Robust Kernel Density Estimation with Median-of-Means principle - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Robust Kernel Density Estimation with Median-of-Means principle

Résumé

In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.
Fichier principal
Vignette du fichier
MoM_KDE_main.pdf (1.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02882092 , version 1 (29-06-2020)

Identifiants

Citer

Pierre Humbert, Batiste Le Bars, Ludovic Minvielle. Robust Kernel Density Estimation with Median-of-Means principle. ICML 2022 - The 39th International Conference on Machine Learning (ICML), Jul 2022, Baltimore, United States. ⟨hal-02882092⟩
155 Consultations
452 Téléchargements

Altmetric

Partager

More