Central limit theorem and almost sure results for bivariate empirical W 1 distances - Archive ouverte HAL
Article Dans Une Revue Annales de l'ISUP Année : 2019

Central limit theorem and almost sure results for bivariate empirical W 1 distances

Résumé

In this paper we study the behavior of the Wasserstein distance of order 1 (also called Kantorovich distance) between the two marginal empirical measures of a stationary sequence of bi-variate random variables. We give sufficient conditions for the central limit theorem, the compact law of the iterated logarithm and the Maricinkiewicz-Zygmund strong law.
Fichier principal
Vignette du fichier
Pages de DEP_8-V-64396_(2015-2019)-53.pdf (5.24 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-02881842 , version 1 (26-06-2020)
hal-02881842 , version 2 (10-03-2022)

Identifiants

  • HAL Id : hal-02881842 , version 2

Citer

Philippe Berthet, Jérôme Dedecker, Florence Merlevède. Central limit theorem and almost sure results for bivariate empirical W 1 distances. Annales de l'ISUP, 2019, 63 (2-3), pp.205-220. ⟨hal-02881842v2⟩
167 Consultations
108 Téléchargements

Partager

More