Article Dans Une Revue ACM Transactions on Computational Logic Année : 2019

Intuitionistic linear temporal logics

Résumé

We consider intuitionistic variants of linear temporal logic with “next,” “until,” and “release” based on expanding posets: partial orders equipped with an order-preserving transition function. This class of structures gives rise to a logic that we denote ITLe, and by imposing additional constraints, we obtain the logics ITLp of persistent posets and ITLht of here-and-there temporal logic, both of which have been considered in the literature. We prove that ITLe has the effective finite model property and hence is decidable, while ITLp does not have the finite model property. We also introduce notions of bounded bisimulations for these logics and use them to show that the “until” and “release” operators are not definable in terms of each other, even over the class of persistent posets.
Fichier principal
Vignette du fichier
balbiani_26276.pdf (443.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02881840 , version 1 (26-06-2020)

Identifiants

Citer

Philippe Balbiani, Joseph Boudou, Martin Dieguez, David Fernández Duque. Intuitionistic linear temporal logics. ACM Transactions on Computational Logic, 2019, 21 (2), pp.0. ⟨10.1145/3365833⟩. ⟨hal-02881840⟩
75 Consultations
170 Téléchargements

Altmetric

Partager

More