2 yields V(π2) − V(π1) ≤ c. 

By combining these two results, we will thus prove that V(π2) − V(π1) ≤ k1k2 ‖π1 − π2‖ for 

all ∥π1 – π2∥ sufficiently small, and this will complete the proof (k1k2 does not depend on 

π1 or π2).

Recall that Fπ1(V(π1)) = Fπ2(V(π2)) = 1 ∕ 2. If V(π2) − V(π1) ≤ c, then combining (B.41) and 

(B.42) at m = V(π1) ∈ [V(π2) ± c] establishes (i):

V(π2) − V(π1) ≤ k2 [Fπ2(V(π2)) − Fπ2(V(π1))]
= k2 [Fπ1(V(π1)) − Fπ2(V(π1))] ≤ k1k2 ‖π1 − π2‖ .

We argue (ii) by contraposition. Suppose that V(π1) < V(π2) − c. By the monotonicity of 

cumulative distribution functions, Fπ2(V(π1)) = Fπ2(V(π2)) − c. Combining this with (B.42) 

at m = V(π2) − c ∈ [V(π2) ± c],

Fπ2(V(π2)) − Fπ2(V(π1)) ≥ Fπ2(V(π2)) − Fπ2(V(π2) − c) ≥ k2
−1c .
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By (B.41) and the fact that Fπ2(V(π2)) = Fπ1(V(π1)) = 1 ∕ 2, the LHS expression is smaller 

than k1 ∥π1 – π2∥. Therefore, ∥π1 – π2∥ ≥ c/k1k2. □

Lemma B.16. Suppose the existence of a deterministic L > 0 such that, for all m ∈ ℝ and 
sufficiently small ϵ > 0, with P-probability one,

P(m < Y ≤ m + ϵ ∣ X) ≤ Lϵ .

Then, for all m ∈ ℝ and π1, π2 ∈ Π, ∣ F
.
π2(m) − F

.
π1(m) ∣ ≲ ‖π1 − π2‖.

Proof of Lemma B.16. Set arbitrarily π1, π2 ∈ Π and m ∈ ℝ. In this proof, the universal 

positive multiplicative constants attached to the ≲-inequalities do not depend on π1, π2, m. 

First, observe that

F
.
π2(m) − F

.
π1(m) = lim

ϵ 0
1
ϵ ∣ Fπ2(m + ϵ) − Fπ2(m) − Fπ1(m + ϵ) + Fπ1(m) ∣ .

Second, mimicking the argument that previously lead to (B.41) we note that, for every ϵ > 0 

small enough,

∣ Fπ2(m + ϵ) − Fπ2(m) − Fπ1(m + ϵ) + Fπ1(m) ∣

≤ 1
2E

∣ π1(X) − π2(X) ∣
P(A ∣ X) 1{m < Y ≤ m + ϵ}

≲ E[ ∣ π1(X) − π2(X) ∣ 1{m < Y ≤ m + ϵ}]
= E[ ∣ π1(X) − π2(X) ∣ P(m < Y ≤ m + ϵ ∣ X)]
≤ LϵE[ ∣ π1(X) − π2(X) ∣ ] ≲ ϵ ‖π1 − π2‖ .

Returning to the first display completes the proof. □

Corollary B.17. Under the conditions of Lemmas 11 and B.16, and the additional 
assumption (25), the map π F

.
π(V(π)) is uniformly continuous on Π w.r.t. ∥·∥.

Proof of Corollary B.17. Set π1, π2 ∈ Π. By Lemma 11, we can choose π2 sufficiently close 

to π1 in L2(P) (where “sufficiently close” does not depend on the choice of π1) so that 

∣ V(π1) − V(π2) ∣ ≤ c, where c is the constant from (24). For all such choices of π1, π2,

F
.
π2(V(π2)) − F

.
π1(V(π1)) ≤ F

.
π2(V(π2)) − F

.
π1(V(π2)) + F

.
π1(V(π2)) − F

.
π1(V(π1))

≲ ‖π1 − π2‖ + ω(‖π1 − π2‖),

where the constant on the right does not depend on π1, π2. The final bound used Lemma 

B.16 and (25), hence the appearance of ω(·). As ω(0) = 0 and ω is continuous at zero, one 

can choose ∥π1 – π2∥ sufficiently small so that the right-hand side is less than any ϵ > 0. 

As “sufficiently small” does not depend on the choice of π1, π F
.
π(V(π)) is uniformly 

continuous on Π w.r.t. ∥·∥. □

Luedtke and Chambaz Page 40

Ann I H P Probab Stat. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

[1]. Athey S and Wager S. Efficient policy learning. arXiv preprint arXiv:1702.02896v4, 2017.

[2]. Zhao Y, Zeng D, Rush A, and Kosorok M. Estimating individual treatment rules using outcome 
weighted learning. J. Am. Stat. Assoc, 107:1106–1118, 2012. [PubMed: 23630406] 

[3]. Zhang B, Tsiatis AA, Davidian M, Zhang M, and Laber E. Estimating optimal treatment regimes 
from a classification perspective. Stat, 68(1):103–114, 2012.

[4]. Rubin DB and van der Laan MJ. Statistical issues and limitations in personalized medicine 
research with clinical trials. The International Journal of Biostatistics, 8:Issue 1, Article 18, 2012.

[5]. Alexander Luedtke R and Mark van der Laan J. Super-learning of an optimal dynamic treatment 
rule. The International Journal of Biostatistics, 12(1):305–332, 2016. [PubMed: 27227726] 

[6]. Farahmand A-M. Action-gap phenomenon in reinforcement learning. In Advances in Neural 
Information Processing Systems, pages 172–180, 2011.

[7]. Qian M and Murphy S. Performance guarantees for individualized treatment rules. The Annals of 
Statistics, 39:1180–1210, 2011. [PubMed: 21666835] 

[8]. Luedtke AR and van der Laan MJ. Statistical inference for the mean outcome under a possibly 
non-unique optimal treatment strategy. The Annals of Statistics, 44(2):713–742, 2016. [PubMed: 
30662101] 

[9]. Chambaz A, Zheng W, and van der Laan MJ. Targeted sequential design for targeted learning 
inference of the optimal treatment rule and its mean reward. The Annals of Statistics, 45(6):1–28, 
2017. [PubMed: 29332971] 

[10]. Kitagawa T and Tetenov A. Who should be treated? empirical welfare maximization methods for 
treatment choice. Econometrica, 86(2):591–616, 2018.

[11]. Manski CF. Statistical treatment rules for heterogeneous populations. Econometrica, 72(4):1221–
1246, 2004.

[12]. Stoye J. Minimax regret treatment choice with finite samples. Journal of Econometrics, 
151(1):70–81, 2009.

[13]. Luedtke AR and van der Laan MJ. Comment. Journal of the American Statistical Association, 
111(516):1526–1530, 2016. [PubMed: 32394991] 

[14]. Hirano K and Porter JR. Asymptotics for statistical treatment rules. Econometrica, 77(5):1683–
1701, 2009.

[15]. Audibert JY and Tsybakov AB. Fast learning rates for plug-in classifiers. The Annals of 
Statistics, 35(2):608–633, 2007.

[16]. Koltchinskii V. Local Rademacher complexities and oracle inequalities in risk minimization. The 
Annals of Statistics, 34(6):2593–2656, 2006.

[17]. Sheehy A and Wellner JA. Uniform Donsker classes of functions. The Annals of Probability, 
pages 1983–2030, 1992.

[18]. van der Vaart AW and Wellner JA. Weak convergence and empirical processes. Springer, Berlin 
Heidelberg New York, 1996.

[19]. van der Vaart AW. Asymptotic statistics. Cambridge University Press, New York, 1998.

[20]. van der Laan MJ and Robins JM. Unified methods for censored longitudinal data and causality. 
Springer, New York Berlin Heidelberg, 2003.

[21]. van der Laan MJ and Rubin DB. Targeted maximum likelihood learning. The International 
Journal of Biostatistics, 2(1):Article 11, 2006.

[22]. van der Laan MJ and Rose S. Targeted Learning: Causal Inference for Observational and 
Experimental Data. Springer, New York, New York, 2011.

[23]. Luedtke AR and van der Laan MJ. Corrigendum to: Targeted Learning of the Mean Outcome 
under an Optimal Dynamic Treatment Rule. Journal of Causal Inference, 3 (2):267–271, 2016.

[24]. van der Laan MJ and Luedtke AR. Targeted learning of the mean outcome under an 
optimal dynamic treatment rule. Journal of Causal Inference, 3(1):61–95, 2014. doi: 10.1515/
jci-2013-0022.

[25]. Chernozhukov V, Chetverikov D, Demirer M, Duflo E, and Hansen C. Double machine learning 
for treatment and causal parameters. arXiv preprint arXiv:1608.00060, 2016.

Luedtke and Chambaz Page 41

Ann I H P Probab Stat. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[26]. Zheng W and van der Laan MJ. Targeted maximum likelihood estimation of natural direct effects. 
Int. J. Biostat, 8(1):Art. 3, 42, 2012. ISSN 1557-4679.

[27]. Chaffee P and van der Laan MJ. Targeted minimum loss based estimation based on directly 
solving the efficient influence curve equation. Technical report, UC Berkeley Division of 
Biostatistics Working Paper Series, 2011.

[28]. Bickel PJ, Klaassen CAJ, Ritov Y, and Wellner JA. Efficient and adaptive estimation for 
semiparametric models. Johns Hopkins University Press, Baltimore, 1993.

[29]. Le Cam L. Locally asymptotically normal families of distributions. Univ. California Publ. Statist, 
3:37–98, 1960.

[30]. Tsybakov AB. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 
32(1):135–166, 2004.

[31]. Rubin D and van der Laan MJ. A doubly robust censoring unbiased transformation. Int. J. 
Biostat, 3:Art. 4, 21, 2007. ISSN 1557-4679.

[32]. van der Laan MJ and Luedtke AR. Targeted learning of an optimal dynamic treatment, and 
statistical inference for its mean outcome. Technical Report 329, Division of Biostatistics, 
University of California, Berkeley, 2014.

[33]. Koltchinskii V. Oracle inequalities in empirical risk minimization and sparse recovery 
problems, volume 2033 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. ISBN 
978-3-642-22146-0. Lectures from the 38th Probability Summer School held in Saint-Flour, 
2008, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].

[34]. Linn KA, Laber EB, and Stefanski LA. Interactive Q-learning for Quantiles. Journal of the 
American Statistical Association, just-accepted:1–37, 2016.

[35]. Browder A. Mathematical analysis: an introduction. Springer Science & Business Media, 2012.

Luedtke and Chambaz Page 42

Ann I H P Probab Stat. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Objective
	A Brief Literature Review
	Formalization

	Main Results
	Preliminary
	Empirical Risk Minimizers
	Main, Fixed-P ERM Result
	Main Uniform Local ERM Result

	Plug-In Estimators

	Three Remarks on ERM Results
	Relation to the Rates of Koltchinskii [16]
	Tightening Theorem 1
	Relation to Results of Athey and Wager [1]

	Extension of Main Fixed-P ERM Result and Two More Examples
	Higher Level Result
	Example 1: Maximizing the Mean Reward of a Discrete Action
	Example 2: Maximizing the Median Reward of a Binary Action

	Discussion
	Appendix
	References

