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Abstract: In this paper we study the behavior of the Wasserstein distance of
order 1 (also called Kantorovich distance) between the two marginal empirical
measures of a stationary sequence of bivariate random variables. We give suffi-
cient conditions for the central limit theorem, the compact law of the iterated
logarithm and the Maricinkiewicz-Zygmund strong law.

1. Introduction

Let (Xi, Vi)ieZ be a stationary and ergodic sequence of R2-valued random variables.
Let F be the cumulative distribution function (cdf) of the Xi s, and let G be the
cdf of the Yi s. Let also, for any t G R,

^ n i n
Fn(t) = - and Gn(*) = - lyÎ<4 •

i—1 i= 1

In this paper, we study the behavior of

(1.1) W'i(f’niG„)-W1(,F,G),
where W\(F,G) is the Wasserstein distance of order 1 (or Kantorovich distance)
between the probabilities with cdfs F and G. Recall that W\ is a minimal distance,
defined by

(1.2) W\(F, G) - inf [ \x - y\n(dx, dy),TTeM(F,G) J

where M(F, G) is the set of probability measures on R2 with marginal cdfs F and
G. It is well known that W\(F,G) can also be written as

(1.3) Wi(F,G)= f \F~l(u)-G-l(u)\du= f \F(t) - G(t)\dt,J0 JR

where F-1 is the generalized inverse of F. For p > 1, the distance WP(F, G) (defined
with the cost | • \p instead of | -1) is equal to the Lp([0, l])-distance between F-1 and
G~l, which generalizes the first equality in (1.3).
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For independent and identically distributed (i.i.d.) random vectors (.Xi,Yi), the
central limit theorem for Wp{Fn,Gn) — Wp(F,G) (and other similar quantifies, for
a large class of cost functions) has been studied in the two recent papers [3] and [2],
starting from the exact expression involving F~l,G~l,F~l and G~l. As a matter
of fact, for the spécial case of W\ it is easier to start from the second equality in
(1.3), which gives an expression in terms of Fn,Gn,F and G (see (2.8) below). We
shall see that, using a first order Taylor expansion (see relation (2.5) below), we are
back to the study of partial sums in the (cotype 2) Banach space Li (dt), up to some
negligible residual terms. Following this strategy, we also prove a compact law of
the iterated logarithm and a Marcinkiewicz-Zygmund strong law for the quantity
(1.1). Moreover, following [9] and [7] we are able to extend ail these results to the
context of a-dependent sequences (as defined for instance in [11]) under quite sharp
conditions.

Let us quote that ail the results of this paper are new. Only the central limit
theorem for i.i.d. random variables is considered in [2], but under stronger condi-
fions than ours (see Remark 2.2 below). Moreover, ail the results of Section 2 are

conséquences of the corresponding results of Section 3 (dépendent case); for the sake
of clarity, we prefer to give the complété proofs in the i.i.d case, and then show how
they can be adapted to a dépendent context.

To conclude this introduction, we wish to emphasize that this work is located
at the intersection of two of Denis Bosq’s important research fields: “Statistical
methods for stochastic processes” (see for instance [4]), and “Stochastic processes
with values in Banach spaces” (see for instance [5]).

2. The case of i.i.d. random variables

In this section, we assume that (X{, Yi)i<i<n is a sequence of i.i.d. random variables
with values in R2.

2.1. Central limit Theorem

Proposition 2.1. Assume that

(2.1) / J'Var(lXl<t ~ 1Y!<t) dt < oo.
J K V

Then

(2.2)

Vn(W'i(.F„,Gn)-W'i(F1G)) A f B(t)dt- f B(t) dt+f \B(t)\dt,n-H-oo JF>G Jf<G Jf=G
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where B is a Gaussian random variable with values in Li (dt) and covariance function
defined as follows: for any f,gE hOQ(dt),

(2.3) T{f,g) = Cov(^J f{t)B{t) dt, J g{t)B(t) d?j
f(t)g(s)Cov(lXl<t - lyi<*,lxi<a “ 1fi<s) dsdt.

Remark 2.1. Note that (2.1) is satisfied if both

(2.4) / \/P(|Xi| > t) dt < oo and / \/P(|Yi| > t) dt < oo.
7o 7o

Note also that (2.1) and (2.4) are in fact équivalent if X\ is independent ofY\.
Now, thefirst condition in (2.4) implies the central limit theorem for y/nW\{Fn, F)

as proved in [1, Theorem 2.1]. In the same theorem, it is also proved that the sequence
y/nW\{Fn,F) is stochastically bounded if and only if the fîrst condition in (2.4) is
satisfied.
Remark 2.2. In Corollary 13 of [2], a central limit theorem is proved for the quan-
tity y/n(Wi(Fn,Gn) - W\{F,G)) but under stronger conditions than (2.4). In par-
ticular, the assumptions in [2] imply that X\ and Y\ both hâve a positive density on
R, and that there exists a positive constant C such that, for any t > 0,

Ÿ{\Xi\>t)<^ and P(|Yi|>£)<^.
Proof of Proposition 2.1. The proof is based on the central limit theorem for
random variables with values in Li proved by Jain [12]. It follows from this theorem
that

\Æ((f„-g„)-(f-g))
converges in distribution in Li (dt) to B if and only if (2.1) holds.

We also need a preliminary décomposition:

|æ T h| — |x| = hlx+/i>0,a;>0 — h^-x+hK0,x<0 T |h|lx=0
T (|o: T h\ — |o:|)(la;4-/l>oja;<0 T lrr+/i<0,a;>o)}

which implies that

\x + h\- \x\ = hlx>0 - hlx<0 + \h\lx=0
— hlx+h<0,x>0 T hlx+h>0,X<0 T (1-^ T h| — |a:|)(lx-)-/l>0)x<0 T lx+/i<0,a;>o) )

and finally

(2.5) \x + h\- |x| = hlx>0 - hlx<0 + \h\lx=o + 2R(h,x),
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where \R{h,x)\ < \h\(lx+h>0,x<0 + lx+/i<o,x>o)-
From (2.5) applied with x = F — G and h = (Fn — Gn) — (F — G), we deduce that

(2.6)
\Æ (|Fn- G„| - \F - G|) = sign{F - G} x VS((F„ - G„) - (F - G)) 1F^G

+ y/n | (Fn — Gn) — (F — G) 11 f=g + ,

where

(2.7) \Rn\ <y/n\(Fn- Gn) - (F - G) | (1 F>G,Fn<Gn + 1F<G,Fn>Gn) •

Now, from (1.3) we hâve

(2.8) \Æ(W'i(Fn,Gn)-^1(F,G)) = \Æ f (\Fn(x)~Gn{x)\-\F(x)-G(x)\)dx.
JR

Combining (2.8), (2.6) and Jain’s resuit, we infer that (2.2) holds as soon as

(2.9) / |Æn(£)| dt converges in probability to 0 as n —> oo.
Jr

To prove this, we first note that

and

(2.10)

\Rn{t)\ dt Rn{t) ||l dt,

\\Rn(t) ||l < \\Rn(t)\\2 < y^Var(lX!<t - lYi<t) ■

We infer from (2.1), (2.10), and the dominated convergence theorem that, if for any
t E R, ||JRn(t)||i converges to 0 as n —> oo, then

lim
n—>■ oo

HÆnMIll dt = 0,

which implies (2.9).
Hence it remains to prove that ||i2n(t)||i converges to 0 as n —> oo. Let M > 0

and let Tn(t) = \Æ|(F„(t) - G„(t)) - (F(t) - G(t))|. By (2.7),

(2.11) ||fi„(«)||i < E(Tn(t)lTn(t)>M) + MP({F(t) > G(t)}, {Fn(t) < G„(t)})
+ MV({F(t)<G(t)},{Fn(t)>Gn(t)}) .

Since (Fn(t),Gn(t)) converges almost surely to (F(t),G(t)), we infer that
(2.12)
lim ¥({F(t) > G(t)},{Fn{t) < Gn(t)}) + V({F(t) < G(t)},{Fn(t) > G„(i)}) = 0.
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Moreover, by standard computations,

(2-13) E(T„(t)1t„(«,>m) < < JL,
and consequently

(2.14) Jim limsupE(T„(t)lTn(t)>M) = 0.M-> 00 n—KX>

From (2.11), (2.12) and (2.14), we infer that ||i?n(t)||i converges to 0 as n —> oo,
which concludes the proof.

2.2. Compact law of the iterated logarithm

Under (2.1), one can also describe the almost sure behavior of

(2.15) -w^=(W1(Fn,Gn)-W^G)).V 2 log logn

Let p be the continuous function from L\{dt) to E defined by

(2.16) ip(x) = J (sign{F(t) - G{t)} x{t)lF(t)^G(t) + |s(*)|lF(t)=G(t)) dt.
From Sections 8 and 10 in [13] (see Theorem 10.12 in [13], since L\(dt) is of cotype
2), we know that, under (2.1),

y/n
y/2 log log n

((F„ Gn)-(F-G))

satisfies the compact law of the iterated logarithm (LIL) in Li(dt), with compact
set K being the unit bail of the reproducing kernel Hilbert space (RKHS) associated
with the covariance operator T defined in (2.3). Hence, starting from (2.6) and (2.8),
one can prove the following resuit

Proposition 2.2. Assume that (2.1) holds. Then the sequence defined in (2.15) is
almost surely relatively compact, with limit set <p(K).
Remark 2.3. Infact, since the function ip satisfies \tp(x)—ip(y)\ < ||æ—y\\hi> we also
hâve a strong invariance principle, by applying a general resuit in [7]: enlarging the
probability space if necessary, there exists a sequence ofi.i.d. Li(dt)-valued Gaussian
random variables (Zji>i with covariance function T such that

( n \
n (Wi(Fn, Gn) — W\{F,G)) — ip — o(y/nlog logn) almost surely.

\k= 1 /

This implies the compact law of the iterated logarithm of Proposition 2.2. The same
remark applies to Subsection 3.2.
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Proof of Proposition 2.2. From the above considérations, it suffices to prove that
1

(2.17) lim sup
n—>oo \/log log n

\Rn(t)\ dt — 0 a.s.

Let e > 0, and note that

\Rn{t)\ dt

y/n
\/log log n

y/n

y/log log n JR
<

1G<F<G+e
\(Fn(t)-Gn(t))-(F(t)-G(t))\ dt

Vloglog n Jf<g<f+s
y/n f

Vlog log n JG+e<F,Fn<G
y/n f

\/log log n

\(Fn{t) - Gn(t)) - (.F(t) - G(t))\ dt

\(Fn(t) - Gn(t)) - (F(t) - G(t))| dt

\(Fn(t)-Gn(t))-(F(t)-G(t))\ dt.
’ F+£<G,Gn<Fn

By the Glivenko-Cantelli Lemma, for almost ail w, Fn (resp. Gn) converges uni-
formly to F (resp. G). Hence, the two last terms on right hand are exactly 0 for
almost ail w and n > N(e,uj).

Now, from the bounded LIL in the space Li({F < G < F + e}, dt) (for instance,
since the CLT holds, one can apply Theorem 8.11 in [13]), it follows that, almost
surely

(2.18) lim sup
71—>00 y/2 log logn Jg<F<G+£ \(F„(t) - Gn(t)) - (F(t) - G(t))| dt

< Var(lx1<t - lyj<t) dt.
JG<F<G+e

Hence, since (2.1) holds, by the dominated convergence theorem,

lim lim sup ^ [ |(PnW - Gn(t)) - (F(t) - G(t))\ dt = 0 a.s.e-+0 oo ydoglogn JG<F<G+£

Of course, the same is true for the intégral over the set {F < G < F + e}, and (2.17)
follows.

2.3. Almost sure rates under lower order moments

We now consider the case where X\ (or Y\) is not square intégrable, so that (2.4)
does not hold. Starting from the elementary remark that

(2.19) \Wi(F„,Gn) - WX{F,G)| < Wx(Fn,F)+ W1(Gn,G),
it follows from Corollary 4.1 in [10] that:
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Proposition 2.3. Assume that ||Xl||p < oo and ||Yi||p < oo for some p G [1,2).
Then

(2.20) lim n(p"1)/p \Wi{Fn, Gn) - WX{F, G)| = 0, almost surely.
n—>oo

Remark 2.4. For p = 1, the resuit follows from the strong law of large number for
intégrable Li(dt)-valued random variables. For p G (1,2), it is proved in [10] that
n(p-lhpW\{Fn, F) converges to 0 almost surely if and only if ||Xl||p < oo. The only
if part is a conséquence of the classical Marcinkiewicz-Zygmund Theorem (see [14]
and Remark 4-2 in [10]).
Remark 2.5. Alternatively, one can also apply the Marcinkiewicz-Zygmund strong
law of large numbers forhp-valued martingales given in Proposition 3.2 of [6]. Since

|Wi(fn,Gn)-Wi(F,G)|< l \(Fn-Gn)(t)-(F-G)(t)\dt,
JR

it follows directly from Proposition 3.2 of [6] that (2.20) holds for p G (1,2) as soon
as

(2.21) f ||(lxi<t - lYi<t) - (F - G)(t)\\ dt < oo .
JR

Note that (2.21) is the Lv-version of (2.1), but it is not comparable to the conditions
given in Proposition 2.3.

3. Extension to dépendent sequences

Let (Xi, Yi)i£i be a stationary and ergodic sequence of R2-valued random variables.
We use the same notations as before for the cdfs Fn^Gn^F and G. Let also Tq =

a(Xi,Yi,i < 0), ax,y(0) = 1 and

<*x,Y{k) = sup ||E(lxfc<t - lyfc<t|^o) - (F(t) - G^t))^ for any k > 1.

Finally, set
V(t) = Var(lXi<t ~ lyi<t)

3.1. Central limit Theorem

Proposition 3.1. Assume that

(3.1)
OO

N
^ (av,y(fc) A V(t)) dt <
k=0

OO .
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Then

\fc(Wi(Fn,Gn)-Wi(F,G)) -A [ B(t) dt- f B(t)dt+[ \B(t)\dt,n—>+oo JF>G Jf<G Jf=G

for a Gaussian random variable B with values in Li (dt) and covariance function
defined as follows: for any f,g£ L^dt),

(3.2) r(f,g) = Cov (J f(t)B(t) dt, f g(t)B(t) dt
= £ // f(09(s)C°vOxo<t - 1y„<t, 1 xk<s — lyfe<s) ds dt.

Remark 3.1. Note that (3.1) is satisfied if both
(3.3)

OO

N
T. iax,Y(k) A Hx{t)) dt <
k=0

00 and

OC

N
^ {ax,y(k) A HY{t)) dt <
k—O

00 ,

where

Hx(t) = P(|Xi| > t) anrf HY(t) = F(|^i| > t).
Note that the first condition in (3.3) with ax instead of aXy (sec (3.13) for the
définition of ax) implies the central limit Theorem for y/nWi(Fn,F), as proved in
[9]. We refer to Section 5 in [9] for suffîcient conditions implying (3.3).
Remark 3.2. Note that the coefficient aXy is weaker than the usual strong mixing
coefficient (in the sense of Rosenblatt [17]) of the sequence (Xi,Yi)iez. R is also
weaker than the a-dependence coefficient of (Xi,Yi)iei defined in [11]. We then
refer to the paper [11] for many examples of stationary processes for which aXy
can be computed.

Proof of Proposition 3.1. We follow the scheme of the proof of Proposition 2.1.
To prove the convergence in distribution of ffin((Fn — Gn) — (F — G)), we apply
Corollary 6.1 in [9]. It suffices then to prove that

(3.4)
OO

N £ l|E(lxt<t - lYk<t\F) - (Fit) - G(t))||j dt < 00.
k=0

Let S(t) = E(|lx!<f - 1Yi<t ~ (-F(t) - C(t))|). By définition of Qjy, we see that
(3.1) is satisfied as soon as

(3.5)
OO

N ^ (ax,y(fc) A S(t)) dt <
k=o

00 .
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To see that (3.5) is équivalent to (3.1), one needs the following remark:
(3.6)
E(|lXl<t - 1Yl<t - (F(t) - G(t))|) < 2Vif) < 4E(|lXl<t - lYl<, - (F(t) - G(t))|).

The first inequality in (3.6) is not completely obvious, and can be proved as fol-
lows. Let Z be a random variable taking values 0,1 or —1. Assume without loss of
generality that a = E (Z) > 0, and let p\ = P (Z = 1) and p-\ = P [Z — — 1). Clearly

E(|Z - E(Z)|) = pi(l - a) + (1 + a - 2p\)a + (pi - a)( 1 + a) = 2pi(l - a),

and

Var(Z) = pi(l - a)2 + (1 + a - 2pi)a2 + (pi - a)( 1 + a)2 = 2p\ - a(l + a).

Hence, it is enough to verify that 2p\ — a(l + a) > p\{l — a), which is clearly true
since p\ > a — p\ - p-\.

To see that the covariance function of the Gaussian process B can be expressed
as in (3.2), it suffices to follow the proof of Proposition 2 in [9],

To conclude the proof, it remains to prove that ||i?n(t)||i converges to 0 as n —> oo

(recall that Rn has been defined in (2.6)). Clearly (2.11) and (2.12) hold, so that we
only need to prove (2.14). By standard computations

E(Tn(t)lTnW>M) < \\Tn^2- |Cov(lx0<t - 1 Yo<t: 1xk<t - lYk<t)\ •1
k=0

Clearly,

|Cov(lx0<f - 1Yo<t, 1Xk<t - lyfc<i)|
< ||E(l^<t - XYk<t\Fo) ~ (F(t) - GO))!!, < axx(k)

in such a way that

(3.7) E(Tn(t)lTn{t>M) < 'ZÆÊ <1^2 »x,r(k).
fc=0

Since (3.1) implies that YjT=oax,Y(^) < °°i we ^er fr°m (3-7) that (2.14) holds.
This complétés the proof of Proposition 3.1.

3.2. Compact law of the iterated logarithm

Proposition 3.2. Assume that
00 1 roc :

Tttt / Vax’YW Ay(*) dt<0° ■t'oVk + lJo v
(3.8)



214

Then
\fn

\/2lôglôgn ((F„ Gn) - (F — G))

satisfies the compact LIL in Li (dt), with compact set K being the unit bail of the
RKHS associated with the covariance operator F defined in (3.2). Moreover the se-
quence

sfn
\/2 log logn

(WHi^Gy-WUF.G))

is almost surely relatively compact, with limit set p(K) (where p is the function
defined in (2.16)).
Remark 3.3. As in Section 5 of [9], one canprove that the condition (3.8) is slightly
more restrictive than (3.1). For instance, if \\XiWqq < oo and HYiHoo < °o (bounded
case), then (3.8) is équivalent to \Zax,y(k)/k < oo, while (3.1) is equiva-
lent to Ek>oax,Y(k) < 00• Hence, a reasonable question is: does the conclusion of
Proposition 3.2 still hold under (3.1)?

Note that, in the bounded case and for strongly mixing sequences in the sense

of Rosenblatt [17], it follows from [15] that the conclusion of Proposition 3.2 still
holds under the condition Jfk>oa(k) < 00 (where a(k) is the usual strong mixing
coefficient of the sequence (Xi,Yi)iez). Indeed, in the bounded case, the compact law
of the iterated logarithm in L2(\—M,M\,dt) can be applied, since the Li norm is a
continuons function for the L2([—M, M],dt) topology.
Proof of Proposition 3.2. To prove the first part of the proposition, we apply
Theorem 1.1 in [7], with p = 1. It suffices to prove that

(3.9) E
fc—0 Vk + 1

IIe (!** <t lyfc<d^o) - (■F(t) - G(t))||2 dt< 00.

Using that

P(Wt<< - ~ (F(t) - G(t))||2
< (P(ixt<* - m<t\n) - (F(t) - G(t))ii1)1/2,

we easily infer from the proof of Proposition 3.1 that (3.8) implies (3.9).
For the second part of Proposition 3.2, we follow the proof of Proposition 2.2. It

suffices to prove that
(3.10)

limlimsup ^ [ |(Fn(t) - Gn(t)) - (F(t) - G(t))\ dt = 0 a.s.
n—>00 V l°g l°g n JG<F<G+s

(and the same for the intégral over the set {F < G < F + e}). Applying again
Theorem 1.1 in [7] to the the space Li({F < G < F + e},dt), we get that, almost
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surely,

(3.11) limsup
a/2 log log n 'G<F<G+e

\(Fn(t) - Gn(t)) - (F(t) - G(t))\ dt

k=0 y/k + l lG<F<G+£
y/a(k) A V(t) dt,

for some universal constant C > 0. Since (3.8) holds, (3.10) follows from (3.11) and
the dominated convergence theorem.

3.3. Almost sure rates of convergence

In this sub-section, we do not assume that the stationary sequence (Xi,Yi)i£z is
ergodic. Let Jb,x — cr(Xfc, k < 0) and 7/Y — cr(Yfc, k < 0), and define

(3.12) ax{k) = sup ||E(lxfc<i|7b,x) - F(t)||j ,
t(zM-

(3.13) ay(k) = sup ||E(lyfe<i|7b,y) - G(t)||i .
£GM

Proposition 3.3. Let p G (1,2). Let Qx (Vesp. QyJ 6e t/ze cadlag inverse of t
P(|Xi| > t) (resp. t -> P(|Yi| > t)). Assume that
(3.14)

oo

(fc +k=0 v

Then

(3.15) lim n^^W^Fn, Gn) - W^F, G) | = 0 almost surely.
n—>oo

Remark 3.4. If (X^Y))^ zs ergodic, or ifax(n) —> 0 and ay(n) —>■ 0 as n -> oo,
then (3.15) zs true for p = 1 by the ergodic theorem. The first condition in (3.17)
implies that

n

(3.16) lim n~1/p V(X; - E(X*)) - 0 a.s.
n—>oo ^'

Ï=1

as proved in [8], As will be clearform the proof, it also implies that (Fn, F)
converges to 0 almost surely as n —>• oo, which may be seen as a uniform version
of (3.16) over the class of Lipschitz functions (thanks to the dual formulation of
Wi(Fn, F)). The optimality of this condition with respect to (3.16) is studied in [16]
(case of strongly mixing sequences in the sense of Rosenblatt [17]) and in [8[.

1)2-P

rax{k) ^ r<*Y\k)
QPxiu) du <oo and ^ + QpY{u) du < oo .
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Remark 3.5. In the same way as for Remark 2.5 of Section 2, one can also apply the
Marcinkiewicz-Zygmund strong law of large numbers for Lp-valued random variables
given in Proposition f.5 of [6] (see also Section 8.2 in [6] for an application to the
empirical distribution function). It follows that, if

00
i roo

(3.17) EziViWp /to(k + 1rpJo
for some p G (1,2), then (3.15) holds. Note that (3.17) is the Lp-version of (3.8),
but it is not comparable to the conditions given in Proposition 3.3.

Proof of Proposition 3.3. Starting from the inequality (2.19), it suffices to prove
that

(3.18)
lim n^p l^pW\(Fn,F) = 0, and lim n^p 1^pWi(Gn,G) — 0 almost surely.

n—>oo n—>oo

Hence, it suffices to prove that the first condition of Proposition 3.3 implies the first
statement in (3.18). To do so, we need a maximal version of Proposition 5.1 in [9]:
let

-, R{u) = arl(u)Qx(u),
and R~1(x) = inf{w G [0,1] : R(u) < x} .

0, and any g G [1,2), the following inequality

n rR-'ix)
< Cl— / Qx(u)du

z Jo

Tl
+ c2— / Rp~l{u)Qx{u)du,JR- I(x)

where c\ = 36 and C2 — 128(2 — g)~2. This inequality is stated in [9] for the quan-
tity P (nWi(Fn, F) > 6a;) instead of P (maxi</;;<n/clTi(Ffc, F) > 6x). The maximal
version can be stated by following exactly the proof in [9].

Let us now complété the proof of Proposition 3.3 with the help of Inequality(3.19). By the direct part of the Borel-Cantelli Lemma, it suffices to prove that, for
any rj > 0,

J]P( max kW1{Fk,F)>2n/pri) <oo,
n>i V^2n /

which is équivalent to; for any e > 0,

(3.20) ]T-P ( max kWx(Fk,F) > 6n1/pe) < oo.TT y J
n> 1 '

a 1(u) = min{g G N* : ax{q) < u

For any positive integer n, any x >
holds

(3.19) P ( max kWi{Fk,F) > 6x]
\l<k<n J
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Let r] G (p, 2). Applying (3.19) with x — nllpe, we get that

n(p-l)/p rR~1(n1/pe)
P f max kW\(Fk,F) > < cr Qx(u)du

J o

Ap-ri)/p F
+ C2- i?î? ^rOQxCu)0^-

s7?

Hence, it remains to prove that
(3.21)

*R-l(nl/pe)
y —
n>l

n1/p Jo
Qx{u)du < oo, ^ i?77 l(u)Qx(u)du < oo

SI ™’,/P JR-Hn^e)

By définition of i7 1(w),
rR-'in'/Pe)

J0

Hence, interverting the sum and the intégral

roo

Qx{u)du = J^ lni/Pe<R{u)Qx{u)du

1 rR~1(n1/pe)
(3.22) y: —7^ / Qx{u)du

n> 1 1/0
jy- roo ry roo

R{u)p~lQx(,u)du= -py ^ (a~l(u))p~1Qpx(u)du,
for some positive constant K\. The same kind of computations gives

1 Z*1 Z100
(3.23) V —7- / i?r?_1(u)(5x(w)du < K2£v~p / (a;_1(u))p_1Qy(u)(iu,^/P JRyl(nllpe) J0
for some positive constant i^2- From (3.22) and (3.23), we infer that (3.21) is true
provided that

(o;_1(u))p_1Q^-(u) du < 00,

which is in fact équivalent to

^ rax{k)
> 71 777 / QPy(u) du < 00,
SJ (* + i)2-p Jo

as quoted for instance in [9]. This complétés the proof of Proposition 3.3.
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