A Cellular Howe Theorem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

A Cellular Howe Theorem

Peio Borthelle
  • Fonction : Auteur
  • PersonId : 1325297
  • IdHAL : pborthelle
Tom Hirschowitz
Ambroise Lafont

Résumé

We introduce a categorical framework for operational semantics, in which we define substitution-closed bisimilarity, an abstract analogue of the open extension of Abramsky's applicative bisimilarity. We furthermore prove a congruence theorem for substitution-closed bisimilarity, following Howe's method. We finally demonstrate that the framework covers the call-by-name and call-by-value variants of lambda-calculus in big-step style. As an intermediate result, we generalise the standard framework of Fiore et al. for syntax with variable binding to the skew-monoidal case.
Fichier principal
Vignette du fichier
main.pdf (295.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02880876 , version 1 (25-06-2020)

Identifiants

Citer

Peio Borthelle, Tom Hirschowitz, Ambroise Lafont. A Cellular Howe Theorem. LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Jul 2020, Saarbrücken, Germany. pp.273-286, ⟨10.1145/3373718.3394738⟩. ⟨hal-02880876⟩
159 Consultations
261 Téléchargements

Altmetric

Partager

More