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Abstract
We introduce a categorical framework for operational se-
mantics, in which we define substitution-closed bisimilar-
ity, an abstract analogue of the open extension of Abram-
sky’s applicative bisimilarity. We furthermore prove a con-
gruence theorem for substitution-closed bisimilarity, follow-
ing Howe’s method. We finally demonstrate that the frame-
work covers the call-by-name and call-by-value variants of
𝜆-calculus in big-step style. As an intermediate result, we
generalise the standard framework of Fiore et al. for syntax
with variable binding to the skew-monoidal case.
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and reasoning; Categorical semantics; Operational se-
mantics.
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1 Introduction
1.1 Motivation
In research on programming language design and imple-
mentation, ideas are often presented on one, simple exam-
ple. E.g., abstract interpretation, separation logic, or gradual
typing were all presented on a single language, and later
adapted to other settings. Usually, the presented ideas are
thought of as widely applicable and their scope is clear to
the experts, but no attempt is made at delimiting it precisely
and formally. As a consequence, these ideas cannot be freely
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reused, even in slightly different contexts, they always have
to be adapted, and reproved.

We think the reason for this is that appropriatemathemat-
ical concepts aremissing: there is nowidely accepted notion
of programming language, so that we cannot state proper-
ties like “for all programming languages of such shape, the
following ideaworks”. Such a general notion should account
for both

(i) the interaction between syntax and dynamics, as in-
volved in, e.g., structural operational semantics [32],
or in statements or proofs of results like type sound-
ness, congruence of program equivalence, or compiler
correctness, and

(ii) denotational semantics, in the sense of including not
only operational, syntacticmodels but also others, typ-
ically ones in which program equivalence is coarser.

1.2 Context
In recent work [21], Hirschowitz proposed a new abstract
approach to operational semantics, and demonstrated its ex-
pressive power by proving abstract versions of classic re-
sults in process algebra, including for the first time an ab-
stract soundness result for bisimulation up to context in the
presence of variable binding. Bisimulation up to context is
an efficient technique [33] for proving program equivalences,
which had previously been proved correct at a similar level
of generality [7], but only without binding.

Briefly, in the new setting, a language equippedwith a col-
lection of operational semantics rules is viewed as a monad
𝒯 on a transition category 𝒞 , typically a category of la-
belled graphs. The idea is that, on vertices, 𝒯 defines the
syntax of the considered language: for any 𝑋 ∈ 𝒞 , the ver-
tices of𝒯 (𝑋) are terms with free variables in vertices of 𝑋 .
Similarly, transitions in 𝒯 (𝑋) are derivation trees follow-
ing the given rules, with axioms in transitions of 𝑋 . So in
particular 𝒯 (0) is precisely the syntactic transition system.

Now, properties like congruence of bisimilarity or sound-
ness of bisimulation up to context may be expressed in this
setting, and their proofs in [21] rely on two crucial proper-
ties of 𝒯 .

• First, it is familial [9, 12], and even cellular in a sense
close toGarner andHirschowitz [18]. Familiality yields
abstract analogues of syntactic notions like contexts
and partial derivation trees, and cellularity enforces
well-formedness conditions on the collection of pre-
mises of each transition rule, very roughly the fact
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that the premises of any transition 𝑓 (𝑥1, …, 𝑥𝑛) → 𝑥′
consist of transitions from 𝑥1, …, 𝑥𝑛.

• Furthermore, in order to prove, e.g., congruence of
bisimilarity for a free algebra𝒯 (𝑋), the second prop-
erty that we need is that the monad multiplication
𝜇𝑋 ∶ 𝒯 2(𝑋) → 𝒯 (𝑋) is a functional bisimulation.
Let us call this compositionality of 𝒯 at 𝑋 .

1.3 Overview
In this paper, we extend the approach to higher-order lan-
guages, taking as a running example the call-by-name, big
step 𝜆-calculus, equipped with the so-called open extension
of Abramsky’s applicative bisimilarity [2], which we here
call substitution-closed bisimilarity.

Higher-order languages challenge the approach of [21]
notably because transition rules rely on proper substitution,
as opposed to mere renaming.

Indeed, if we follow one Fiore et al.’s categorical frame-
work [13–15, 17, 19] for syntax with substitution in the pres-
ence of variable binding, the monad 𝒯 we obtain is not
familial. Informally, in order to model substitution, 𝒯 fea-
tures a form of explicit substitution [1], which turns out to
be too flexible for familiality to work. Let us explain this
in a bit more detail. In the case of pure 𝜆-calculus, the set
of terms is viewed as indexed over (finite) sets of free vari-
ables, and natively equipped with renaming operations. I.e.,
for any map 𝑓 ∶ 𝑚 → 𝑛 between finite ordinals, we get a
map 𝑋(𝑓 ) ∶ 𝑋(𝑚) → 𝑋(𝑛) from terms with 𝑚 free vari-
ables to terms with 𝑛 free variables. Substitution is mod-
elled as a map 𝑋 ⊗ 𝑋 → 𝑋 , where elements of (𝑋 ⊗ 𝑋)(𝑚)
are ‘explicit’ substitutions 𝑒⦇𝑒1, …, 𝑒𝑛⦈, with 𝑒 ∈ 𝑋(𝑛) and
𝑒1, …, 𝑒𝑛 ∈ 𝑋(𝑚). The problem is that such explicit substitu-
tions are standardly considered equivalent modulo simple
relations, e.g.,

(𝑋(𝑠𝑤𝑎𝑝)(𝑒))⦇𝑒1, 𝑒2⦈ = 𝑒⦇𝑒2, 𝑒1⦈,
where 𝑠𝑤𝑎𝑝∶ 2 → 2 swaps the two given elements.

It is precisely because of this quotienting that the obtained
monad is not familial. In order to restore familiality and thus
be able to follow the approach of [21], we switch to a more
rigid notion of explicit substitution, which in fact forces us
to change both the ambient category in examples and the
general structure.The standard category for untyped calculi
is the functor category [𝐒𝐞𝐭𝑓 , 𝐒𝐞𝐭] of covariant presheaves
on a skeleton of finite sets, with its standard monoidal struc-
ture. We now need to switch to mere ℕ-indexed families
of sets, on which the relevant tensor product only yields
skew-monoidal structure [5, 37]. Skew-monoidal structure
is a weakening of plain monoidal structure, in which struc-
tural associativity and unitality isomorphisms may not be
invertible.

As a final twist on this, syntax is standardly specified
by a so-called pointed-strong endofunctor on the considered
monoidal category, typically [𝐒𝐞𝐭𝑓 , 𝐒𝐞𝐭], but the analogous

endofunctor on [ℕ, 𝐒𝐞𝐭] is not pointed strong.We thus need
to resort to aweaker notionwhichwe call structurally strong.

In summary, and this is our first contribution, we gen-
eralise the standard framework of pointed strong endofunc-
tors on a monoidal category, to what we call structurally
strong endofunctors Σ0 on a skew-monoidal category. We
characterise the syntax as the initial Σ0-monoid, i.e., Σ0-al-
gebra with the syntax as the initial Σ0-monoid, i.e., Σ0-alge-
brawith compatiblemonoid structure (Theorem 2.15), a char-
acterisation we mechanically verify in Coq (see supplemen-
tary material), relying on the UniMath library [39]. Finally,
we prove that the obtained monad𝒯0 is familial, along with
the fact that the natural transformationΣ0 → 𝒯0 preserves
familiality, in a suitable sense (Theorem 2.19).

We thus obtain a framework for syntax with substitution
in the presence of variable binding which lends itself to the
familial/cellular approach of [21]. The next step is to model
the dynamics. We first introduce transition Σ0-monoids,
which are intuitively transition systems whose vertices are
equipped with Σ0-monoid structure. Then, adapting ideas
from Fiore [17] and Ahrens et al. [4, 20] to the cellular ap-
proach, we consider transition rules specified by a syntac-
tically free endofunctor Σ1 on transition Σ0-monoids, mod-
els being given by a special kind of algebras, called vertical.
Under finitarity hypotheses, as our second contribution,
we characterise the syntactic transition system as the initial
vertical algebra (Theorem 4.20).

Finally, we define substitution-closed bisimilarity, which
in examples instantiates to the open extension of applica-
tive bisimilarity. Our goal is thus to prove that substitution-
closed bisimilarity is a congruence. However, we meet a last
significant difficulty, namely that because of explicit substi-
tution, compositionality fails. In fact, a slightly weaker prop-
erty holds, essentially compositionality w.r.t. operations
fromΣ0 (as opposed to explicit substitution). As a third and
final contribution, under an additional cellularity hypoth-
esis for Σ1, we follow Howe’s construction prove abstractly
that substitution-closed bisimilarity is a congruence (Theo-
rem 5.19). We show that the result applies to call-by-value
and call-by-name variants of big-step, pure 𝜆-calculus.

Altogether, under suitable hypotheses, our contributions
provide a systematic construction, from the basicΣ0 andΣ1,
of a syntactic transition system whose substitution-closed
bisimilarity is a congruence.

1.4 Related work
Themain frameworkmeeting the above criteria (i) and (ii) is
bialgebraic semantics [38], including a few variants [11, 36].
As far as we know, these approaches do not cover higher-
order languages like the 𝜆-calculus, which was one of the
motivations for our work. Among more recent work, quite
some inspiration was drawn from Ahrens et al. [4, 20], no-
tably in the use of vertical algebras. However, a difference is
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that we do not insist that transitions be stable under substi-
tution. Links with other relevant work, e.g., Bodin et al. [6],
though desirable, remain unclear, perhaps because of the
very different methods used. Furthermore, the cellularity
used here is close to but different from the 𝐓∨

𝑠 -familiality
of [21]. It would be instructive to better understand poten-
tial links between the two. Finally, in unpublished work,
Fiore and Saville have considered the skew-monoidal case
as a technical, intermediate setting tool [16]. Our proof of
Theorem 2.15 is inspired by their notes.

1.5 Plan
We start in §2 by recalling Fiore et al.’s standard framework
for syntax with binding and then familiality, explaining our
move to the skew-monoidal setting, and proving our initial-
ity and familiality results. We then continue in §3 with a
reminder and a reformulation of standard applicative bisim-
ulation, which then guides the design of our abstract frame-
work in §4, where we prove our initiality result for verti-
cal algebras. Finally, in §5, after briefly recalling Howe’s
method, we present the abstract Howe theorem and its proof,
and devote §6 to a conclusion and some perspectives.

1.6 Notation
The category of (contravariant) presheaves on a category ℂ
is denoted by ℂ, the Yoneda embedding by 𝐲, and [𝐴, 𝐵] is
shorthand for the hom-set, or hom-category depending on
the context, of morphisms 𝐴 → 𝐵.

2 Syntax: familiality and substitution
In this section, we explain Fiore et al.’s approach to specify-
ing syntax with variable binding, on the particular case of
pure 𝜆-calculus. We then show that the obtained monad is
not familial, hence move to a non-standard base category.
This requires us to prove our generalised initiality result, to-
gether with familiality of the obtained monad.

2.1 The standard setting
The first step is to recall Fiore et al.’s standard theory. The
relevant category for this, say 𝒞0, is the functor category
[𝐒𝐞𝐭𝑓 , 𝐒𝐞𝐭] from finite sets to sets (let us in fact assume
that 𝐒𝐞𝐭𝑓 is a small category equivalent to finite sets, e.g.,
finite ordinals with arbitrary maps between them), or in
other words the presheaf category ℂ0, where ℂ0 = 𝐒𝐞𝐭op𝑓 .
An object 𝑋 is thus in particular a 𝐒𝐞𝐭𝑓 -indexed family of
sets, and we think of 𝑋(𝑚) as the set of states with sup-
port 𝑚. If 𝑋 consists of terms, then 𝑋(𝑚) is typically the
set of terms with free variables in 𝑚. The action of 𝑋 on
morphisms 𝑓 ∶ 𝑚 → 𝑛 accounts for variable renaming: we
think of𝑋(𝑓 ) ∶ 𝑋(𝑚) → 𝑋(𝑛) as renaming the free variables
of terms in 𝑋(𝑚) according to 𝑓 .

The basic ingredient for presenting our monad is the ‘sub-
stitution’monoidal structure on𝒞0: the unit 𝐼 is the presheaf

of variables, defined by 𝐼(𝑚) = 𝑚, and elements of (𝑋 ⊗
𝑌)(𝑚) are pairs of some 𝑥 ∈ 𝑋(𝑛) and a substitution 𝜎∶ 𝑛 →
𝑌(𝑚), modulo the relation

(𝜎, 𝑓 · 𝑥′) ∼ (𝜎 ∘ 𝑓 , 𝑥′), (1)

for any map 𝑓 ∶ 𝑛′ → 𝑛 and 𝑥′ ∈ 𝑋(𝑛′), where 𝑓 ·𝑥′ denotes
𝑋(𝑓 )(𝑥′). We denote by 𝑥⦇𝜎⦈ the equivalence class of (𝜎, 𝑥).

A monoid is then an object 𝑋 ∈ 𝒞0 equipped with mor-
phisms 𝑒 ∶ 𝐼 → 𝑋 and 𝑚∶ 𝑋 ⊗ 𝑋 → 𝑋 , satisfying standard
associativity and unitality axioms.

Fiore et al.’s theory then tells us that 𝜆-calculus syntax
is the free Σ

0 -monoid, i.e., the free monoid equipped with
a compatible algebra structure for the pointed strong endo-
functor

Σ
0 (𝑋)(𝑚) = 𝑋(𝑚)2 + 𝑋(𝑚 + 1). (2)

An algebra for this endofunctor Σ
0 ∶ 𝒞0 → 𝒞0 is a pre-

sheaf 𝑋 equipped with application and 𝜆-abstraction
(−1 −2)𝑚 ∶ 𝑋(𝑚)2 → 𝑋(𝑚) and 𝜆𝑚 ∶ 𝑋(𝑚 + 1) → 𝑋(𝑚),
and the pointed strength specifies how standard, capture-
avoiding substitution should commutewith both operations.
Indeed, a pointed strength is a natural transformation

Σ
0 (𝑋) ⊗ 𝑌 → Σ

0 (𝑋 ⊗ 𝑌),
where𝑌 ranges over pointed objects, i.e., objects in the coslice
𝐼/𝒞 under the monoidal unit 𝐼 .

Example 2.1. The component of the pointed strength of
Σ

0 at 𝑋 and 𝑌 maps any pair 𝑖𝑛𝑟(𝑒)⦇𝜎⦈ ∈ (Σ
0 (𝑋) ⊗ 𝑌)(𝑚)

with 𝑒 ∈ 𝑋(𝑛 + 1) (so 𝑖𝑛𝑟(𝑒) ∈ Σ
0 (𝑋)(𝑛)) and 𝜎∶ 𝑛 → 𝑌(𝑚),

to 𝑖𝑛𝑟(𝑒⦇𝜎↑⦈), where 𝜎↑ denotes the composite

𝑛 + 1
𝜎+𝑖𝑛𝑟−−−−→ 𝑌(𝑚) + (𝑚 + 1)

[𝑌(𝑖𝑛𝑙),𝑒𝑚+1]−−−−−−−−−−→ 𝑌(𝑚 + 1) (3)

where 𝑒 ∶ 𝐼 → 𝑌 is the point of 𝑌 – recalling that 𝐼(𝑚+1) =
𝑚+1 by definition. So, the pointed strength specifies that the
given renaming 𝜎 commutes with 𝜆-abstraction, preserving
the fresh variable.

By work of Fiore [17], the forgetful functor Σ
0 -mon →

𝒞0 from Σ
0 -monoids is monadic, and the induced monad

𝒯 
0 on 𝒞0 involves both operations, plus explicit substitu-

tion. It may be presented as a term language in which all
explicit substitutions are pushed down towards the leaves,
as in the grammar

𝒯 
0 (𝑋)(𝑛) ∋ 𝑒 ≔ 𝑖 | 𝑒1 𝑒2 | 𝜆.𝑒′ | 𝑜⦇𝑒1, …, 𝑒𝑚⦈,

where 𝑖 ∈ 𝑛, 𝑜 ∈ 𝑋(𝑚) for some𝑚, 𝑒1, 𝑒2, …, 𝑒𝑚 ∈ 𝒯 
0 (𝑋)(𝑛),

and 𝑒′ ∈ 𝒯 
0 (𝑋)(𝑛 + 1).

Terminology 2.2. There are injections 𝑛 ↪ 𝒯 
0 (𝑋)(𝑛)

and𝑋(𝑛) ↪ 𝒯 
0 (𝑋)(𝑛), which are both close in spirit to in-

jections of variables into terms. In order to distinguish them,
we think of the former as an injection of variables, and of
the latter as an injection of constants.
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2.2 Failure of familiality
As announced in the introduction, the characterisation of
syntax with variable binding through Σ0-monoids is prob-
lematic for us because the obtained monad 𝒯 

0 is not fa-
milial, as we now explain. Let us first start by briefly recall-
ing familiality [9, 12, 40, 41]. One way to understand it is as
providing an abstract counterpart to multi-hole contexts, or
linear terms, in the following sense.

Example 2.3. Consider the ‘free monoid’ monad𝑀 on 𝐒𝐞𝐭,
whichmaps any set𝑋 to the set∑𝑛 𝑋𝑛 of finite sequences of
elements. Any sequence in𝑀(𝑋), say (𝑥1, …, 𝑥𝑛), viewed as
a map 1 → 𝑀(𝑋), decomposes as the corresponding linear
sequence (1, …, 𝑛) over {1, …, 𝑛}, and the renaming mapping
any 𝑖 to 𝑥𝑖. Equivalently, using 𝑛 as shorthand for {1, …, 𝑛},

it factors as 1
(1,…,𝑛)
−−−−−→ 𝑀(𝑛)

𝑀[𝑥𝑖]𝑖−−−−−→ 𝑀(𝑋). In fact, linear
sequences enjoy the following ‘genericness’ property.

Definition 2.4. Given any functor 𝐹 ∶ 𝒜 → ℬ , a mor-
phism 𝜉∶ 𝐵 → 𝐹(𝐴) is 𝐹-generic (or generic for short) when-
ever any square of the form below (solid) admits a unique
lifting 𝑘 (dashed) such that 𝐹(𝑘) ∘ 𝜉 = 𝜒 and 𝑔 ∘ 𝑘 = 𝑓 .

𝐵 𝐹(𝐶)

𝐹(𝐴) 𝐹(𝐷)

𝜒

𝜉

𝐹(𝑓 )

𝐹(𝑘)
𝐹(𝑔)

𝐹 is familial iff anymorphism 𝑓 ∶ 𝐵 → 𝐹(𝑋) admits a generic

factorisation, i.e., factors as 𝐵
𝜉
−→ 𝐹(𝐴)

𝐹(ℎ)
−−−→ 𝐹(𝑋) with 𝜉

generic. Any morphism of the form 𝐹(ℎ) is deemed free.

We have the following important alternative character-
isations in the case of presheaf categories, recalling from
Paré [30] that a functor preserves connected limits iff it pre-
serves wide pullbacks.

Theorem 2.5 (Weber [40, Theorem 8.1]). For any accessible
endofunctor 𝐹 on any presheaf category ℂ, the following are
equivalent:

(i) 𝐹 is familial;
(ii) 𝐹 preserves wide pullbacks;
(iii) there is a functor 𝐸∶ el(𝐹(1)) → ℂ such that

𝐹(𝑋)(𝑐) ≅ 
𝑥∈𝐹(1)(𝑐)

ℂ(𝐸(𝑐, 𝑥), 𝑋),

naturally in 𝑋 and 𝑐.

Recall from MacLane and Moerdijk [29] that the category
of elements el(𝑋) of a presheaf 𝑋 over any category ℂ has
pairs (𝑐, 𝑥) with 𝑥 ∈ 𝑋(𝑐) as objects, and as morphisms
(𝑐, 𝑥) → (𝑐′, 𝑥′) all morphisms 𝑓 ∶ 𝑐 → 𝑐′ such that𝑋(𝑓 )(𝑥′) =
𝑥.

Proposition 2.6. The functor Σ
0 is familial, but the monad

𝒯 
0 is not.

Proof sketch. Familiality of Σ
0 is easy by the theorem, since

we have Σ
0 (𝑋)(𝑛) ≅ [𝐲𝑛 + 𝐲𝑛, 𝑋] + [𝐲𝑛+1, 𝑋].

For non-familiality of 𝒯 
0 , the proof is not particularly

illuminating, but here is a hopefully helpful intuitive argu-
ment.

For any closed term 𝑒, viewed by action of 0 → 𝐲1 as an el-
ement of𝒯 

0 (𝐲1)(0), a natural candidate generic is the term
id1⦇𝑒⦈, viewed by Yoneda as a morphism 𝐲0 → 𝒯 

0 (𝐲1),
where we think of id1 as a unary constant, to which we feed
𝑒 as argument by explicit substitution.

Let us show that it is in fact not generic. Indeed, under the
action of 𝐲! ∶ 𝐲1 → 𝐲0, id1 is mapped to ! ∶ 0 → 1 viewed as
an element of 𝐲0(1) = 𝐒𝐞𝐭(0, 1), so by (1) id1⦇𝑒⦈ is mapped
by 𝒯 

0 (𝐲!) to
!⦇𝑒⦈ = id0⦇𝑒∘!⦈ = id0⦇⦈.

Of course, this would hold for any closed 𝑒′ ≠ 𝑒, so that we
get a commuting square

𝐲0 𝒯 
0 (𝐲1)

𝒯 
0 (𝐲1) 𝒯 

0 (𝐲0)

id1⦇𝑒′⦈

id1⦇𝑒⦈

𝒯 
0 (𝐲!)

𝒯 
0 (𝐲!)

with no filler. In fact, because there are infinitely many dis-
tinct closed terms, we get infinitely many factorisations of
the diagonal id0⦇⦈, for which no candidate generic can pro-
vide enough fillers. □

2.3 Familial syntax
So the standard monad for 𝜆-calculus syntax is not familial,
which prevents us from applying the methods of [21]. From
the proof of Proposition 2.6, clearly, the problem comes from
quotienting by (1), so we move to the more rigid category
𝒞0 = [ℕ, 𝐒𝐞𝐭] of ℕ-indexed families. A first difficulty is
that it does not fit Fiore et al.’s general framework. Indeed,
the natural tensor product on [ℕ, 𝐒𝐞𝐭], defined by

(𝐴 ⊗ 𝐵)(𝑛) = 
𝑚

𝐴(𝑚) × 𝐵(𝑛)𝑚,

is only associative and unital up to non-invertible arrows,
which makes 𝒞0 a skew-monoidal category.

Notation 2.7. An element of (𝐴 ⊗ 𝐵)(𝑛) is a triple (𝑚, 𝑎, 𝛽)
with 𝑎 ∈ 𝐴(𝑚) and 𝛽∶ 𝑚 → 𝐵(𝑛). Leaving 𝑚 implicit and
thinking of the triple as an explicit substitution, we denote
it again by 𝑎⦇𝛽⦈.
Example 2.8. Associativity fails because elements of (𝐴 ⊗
𝐵) ⊗ 𝐶 have the form (𝑎⦇𝑏1, …, 𝑏𝑚⦈)⦇𝜎⦈, while those of 𝐴 ⊗
(𝐵 ⊗ 𝐶) have the form 𝑎⦇𝑏1⦇𝜎1⦈, …, 𝑏𝑚⦇𝜎𝑚⦈⦈: we can map
the former to the latter by pushing 𝜎 into the substitution
⦇𝑏1, …, 𝑏𝑚⦈, but not conversely, because 𝜎1, …, and 𝜎𝑚 may
not all be the same. In [𝐒𝐞𝐭𝑓 , 𝐒𝐞𝐭], 𝑎⦇𝑏1⦇𝜎1⦈, …, 𝑏𝑚⦇𝜎𝑚⦈⦈may
be given the desired form thanks to (1), by forming the com-
pound substitution [𝜎1, …, 𝜎𝑚] ∶ 𝑝1 + … + 𝑝𝑚 → 𝐶(𝑛).
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So we should generalise Fiore et al.’s theory to skew-mo-
noidal categories. But in fact, moving to the category 𝒞0
generates a second difficulty, namely that pointed strong
endofunctors become inadequate. Indeed, e.g., the pointed
strength Σ

0 (𝑋) ⊗ 𝑌 → Σ
0 (𝑋 ⊗ 𝑌) of Σ

0 on [𝐒𝐞𝐭𝑓 , 𝐒𝐞𝐭]
relies both on variables and renaming in 𝑌 (as shown by the
presence of 𝑒𝑚+1 and𝑌(𝑖𝑛𝑙) in the definition (3) of 𝜎↑). So the
notion of strength we need for endofunctors on 𝒞0 should
assume that𝑌 comes equippedwith variables and renaming.
Variables are given by a point as before, while renaming is
taken care of by 𝐼-module structure, in the following sense.

Definition 2.9. In any skew-monoidal category𝒞 , for any
monoid 𝑋 , the category 𝑋 -mod of (right) 𝑋-modules has
as objects all 𝑀 ∈ 𝒞 equipped with an action 𝑟 ∶ 𝑀 ⊗ 𝑋 →
𝑀, satisfying two standard coherence conditions. A module
morphism is a morphism commuting with action.

As desired, an action 𝑌 ⊗ 𝐼 → 𝑌 yields for all 𝑛 a map
(𝑌 ⊗ 𝐼)(𝑛) = ∑𝑚 𝑌(𝑚) × 𝑛𝑚 → 𝑌(𝑛) giving the action of
morphisms 𝑚 → 𝑛 on 𝑌(𝑚). The unit 𝐼 is canonically an 𝐼-
module, and a point for an 𝐼-module 𝑌 is a morphism 𝐼 →
𝑌 in 𝐼 -mod. Thus, the appropriate category for 𝑌 is the
following coslice category.

Definition 2.10. Let the category 𝐼 -mod𝐼 of pointed 𝐼-mo-
dules be the coslice 𝐼/𝐼 -mod.

Let us now define the appropriate notion of strength, sim-
ilarly to [25] (generalising [17, I.1.2]).We first equip 𝐼 -mod𝐼
with skew-monoidal structure. Following [24, (8.1)], tensor
product of (pointed) 𝐼-modules is given by the following co-
equaliser in𝒞 , where 𝑟𝑋 ∶ 𝑋 ⊗𝐼 → 𝑋 is the 𝐼-module struc-
ture on 𝑋 .

𝑋 ⊗ (𝐼 ⊗ 𝑌)
(𝑋 ⊗ 𝐼) ⊗ 𝑌 𝑋 ⊗ 𝑌 𝑋 ⊠ 𝑌

𝛼

𝑟𝑋⊗𝑌

𝑋⊗𝜆𝑌 𝜅 (4)

By [24, Theorem 8.1], 𝐼 -mod is a skew-monoidal category
(with invertible right unit), and the forgetful functor is mo-
noidal and creates monoids. In fact, this extends to 𝐼 -mod𝐼 ,
and we define:

Definition 2.11. A structural strength on a functor 𝐹 ∶ 𝒞𝑛 →
𝒞 is a natural transformation 𝑠𝑡 with components

𝑠𝑡𝐴,𝑌 ∶ 𝐹(𝐴) ⊗ 𝑌 → 𝐹(𝐴 ⊗ 𝑌)

where 𝑌 ∈ 𝐼 -mod𝐼 , 𝐴 = (𝑋1, …, 𝑋𝑛), and 𝐴 ⊗ 𝑌 ≔ (𝑋1 ⊗
𝑌,…,𝑋𝑛 ⊗ 𝑌), making the following diagrams commute.

𝐹(𝐴)

𝐹(𝐴) ⊗ 𝐼 𝐹(𝐴 ⊗ 𝐼)

𝜌𝐹(𝐴) 𝐹(𝜌𝐴)

𝑠𝑡𝐴,𝐼

𝐹(𝐴) ⊗ 𝑋 ⊗ 𝑌 𝐹(𝐴 ⊗ 𝑋) ⊗ 𝑌 𝐹(𝐴 ⊗ 𝑋 ⊗ 𝑌)

𝐹(𝐴) ⊗ (𝑋 ⊠ 𝑌) 𝐹(𝐴 ⊗ (𝑋 ⊠ 𝑌))

𝑠𝑡𝐴,𝑋⊗𝑌

𝛼′𝐹(𝐴),𝑋,𝑌

𝑠𝑡𝐴⊗𝑋,𝑌

𝐹(𝛼′𝐴,𝑋,𝑌 )

𝑠𝑡𝐴,𝑋⊠𝑌

where 𝛼′
𝐴,𝐵,𝐶 is (𝐴 ⊗ 𝜅) ∘ 𝛼𝐴,𝐵,𝐶.

Example 2.12. The endofunctor Σ
0 ∶ ℕ → ℕ for the syn-

tax of pure 𝜆-calculus is defined by the same formula (2) as
before. Let us now construct its structural strength. For any
pointed 𝐼-module (𝑌, 𝑒 ∶ 𝐼 → 𝑌, 𝑟 ∶ 𝑌 ⊗ 𝐼 → 𝑌) and map
𝑓 ∶ 𝑚 → 𝑛, the map �̄�𝑛 ∶ ∑𝑚 𝑌(𝑚) × 𝑛𝑚 → 𝑌(𝑛) specialises
to 𝑌(𝑓 ) ≔ �̄�𝑛(−, 𝑓 ) ∶ 𝑌(𝑚) → 𝑌(𝑛).We may thus define the
desired structural strength by

𝑠𝑡𝑋,𝑌,𝑛 ∶ (Σ
0 (𝑋) ⊗ 𝑌)(𝑛) → Σ

0 (𝑋 ⊗ 𝑌)(𝑛)
(𝑖𝑛𝑙(𝑦, 𝑧))⦇𝜐⦈ ↦ 𝑖𝑛𝑙(𝑦⦇𝜐⦈, 𝑧⦇𝜐⦈)
(𝑖𝑛𝑟(𝑥))⦇𝜐⦈ ↦ 𝑖𝑛𝑟(𝑥⦇𝜐↑⦈)

where we assume 𝜐∶ 𝑚 → 𝑌(𝑛), 𝑥 ∈ 𝑋(𝑚+ 1), and 𝜐↑ ∶ 𝑚 +
1 → 𝑌(𝑛 + 1) is as in (3).

Observing that any monoid is in particular a pointed 𝐼-
module, we may define 𝐹-monoids in the new setting.
Definition 2.13. For any structurally strong endofunctor
𝐹, an 𝐹-monoid is an object 𝑋 equipped with 𝐹-algebra and

monoid structures 𝑎 ∶ 𝐹(𝑋) → 𝑋 and 𝐼
𝑒
−→ 𝑋

𝑚
←− 𝑋⊗𝑋 , such

that the following diagram commutes.

𝐹(𝑋) ⊗ 𝑋 𝐹(𝑋 ⊗ 𝑋) 𝐹(𝑋)

𝑋 ⊗ 𝑋 𝑋

𝑠𝑡𝑋,𝑋

𝑎⊗𝑋

𝐹(𝑚)

𝑎

𝑚

Proposition 2.14. For any structurally strong endofunctor
𝐹, 𝐹-monoids form a category 𝐹 -mon, whose morphisms are
morphisms of underlying objects that respect both the monoid
and algebra structure.

Our first main result is:
Theorem2.15. For any finitary, structurally strong endofunc-
tor 𝐹 on a cocomplete skew-monoidal category𝒞 , if the tensor
preserves colimits on the left and directed colimits on the right,
then the forgetful functor𝒰𝐹 ∶ 𝐹 -mon → 𝒞 is monadic, and
the free 𝐹-monoid on any 𝑋 ∈ 𝒞 has carrier 𝜇𝐴.(𝐼 + 𝐹(𝐴) +
𝑋 ⊗ 𝐴), i.e., the colimit of the chain

𝐹0
𝑋 (0)

𝜕0𝑋−−→ 𝐹1
𝑋 (0) → … → 𝐹𝑛

𝑋 (0)
𝜕𝑛𝑋−−→ 𝐹𝑛+1

𝑋 (0) → …,
where

• 𝐹𝑋 ∶ 𝒞 → 𝒞 maps any 𝐴 to 𝐼 + 𝐹(𝐴) + 𝑋 ⊗ 𝐴;
• 𝐿0 = 𝐼𝑑 and 𝐿𝑛+1 = 𝐿 ∘ 𝐿𝑛, for any endofunctor 𝐿 on
any category;
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• 𝜕0𝑋 ∶ 0 = 𝐹0
𝑋 (0) → 𝐹1

𝑋 (0) is the unique such map;
• 𝜕𝑛+1𝑋 ∶ 𝐹𝑋 (𝐹𝑛

𝑋 (0)) → 𝐹𝑋 (𝐹𝑛+1
𝑋 (0)) denotes 𝐹𝑋 (𝜕𝑛𝑋 ).

Notation 2.16. Let 𝐹⊛ denote the ‘free 𝐹-monoid’ monad.
We sometimes abbreviate 𝐹⊛(𝑋) as 𝑋⊛ when 𝐹 is clear.

Let us now prove that 𝐹⊛ is familial as desired, and fur-
thermore that the unit 𝜂𝐹 ∶ 𝐹 → 𝐹⊛ preserves familiality, in
the sense of preserving generics. In order to establish this,
we rely on:

Proposition 2.17 ([40, Proposition 5.10(2)]). Any cartesian
natural transformation, i.e., one whose naturality squares are
pullbacks, preserves generic morphisms.

So we want to show that 𝜂𝐹 is cartesian. This will rely on
properties of 𝒞 , that we first show are satisfied by ℕ.

Example 2.18. As a presheaf category, ℕ is of course ex-
tensive [10]. Furthermore, each 𝜌𝑋 ∶ 𝑋 → 𝑋⊗𝐼 is obviously
monic, and 𝜌 will be cartesian if each square of the form

𝑋(𝑛) ∑𝑚 𝑋(𝑚) × 𝑛𝑚

1 ∑𝑚 𝑛𝑚

𝑥↦(𝑛,𝑥,𝑖𝑑𝑛)

!

∗↦(𝑛,𝑖𝑑𝑛)

∑𝑚 !×𝑛𝑚

is a pullback. But if (∑𝑚 ! × 𝑛𝑚)(𝑥⦇𝑓 ⦈) = (𝑛, 𝑖𝑑𝑛) for some
𝑥⦇𝑓 ⦈, then (𝑚, 𝑓 ) = (𝑛, 𝑖𝑑𝑛), so 𝑥 is the desired unique ele-
ment of 𝑋(𝑛) with specified projections.

Tensor productmoreover preserveswide pullbacks, hence
is familial, on both sides. On the left, this holds because co-
products commute with connected limits in presheaf cat-
egories in general, hence wide pullbacks. On the right, it
holds for the same reason, plus the fact that each functor
𝑋 ↦ 𝑋𝑛 in 𝐒𝐞𝐭 also preserves wide pullbacks.

Abstracting over this situation, we obtain:

Theorem 2.19. In the situation of Theorem 2.15, if

• 𝒞 is extensive,
• 𝜌 is cartesian and monic, and
• ⊗ and 𝐹 are familial,

then 𝐹⊛ is familial and the natural transformation 𝜂𝐹 ∶ 𝐹 →
𝐹⊛ is monic and cartesian.

3 Evaluation and applicative bisimulation
In the previous section, we have amended Fiore et al.’s stan-
dard framework to make it compatible with the familial ap-
proach to operational semantics. The next step is to deal
with transitions. For this, we start in this section by analysing
standard, syntactic applicative bisimulation. Guided by our
findings, we will design our abstract setting in the next sec-
tion.

3.1 Substitution-closed bisimulation
Standardly, evaluation is inductively defined by the rules

𝜆𝑥.𝑒 ⇓ 𝜆𝑥.𝑒
𝑒1 ⇓ 𝜆𝑥.𝑒′1 𝑒′1[𝑥 ↦ 𝑒2] ⇓ 𝑒3

𝑒1 𝑒2 ⇓ 𝑒3
and applicative bisimilarity is introduced in two stages. First,
one defines applicative bisimulation on closed terms.

Definition 3.1. A relation 𝑅 over closed 𝜆-terms is an ap-
plicative bisimulation iff 𝑒1 𝑅 𝑒2 and 𝑒1 ⇓ 𝜆𝑥.𝑒′1 entails the
existence of 𝑒′2 such that 𝑒2 ⇓ 𝜆𝑥.𝑒′2 and, for all terms 𝑒,
𝑒′1[𝑥 ↦ 𝑒] 𝑅 𝑒′2[𝑥 ↦ 𝑒], and symmetrically.

Applicative bisimulations are closed under unions, and so
there is a largest applicative bisimulation called applicative
bisimilarity and denoted by∼. Then comes the second stage:

Definition 3.2. The open extension of a relation𝑅 on closed
terms is the relation 𝑅∘ on potentially open terms such that
𝑒 𝑅∘ 𝑒′ iff for all closed substitutions 𝜎 covering all involved
free variables we have 𝑒[𝜎] 𝑅 𝑒′[𝜎].

Lemma 3.3. The open extension of any relation 𝑅 is equiva-
lently the greatest relation 𝑅′ on potentially open terms such
that if 𝑒 𝑅′ 𝑒′, then for all closed substitutions 𝜎 covering all
involved free variables we have 𝑒[𝜎] 𝑅 𝑒′[𝜎].

Proof. By definition, 𝑅 satisfies the condition. To see that
it is the greatest such relation, consider any 𝑅′ satisfying it:
for all 𝑒 𝑅′ 𝑒′, we have 𝑒[𝜎] 𝑅 𝑒′[𝜎] for all closing 𝜎, hence
𝑒 𝑅 𝑒′ by definition; thus 𝑅′ ⊆ 𝑅 as desired. □

The result we wish to prove in the abstract setting is:

Theorem 3.4 (See [31] for a historical account). The open
extension ∼∘ of applicative bisimilarity is a congruence, i.e., it
is an equivalence relation, and furthermore

• 𝑒1 ∼∘ 𝑒2 entails 𝜆𝑥.𝑒1 ∼∘ 𝜆𝑥.𝑒2 for all 𝑥;
• 𝑒1 ∼∘ 𝑒2 and 𝑒′1 ∼∘ 𝑒′2 entail 𝑒1 𝑒′1 ∼∘ 𝑒2 𝑒′2.

We take a slightly different viewpoint here, starting from
the following observation.

Lemma 3.5. The open extension of applicative bisimilarity is
equivalently the greatest substitution-closed opening bisimu-
lation, i.e., the greatest relation 𝑅 on potentially open terms
such that

• 𝑒1 𝑅 𝑒2 entails 𝑒1[𝑥 ↦ 𝑒] 𝑅 𝑒2[𝑥 ↦ 𝑒] for any 𝑒;
• if 𝑒1 and 𝑒2 are closed, 𝑒1 𝑅 𝑒2, and 𝑒1 →⋆ 𝜆𝑥.𝑒′1 then
𝑒2 →⋆ 𝜆𝑥.𝑒′2 with 𝑒′1 𝑅 𝑒′2, and symmetrically.

Proof. The relation ∼∘ is straightforwardly a substitution-
closed opening bisimulation. But any substitution-closed
opening bisimulation 𝑅 restricts to an applicative bisimula-
tion on closed terms, which is thus included in ∼. On open
terms, if 𝑒1 𝑅 𝑒2, then for all closing substitutions 𝜎 we
have by substitution-closure of 𝑅 that 𝑒1[𝜎] 𝑅 𝑒2[𝜎], hence
𝑒1[𝜎] ∼ 𝑒2[𝜎] and so 𝑒1 ∼∘ 𝑒2 by definition. □
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When designing our abstract framework, we should thus
be able to model two things: opening bisimulation and subs-
titution-closed relations.

The latter is easy, remembering that tensor product on ℕ
is a sort of explicit substitution. Indeed, substitution-closed
relations on any object 𝑋 are relations in the category of
𝑋-modules (in the sense of Definition 2.9), i.e., objects 𝑅
equipped with a map 𝑅 ⊗ 𝑋 → 𝑅 over 𝑋2.

For modelling opening bisimulation, we should extend ℕ,
which is only good at modelling the syntax of 𝜆-calculus: in
order to also model transitions, let us consider the following
category.

Definition 3.6. Letℂ denote the free category on the graph
with a vertex𝑛 for all 𝑛 ∈ ℕ, plus a vertex⇓, with only edges

0
𝑠
−→ ⇓

𝑡
←− 1. Let 𝒞 = ℂ.

Objects 𝑋 ∈ ℂ are ℕ-indexed families, together with a
set𝑋(⇓) of transitions, the source and target of any 𝑟 ∈ 𝑋(⇓)
are given by 𝑋(𝑠) ∶ 𝑋(⇓) → 𝑋(0) and 𝑋(𝑡) ∶ 𝑋(⇓) → 𝑋(1).

The full embedding 𝐢 ∶ ℕ ↪ ℂ induces by restriction and
left Kan extension a coreflection

ℕ ⊥ ℂ
ℳ

𝒟

(where ℳ stands for ‘monter’, get up in French, and 𝒟 for
‘descendre’, get down).

Because targets of transitions in any 𝑋 ∈ ℂ are in 𝑋(1),
we may define the transition system for big-step 𝜆-calculus
so as to make opening bisimulation the natural notion of
bisimulation: we take it to be the presheaf𝑋 onℂ, with𝑋(⇓)
the set of evaluation proofs 𝑟 ∶ 𝑒 ⇓ 𝜆𝑥.𝑒′, in the standard
sense, 𝑋(𝑠)(𝑟) = 𝑒 ∈ 𝑋(0), and 𝑋(𝑡)(𝑟) = 𝑒′ ∈ 𝑋(1). This
way, any term evaluates to the body of its value, which, com-
bined with substitution-closedness, achieves the desired ef-
fect. We thus consider the modified evaluation rules

𝑒1 ⇓ 𝑒′1 𝑒′1[𝑒2] ⇓ 𝑒3
𝑒1 𝑒2 ⇓ 𝑒3 𝜆.𝑒 ⇓ 𝑒 (5)

where 𝑒′1, 𝑒3 ∈ 𝑋(1) and 𝑒′1[𝑒2] denotes standard capture-
avoiding substitution of the unique free variable of 𝑒′1.

Following the open maps approach to bisimulation [21,
23], functional opening bisimulations may be defined as ar-
rows 𝑓 ∶ 𝑅 → 𝑋 such that for all commuting squares as the
solid part of

0 𝑅

⇓ 𝑋 ,

𝑟

𝑠

𝑒

𝑘 𝑓 (6)

there is a filling 𝑘 as shown (dashed), making both triangles
commute. Opening bisimulations are then relations 𝑅 ↪
𝑋2 whose projections are functional opening bisimulations.

Proposition 3.7. Substitution-closed bisimulations, or 𝑋-
bisimulations, i.e., bisimulations of 𝑋-modules, are closed un-
der unions and hence admit a greatest element, called 𝑋-bisi-
milarity, or substitution-closed bisimilarity.

With this definition, we have:

Proposition 3.8. Substitution-closed bisimilarity is precisely
the open extension of applicative bisimilarity.

3.2 Vertical algebras
Naively, following [21], the next step should be to describe
the syntax and evaluation rules of big-step 𝜆-calculus as the
initial algebra for some monad 𝒯 on ℂ. The idea is that
𝒯 (𝐴)(𝑛) should consist of terms with 𝑛 free variables and
constants in all 𝐴(𝑚)’s, while 𝒯 (𝐴)(⇓) should consist of
transition proofs with constants in 𝐴(⇓) (remembering Ter-
minology 2.2). As explained in §1, the problem lies in the
𝛽-rule (modified or not), whose premises use substitution.
In order for the monad 𝒯 to make sense, this requires the
argument 𝐴 to feature some notion of term substitution. In
other situations, one could even imagine requiring 𝐴 to be
a model of the syntax. We will thus define 𝒯 as a monad
on the pullback category

Σ
0 -Mon Σ

0 -mon

ℂ ℕ,

𝒟 ′

𝒰

𝒟

𝒰0 (7)

whose objects we call transitionΣ
0 -monoids, are presheaves

𝐴 on ℂ, equipped with Σ
0 -monoid structure on the under-

lying presheaf 𝒟(𝐴) on ℕ.
Let us define𝒯 through a generating endofunctor: given

any Σ
0 -monoid 𝐴 ∈ ℂ, we let

Σ
1 (𝐴)(𝑛) = (Σ

0 )⊛(𝒟(𝐴))(𝑛) (8)
Σ

1 (𝐴)(⇓) = 𝐴(1) + 𝑎𝑟𝛽(𝐴), (9)

for all 𝑛 ∈ ℕ, where
• (Σ

0 )⊛ is as in Notation 2.16,
• 𝐴(1) accounts for Rule (5, right), and
• 𝑎𝑟𝛽(𝐴) accounts for Rule (5, left): it denotes the set of

triples (𝑟1, 𝑒2, 𝑟2) ∈ 𝐴(⇓)×𝐴(0)×𝐴(⇓), such that 𝑟2·𝑠 =
(𝑟1 · 𝑡)[𝑒2] (where ‘·’ is as in (1) but for contravariant
presheaves, e.g., 𝑟2 · 𝑠 = 𝐴(𝑠)(𝑟2)).

The source and targetmaps are defined as expected. E.g., any
(𝑟1, 𝑒2, 𝑟2)with 𝑟1 ∶ 𝑒1 ⇓ 𝑒′1 and 𝑟2 ∶ 𝑒′1[𝑒2] ⇓ 𝑒3 has source and
target 𝑒1⦇⦈ 𝑒2⦇⦈ and 𝑒3⦇1⦈, respectively.

Remark 3.9. Substitution 𝑒′1[𝑒2] follows from the monoid
structure of 𝐴. We should also prove that Σ

1 (𝐴) is a tran-
sition Σ

0 -monoid, which holds because (Σ
0 )⊛(𝒟(𝐴)) is a

Σ
0 -monoid by construction. In fact, we have𝒟 ′(Σ

1 (𝐴)) =
𝒦0(𝒟 ′(𝐴)), where 𝒦0 is the comonad induced by the ad-
junction ℒ0 ⊣ 𝒰0.
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We have thus organised the operational rules into an end-
ofunctor on transitionΣ

0 -monoids. However, we do not yet
have any monad, or, worse, any notion of model. Indeed,
any Σ

1 -algebra 𝐴 has two underlying algebra structures
for the endofunctor (Σ

0 )⊛: one from the Σ
0 -algebra struc-

ture of𝒟 ′(𝐴), and the other from the fact thatΣ
1 coincides

with (Σ
0 )⊛ on the syntactic level.

But in fact, we may construct the following modified vari-
ant Σ̌

1 of Σ
1 by setting

Σ̌
1 (𝐴)(𝑛) = 𝐴(𝑛) and Σ̌

1 (𝐴)(⇓) = Σ
1 (𝐴)(⇓),

with source and target maps given by composition with the
(Σ

0 )⊛-algebra structure of 𝐴. The relevant models are just
Σ̌

1 -algebras whose structure map is sent to the identity by
the forgetful functor Σ

0 -Mon → Σ
0 -mon. Following

Ahrens et al. [4, 20], we deem such algebras vertical.
As we will prove below (Theorem 4.20), free vertical alge-

bras may be characterised inductively, which in the present
case means that the free vertical algebra over any transition
Σ

0 -monoid is inductively defined by the modified rules (5),
augmented with an axiom

𝑜 ⇓ 𝑜′ in 𝐴
𝑜⦇⦈ ⇓ 𝑜′⦇1⦈ · (10)

Lifting the adjunction of Theorem 2.15 from ℂ0 to ℂ, we
obtain a chain of monadic adjunctions

ℂ ⊥ Σ
0 -Mon ⊥ Σ̌

1 -alg𝑣,

where Σ̌
1 -alg𝑣 is the category of vertical Σ̌

1 -algebras.
We at last arrive at a setting in which to study the ques-

tion we started with, in its new guise: is substitution-closed
bisimilarity a congruence in the initial vertical algebra?

However, there is a last issue that prevents us from di-
rectly applying the techniques of [21]: calling 𝒯  the ob-
tained monad over 𝒞 = ℂ, compositionality fails, i.e., the
multiplication 𝜇 for 𝒯  is not a functional bisimulation.

Example 3.10. Theproblem is essentially as follows.Monad
multiplication takes a term of terms (i.e., constants are terms),
and performs the substitution: typically, for any such terms
of terms 𝐸1, …, 𝐸𝑛, we have

𝜇(𝑒⦇𝐸1, …, 𝐸𝑚⦈) = 𝑒[𝜇(𝐸1), …, 𝜇(𝐸𝑚)],

i.e., 𝑒 where each variable 𝑗 ∈ 𝑚 is replaced with 𝜇(𝐸𝑗). E.g.,
over 𝑚 = 2 = {𝑥, 𝑦}, the term of terms (𝑥 𝑦)⦇𝜆𝑧.𝑧, 𝜆𝑧.𝑧⦈
is mapped to the closed redex 𝑒 ≔ (𝜆𝑧.𝑧) (𝜆𝑧.𝑧). Since we
have 𝑒 ⇓ 𝑧, compositionality would require the existence of
a transition (𝑥 𝑦)⦇𝜆𝑧.𝑧, 𝜆𝑧.𝑧⦈ ⇓ 𝐸′ , for some 𝐸′. However,
the only transition rule whose conclusion has as source a
term of the form 𝑜⦇…⦈ is (10), in which 𝑜 is nullary, so it
cannot apply here.

Althoughwe cannot hope free vertical algebras to be com-
positional, we in fact only need a restricted form of composi-
tionality, demanding that for any commuting square as the
solid part below,

0 Σ
0 (𝐴) Σ

1 (𝐴)

⇓ 𝐴
𝑘 (11)

there exists a lifting 𝑘 as shown. In this case, we call 𝐴 a
weakly compositional algebra.

Remark 3.11. The endofunctor Σ
0 really acts on 𝒞0, not

𝒞 , so some implicit casting is going on: the whole diagram
takes place in 𝒞 , so Σ

1 (𝐴) and 𝐴 should be considered
as shorthand for their images through the forgetful functor
𝒰 ∶ Σ

0 -Mon → 𝒞 , while Σ
0 (𝐴) is in fact shorthand for

ℳ(Σ
0 (𝒟(𝒰(𝐴)))).

Intuitively, by Yoneda, weak compositionality says that
for any transition 𝑟 ∈ 𝐴(⇓) whose source is obtained by
evaluating a term 𝑒 of depth 1, 𝑟 is obtained by evaluating a
transition term 𝑅 ∈ Σ

1 (𝐴)(⇓), whose source is 𝑒, all as in
𝑒 ⟦𝑒⟧𝐴

𝑒′ 𝑥′,
𝑅 𝑟=⟦𝑅⟧𝐴

where ⟦−⟧𝐴 ∶ Σ
1 (𝐴) → 𝐴 denotes the algebra structure. In

other terms, ⟦−⟧𝐴 has the functional bisimulation property
restricted to terms of depth 1 without explicit substitution.

4 An abstract setting for Howe’s method
We are now ready for abstracting over big-step 𝜆-calculus.

4.1 Howe contexts
We start by axiomatising the ambient setting for transition
systems, notably their layered nature. Let us recall that any
fully faithful functor 𝐹 ∶ ℂ → 𝔻 induces a full coreflection


𝐹
∶ ℂ 𝔻⊥ ∶ Δ𝐹 ,

where ∑𝐹 and Δ𝐹 respectively denote left Kan extension
and restriction along 𝐹op. By the triangle identities, Δ𝐹(𝜀𝑋 )
and 𝜀∑𝐹(𝐶) are isomorphisms for all 𝑋 ∈ 𝔻 and 𝐶 ∈ ℂ.

Furthermore, let 𝟚 denote the poset {0 < 1} viewed as a
category.

Definition 4.1. AHowe context consists of a small category
ℂ together with a functor 𝐩∶ ℂ → 𝟚, equipped with skew-
monoidal structure on the presheaf category ℂ0, where ℂ0
denotes the fibre of 𝐩 over 0, satisfying
(H1) each functor − ⊗ 𝐶 is familial and preserves colimits,
(H2) each functor 𝐶 ⊗ − is familial and preserves filtered

colimits, and



A Cellular Howe Theorem LICS ’20, July 8–11, 2020, Saarbrücken, Germany

(H3) denoting by 𝐢 ∶ ℂ0 ↪ ℂ the canonical embedding, the
counit 𝜀𝐿 ∶ ∑𝐢 Δ𝐢(𝐿) → 𝐿 is a copairing [𝑠, 𝑡] ∶ 𝑃 +
𝑄 → 𝐿 with 𝑃,𝑄 ∈ ℂ0, for all 𝐿 ∈ ℂ ⧵ ℂ0.

In particular, each Δ𝐢[𝑠, 𝑡] is an isomorphism, so any mor-
phism from some 𝑅 ∈ ℂ0 to 𝐿 factors uniquely through
either 𝑠 or 𝑡.

Notation 4.2. We respectively call objects of ℂ, ℂ0, and
ℂ ⧵ ℂ0 basic objects, state types, and transition types, and let
𝒞0 = ℂ0, 𝒞 = ℂ, ℳ = ∑𝐢, and 𝒟 = Δ𝐢. We often omit ℳ
and 𝒟 for readability.

Let us note that ℳ extends a presheaf 𝑋 ∈ ℂ0 by map-
ping any transition type to the empty set.

Example 4.3. For pure 𝜆-calculus, 𝜀⇓ is the copairing 0 +

1
[𝑠,𝑡]
−−−→⇓ (or rather its image under the Yoneda embedding).

We have already explained familiality in Example 2.18. Re-
garding colimits, for − ⊗ 𝑋 , the considered colimits should
merely commute with coproducts, hence − ⊗ 𝑋 commutes
with all colimits. For 𝑋 ⊗ −, the considered colimits should
commute with coproducts and finite products in sets, so the
best we can say in general is that 𝑋 ⊗ − commutes with
sifted colimits, hence in particular with filtered colimits.

Let us conclude this section with two crucial properties.

Lemma 4.4. The functor 𝒟 ∶ 𝒞 → 𝒞0 is a bifibration, for
which opcartesian liftings are isos at transitions types.

Proof. The opcartesian lifting 𝑓 · 𝑋 of any given 𝑋 ∈ 𝒞
along 𝑓 ∶ 𝒟(𝑋) → 𝐶 is given by taking (𝑓 · 𝑋)(𝑃) = 𝐶(𝑃)
for all 𝑃 ∈ ℂ0 and, (𝑓 · 𝑋)(𝐿) = 𝑋(𝐿) for all transition types
𝐿 ← 𝑃 + 𝑄∶ [𝑠, 𝑡], with (𝑓 · 𝑋)(𝑠) and (𝑓 · 𝑋)(𝑡) given by
composition, e.g., 𝑋(𝐿) → 𝑋(𝑃) → 𝐶(𝑃).

The cartesian lifting 𝑋 · 𝑓 of any 𝑋 ∈ 𝒞 along 𝑓 ∶ 𝐶 →
𝒟(𝑋) is given by taking (𝑋 · 𝑓 )(𝑃) = 𝐶(𝑃) for all 𝑃 ∈ ℂ0
and, for all transition types 𝑃 +𝑄 → 𝐿, (𝑋 · 𝑓 )(𝐿) to be the
pullback

(𝑋 · 𝑓 )(𝐿) 𝑋(𝐿)

𝐶(𝑃) × 𝐶(𝑄) 𝑋(𝑃) × 𝑋(𝑄)
𝑓𝑃×𝑓𝑄

⟨𝑋(𝑠),𝑋(𝑡)⟩

□

Corollary 4.5. Anymorphism in𝒞 factors as a verticalmor-
phism 𝑙 (= such that 𝒟(𝑙) = id), followed by a cartesian one.

4.2 Substitution-closed bisimulation
With the setting of Howe contexts in place, we now abstract
over substitution-closed bisimulations.

Plain, functional bisimulations are defined by lifting against
all maps 𝑠 from distinguished copairings [𝑠, 𝑡], e.g., as in (6).
Similarly, bisimulation relations are defined as relationswhose
projections are functional bisimulations.

Now, substitution-closed bisimulations should live in a
category of transition systems whose underlying object in
𝒞0 is substitution-closed. As we will use this idea of transi-
tion systemswith structured underlying object several times,
let us factor out the construction:

Lemma 4.6. For any monadic functor 𝑈0 ∶ ℰ → 𝒞0, con-

sider the pullback 𝒟 ∗(ℰ ) ℰ

𝒞 𝒞0.

𝒟↾ℰ

𝒟 ∗(𝑈0)

𝒟

𝑈0

If the monad induced by 𝑈0 is accessible, then 𝒟 ↾ ℰ has a
fully-faithful left adjoint and 𝒟 ∗(𝑈0) has a left adjoint.

Terminology 4.7. If objects ofℰ are called a certain name,
say, things, then objects of 𝒟 ∗(ℰ ) will often be called tran-
sition things.

Definition 4.8. Let transition monoids be the objects of
𝐌𝐨𝐧(𝒞) ≔ 𝒟 ∗(𝐦𝐨𝐧(𝒞)), where 𝐦𝐨𝐧(𝒞) is the category
of monoids in 𝒞0.

Furthermore, let the category of transition 𝑋-modules be
𝑋 -Mod ≔ 𝒟 ∗(𝒟(𝑋) -mod), for any 𝑋 ∈ 𝐌𝐨𝐧(𝒞).

We let ℱ ∶ 𝒟(𝑋) -mod → 𝒞0 denote the forgetful func-
tor, and ℱ ′ = 𝒟 ∗(ℱ )∶ 𝑋 -Mod → 𝒞 .

So transition 𝑋-modules are objects 𝑀 ∈ 𝒞 whose un-
derlying 𝒟(𝑀) ∈ 𝒞0 is a 𝒟(𝑋)-module.

Definition 4.9. For any transition monoid 𝑋 , a functional
𝑋-bisimulation is a map of transition 𝑋-modules whose im-
age underℱ ′ is a functional bisimulation. An𝑋-bisimulation
is a relation of transition 𝑋-modules whose projections are
both functional 𝑋-bisimulations.

We are now interested in defining the largest 𝑋-bisimu-
lation. This requires the following few intermediate results,
leading to Corollary 4.12.

Proposition 4.10. The forgetful functorℱ ′ ∶ 𝑋 -Mod → 𝒞
creates unions.

Lemma 4.11. 𝑋-bisimulations are closed under unions.

Proof. 𝑋-bisimulations are in particular plain bisimulations,
so any union, which is computed as in𝒞 by Proposition 4.10,
is again a bisimulation, as desired. □

Corollary 4.12. For any 𝑋 , the union ∼⊗
𝑋 of all 𝑋-bisimula-

tions over 𝑋 , called 𝑋-bisimilarity, is an 𝑋-bisimulation.

4.3 Signatures, models, and initiality
In this section, in order to specify syntax and transition rules
in the abstract setting, we introduce the notion of 2-signature
and its models. We furthermore show that under mild hy-
potheses any 2-signature admits free models.

Let us first incorporate syntax into the transitionmonoids
of Definition 4.8. For a general Howe context and structurally
strong endofunctor Σ0 on 𝒞0, we first define the category
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Σ0 -Mon ≔ 𝒟 ∗(Σ0 -mon) of transition Σ0-monoids with
notation as below left.

Σ0 -Mon Σ0 -mon

𝒞 𝒞0

𝒟 ′

𝒰

𝒟

𝒰0

Σ0 -Mon Σ0 -Mon

Σ0 -mon Σ0 -mon

1

𝒟 ′

𝒦0

𝒟 ′ (12)

Notation 4.13. We often omit 𝒟 ′ and 𝒰 for readability.
An endofunctor Σ1 on Σ0 -Mon will be called syntacti-

cally free iff the Σ0-monoid structure of any 𝒟 ′(Σ1(𝑋)) is
precisely the free structure on𝒰0(𝒟 ′(𝑋)), i.e.,𝒟 ′(Σ1(𝑋)) =
ℒ0(𝒰0(𝒟 ′(𝑋))), where ℒ0 denotes the left adjoint to 𝒰0.
Otherwise said, letting𝒦0 denote the induced comonadℒ0∘
𝒰0, the diagram above right commutes.
Notation 4.14. Let 𝒯0 = 𝒰0 ∘ ℒ0, the induced monad.
Definition 4.15. A 2-signature on a Howe context ℂ →
𝟚 consists of a structurally strong, finitary endofunctor Σ0
on 𝒞0 preserving wide pullbacks, and a syntactically free
endofunctor Σ1 on transition Σ0-monoids.
Remark 4.16. Any 2-signature induces a signature in the
sense of Hirschowitz et al. [20, §4.1].

Let us now define the category of models of a 2-signature,
by mimicking the concrete notion of vertical algebra from
§3.2. For this, we observe that passing from Σ

1 to Σ̌
1 may

be done by opcartesian lifting in the sense of Lemma 4.4.
Indeed, bifibrations are stable under pullback, so𝒟 ′ is again
a bifibration, and we may state:
Definition 4.17. Let Σ̌1 ∶ Σ0 -Mon → Σ0 -Mon be defined
by letting Σ̌1(𝑋) be a choice of oplifting of Σ1(𝑋) along the
counit 𝜀0𝒟 ′(𝑋) ∶ 𝒟 ′(Σ1(𝑋)) = 𝒦0(𝒟 ′(𝑋)) → 𝒟 ′(𝑋).

We obtain by construction:
Proposition 4.18. The triangle below commutes.

Σ0 -Mon Σ0 -Mon

Σ0 -mon

�̌�1

𝒟 ′ 𝒟 ′

Definition 4.19. Let the category Σ̌1 -alg𝑣 be the full sub-
category of Σ̌1 -alg on vertical Σ̌1-algebras, i.e., ones whose
structure maps Σ̌1(𝑋) → 𝑋 are sent by 𝒟 ′ to identities.

The functor Σ̌1 restricts to an endofunctor (Σ̌1)|𝑋 on the
fibre over any Σ0-monoid 𝑋 , and we call Σ1 vertically fini-
tary iff each such restriction (Σ̌1)|𝑋 is finitary.

Theorem 4.20. If Σ1 is vertically finitary, then vertical Σ̌1-
algebras are monadic over transitionΣ0-monoids, and the free
vertical Σ̌1-algebra over any given𝑋 is𝜇𝐴.(𝑋+(Σ̌1)|𝒟 ′(𝑋)(𝐴)),
i.e., 𝑐𝑜𝑙𝑖𝑚𝑛∈𝜔𝑋𝑛 with𝑋0 = 𝑋 and𝑋𝑛+1 = 𝑋+(Σ̌1)|𝒟 ′(𝑋)(𝑋𝑛).
In particular, the initial vertical Σ̌1-algebra is the colimit (in
the fibre) of the chain 0⊛ → (Σ̌1)|0⊛ (0⊛) → (Σ̌1)2|0⊛ (0⊛) → …,
where 0⊛ denotes the initial Σ0-monoid.

4.4 Weak compositionality
We conclude this section by showing weak compositionality
of the initial vertical algebra, say 𝐙 = 𝜇𝐴.(Σ̌1)|0⊛ (𝐴), under
a suitable hypothesis.The only thingwewill need to know is
that the source term of a transition in Σ1(𝑋) has depth one.
In order to state this properly, let us observe that by (12) we
have𝒟𝒰Σ1 = 𝒯0𝒟𝒰 , so by universal property of counit,
as𝒟(ℳ (𝑃)) ≅ 𝑃, for any transition 𝑟 ∶ 𝐿 → 𝒰(Σ1(𝑋)), the
source 𝑟 ∘ 𝑠 admits a unique lifting 𝑟 ⧵ 𝑠 as shown below.

𝑃 𝐿

ℳ (𝒯0(𝒟(𝒰(𝑋)))) ℳ (𝒟(𝒰(Σ1(𝑋)))) 𝒰(Σ1(𝑋))
𝑟⧵𝑠

𝑠

𝑟

𝜀𝒰(1(𝑋))

Definition 4.21. The 2-signature (Σ0, Σ1) is layered iff for
any 𝑟 ∶ 𝐿 → 𝒰(Σ1(𝑋)), 𝑟 ⧵ 𝑠 lifts through ℳ(𝜂0,𝒟(𝒰(𝑋))),
as in ℳ(Σ0(𝒟(𝒰(𝑋))))

𝑃 ℳ (𝒯0(𝒟(𝒰(𝑋)))).𝑟⧵𝑠

ℳ (𝜂0,𝒟(𝒰(𝑋)))

Informally, this means that the source of the conclusion of
a transition rule must be an operation applied to some “me-
tavariables”: given any transition 𝑟 ∈ Σ1(𝑋)(𝐿), there exists
𝑚 ∈ Σ0(𝑋)(𝑃) such that 𝑟 ⋅ 𝑠 = 𝜂(𝑚), with 𝜂∶ Σ0 → 𝒯0.
Remark 4.22. As 𝜂 is monic by Theorem 2.19, and ℳ pre-
serves monos, the lifting is unique.
Proposition 4.23. If (Σ0, Σ1) is layered, then any commut-
ing square as the solid part below admits a lifting 𝑘 as shown.

𝑃 Σ0(𝐙) Σ1(𝐙)

𝐿 𝐙

𝑒

𝑠

𝜄𝑋

𝑟

𝑘 (13)

4.5 Congruence statement
We have now characterised the initial vertical algebra for
a 2-signature as our abstract model of syntactic transition
systems from operational semantics. Let us now state the
desired congruence result in this abstract setting.
Definition 4.24. A relation 𝑅 ↪ 𝒰(𝑋)2 over a transition
Σ0-monoid𝑋 is a congruence iff it is an equivalence relation
and furthermore, omitting 𝒰 , the composite

𝒯0(𝒟(𝑅)) → 𝒯0(𝒟(𝑋2)) → 𝒯0(𝒟(𝑋))2 → 𝒟(𝑋)2

factors through 𝒟(𝑅) → 𝒟(𝑋)2.
Let us directly reduce this to the following easier form:

Lemma 4.25. An equivalence relation 𝑅 ↪ 𝒰(𝑋)2 is a con-
gruence iff 𝒟(𝑅) is both a submonoid and a subalgebra of
𝒟(𝒰(𝑋))2, i.e., omitting 𝒰 and 𝒟 , both composites

𝑅 ⊗ 𝑅 → 𝑋2 ⊗ 𝑋2 → (𝑋 ⊗ 𝑋)2 → 𝑋2 (14)
Σ0(𝑅) → Σ0(𝑋2) → Σ0(𝑋)2 → 𝑋2 (15)
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factor through 𝑅 → 𝑋2.

5 Howe’s method
In the previous section, we have introduced 2-signatures
and shown that under suitable hypotheses they admit initial
models (= initial vertical algebras) which are weakly com-
positional. We now want to adapt Howe’s method to this
abstract setting and show that substitution-closed bisimilar-
ity on the initial vertical algebra is a congruence.We thus fix
any vertically finitary, layered 2-signature (Σ0, Σ1), and let
𝐙 denote its initial vertical algebra. We start in §5.1 by giv-
ing a brief introduction to Howe’s method. In §5.2, we con-
tinue with some preparatory work: we introduce prebisimu-
lation, which is very close to lifting-based bisimulation, ex-
cept that, unlike for plain bisimulations, it makes sense to
take the context closure of a prebisimulation.We exploit this
in §5.3, where we introduce our abstract version of theHowe
closure 𝑅• of a relation 𝑅. We furthermore reduce congru-
ence of bisimilarity ∼⊗

𝐙 for the initial vertical Σ1-algebra 𝐙
to the fact that the Howe closure (∼∨,⊗

𝐙 )• of the associated
prebisimulation is itself a presimulation. Finally, in §5.4, we
introduce cospan-cellularity and show that if Σ1 is cospan-
cellular, then (∼∨,⊗

𝐙 )• is indeed a presimulation, which en-
tails the main result.

5.1 A subjective introduction to Howe’s method
Let us start by briefly recalling Howe’s method, loosely fol-
lowing Pitts [31]. Let us return to our running example, big-
step, pure𝜆-calculus, and naively attempt to prove that bisim-
ilarity is context-closed.The idea is to consider some context-
closed relation ∼•

𝐙, containing ∼⊗
𝐙 by construction, and then

to show that it is a bisimulation. By maximality of ∼⊗
𝐙, we

then also have ∼•
𝐙 ⊆ ∼⊗

𝐙 hence both relations coincide and
∼⊗
𝐙 is context-closed as desired.
In order for∼•

𝐙 to be context-closed, it should at least con-
tain all pairs (𝐶[𝑒1, …, 𝑒𝑛], 𝐶[𝑒′1, …, 𝑒′𝑛]) with 𝑒𝑖 ∼⊗

𝐙 𝑒′𝑖 for all
𝑖 ∈ 𝑛. Typically, let us consider 𝑒1 ∼⊗

𝐙 𝑒′1 and 𝑒2 ∼⊗
𝐙 𝑒′2,

and try to prove the simulation property for 𝑒1 𝑒2 ∼•
𝐙 𝑒′1 𝑒′2.

We thus assume 𝑒1 ⇓ 𝜆𝑥.𝑒3 and 𝑒3[𝑒2] ⇓ 𝑒4, and try to find
𝑒′3 such that 𝑒′1 ⇓ 𝜆𝑥.𝑒′3 and 𝑒′4 such that 𝑒′3[𝑒′2] ⇓ 𝑒′4 with
𝑒4 ∼•

𝐙 𝑒′4. Because 𝑒1 ∼⊗
𝐙 𝑒′1, we find 𝑒′1 ⇓ 𝜆𝑥.𝑒′3 such that for

all 𝑒, 𝑒3[𝑒] ∼⊗
𝐙 𝑒′3[𝑒]. This 𝑒′3 is a natural candidate to suit our

needs. But then how do we find 𝑒′4? Because ∼•
𝐙 is context-

closed and ∼⊗
𝐙 is substitution-closed, we have

𝑒3[𝑒2] ∼•
𝐙 𝑒3[𝑒′2] ∼⊗

𝐙 𝑒′3[𝑒′2]. (16)

Assuming we are reasoning by induction over the consid-
ered transition proof, we find 𝑒″4 (by induction hypothesis)
and 𝑒′4 (by definition of bisimulation) as in

𝑒3[𝑒2] 𝑒3[𝑒′2] 𝑒′3[𝑒′2]

𝑒4 𝑒″4 𝑒′4.

∼•
𝐙

∼•
𝐙

∼⊗
𝐙

∼⊗
𝐙

This suggests that ∼•
𝐙 should be closed under action of ∼⊗

𝐙,
i.e., ∼•

𝐙; ∼⊗
𝐙 ⊆ ∼•

𝐙, or otherwise said: for all 𝑒 ∼•
𝐙 𝑒′ ∼⊗

𝐙 𝑒″ we
have 𝑒 ∼•

𝐙 𝑒″. Howe’s idea is to take this as a defining prop-
erty of∼•

𝐙. Coupling this with context closure, we define∼•
𝐙

as the smallest context-closed relation satisfying the rules

𝑥 ∼•
𝐙 𝑥

𝑒 ∼•
𝐙 𝑒′ 𝑒′ ∼⊗

𝐙 𝑒″

𝑒 ∼•
𝐙 𝑒″ ·

By construction, ∼•
𝐙 is reflexive and context-closed. By re-

flexivity and the second rule, it also contains ∼⊗
𝐙.

Remark 5.1. In §5.3, we use an equivalent (because ∼⊗
𝐙 is

reflexive and transitive), inductive, and perhaps more com-
pact definition.

The initial plan was to show that ∼•
𝐙 is a bisimulation and

deduce that it coincides with ∼⊗
𝐙. We can in fact optimise

this slightly by first showing that ∼•
𝐙 is a simulation, and

then that its transitive closure (∼•
𝐙)+ is symmetric. The rela-

tion (∼•
𝐙)+ is thus a symmetric simulation, hence a bisimula-

tion. This entails the last inclusion in the chain ∼⊗
𝐙 ⊆ ∼•

𝐙 ⊆
(∼•

𝐙)+ ⊆ ∼⊗
𝐙, showing that all relations coincide. Finally, be-

cause ∼•
𝐙 is context-closed, so is ∼⊗

𝐙, as desired.

5.2 Prebisimulations
In order to adapt Howe’s method to the abstract setting, we
often need to consider the context closureΣ0(𝑅) of relations,
which lives in𝒞0, not𝒞 . It is thusmore convenient to resort
to the following variant of bisimulations, adapted from [21].

Definition 5.2. For any 𝑋,𝑌 ∈ 𝒞 and relations 𝑅,𝑅′ ⊆
𝒟(𝑋)×𝒟(𝑌), we say that 𝑅 left-progresses to 𝑅′, and write
𝑅 ↝𝑙 𝑅′, when any commuting square of the form below
left, where ℳ(𝑅) → 𝑋 is obtained by transposition, may
be embedded into some commuting diagram as below right.

𝑃 ℳ (𝑅)

𝐿 𝑋
𝑠

𝑃 ℳ (𝑅)
𝑋

𝐿
𝑌

𝑄 ℳ (𝑅′)

𝑠

𝑡

(17)

A presimulation is a relation 𝑅 such that 𝑅 ↝𝑙 𝑅, and a
prebisimulation is a presimulation whose converse relation
is also a presimulation.

Intuitively, left-progression is one half of the standard no-

tion of progression [33]: given any transition 𝑥1
𝐿
−→ 𝑥2 with

𝑥1 𝑅 𝑦1, we find a transition 𝑦1
𝐿
−→ 𝑦2 such that 𝑥2 𝑅′ 𝑦2.

Remark 5.3. This is equivalent to [21, Definition 5.1].

The advantage of prebisimulations over bisimulations is
that they live in𝒞0, hence morally only involve terms. How-
ever, they tell us essentially the same thing as bisimulations,



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont

as shown in [21, §5.2]. In particular, one can prove that pre-
bisimulations are closed under union.
Definition 5.4. The union of all prebisimulations over any
fixed 𝑋 is called prebisimilarity and denoted by ∼∨

𝑋 .
Furthermore, this lifts to substitution-closed prebisimula-

tions: let an 𝑋-prebisimulation be a relation 𝑅 ↪ 𝒟(𝑀)2
in 𝑋 -mod, for any 𝑀 ∈ 𝑋 -Mod, such that ℱ(𝑅) is a pre-
bisimulation; we have that 𝑋-prebisimulations are closed
under unions, whence:
Definition 5.5. Let ∼∨,⊗

𝑋 denote the union of all 𝑋-prebisi-
mulations over 𝑋 , called 𝑋-prebisimilarity.

Proposition 5.6. We have 𝒟(∼⊗
𝑋 ) = ∼∨,⊗

𝑋 .

5.3 Howe closure
We now want to prove that ∼⊗

𝐙 is a congruence, where, we
recall, 𝐙 = 𝜇𝐴.(Σ̌1)|0⊛ (𝐴) is the initial vertical algebra.

Lemma 5.7. If ∼∨,⊗
𝐙 is both a subalgebra and a submonoid

of 𝒟(𝐙)2, then ∼⊗
𝐙 is a congruence.

Proof. We have 𝒟(∼⊗
𝐙) = ∼∨,⊗

𝐙 by Proposition 5.6, so we
conclude by Lemma 4.25 □

So we need to prove that ∼∨,⊗
𝐙 is both a subalgebra and a

submonoid. For this, we use the following variant of Howe’s
construction.
Definition 5.8. For any relations 𝑅 and 𝐴 on 𝒟(𝒰(𝑋)),
let ℋ𝑅(𝐴) denote the image (in 𝒞0) of 𝐼 + Σ0(𝐴); 𝑅 in 𝑋2,
where 𝐼 is viewed as a relation through the unit and diagonal
maps 𝐼 → 𝑋 → 𝑋2 and ; denotes sequential composition
of relations. The Howe closure 𝑅• of any 𝑅 is the initial ℋ𝑅-
algebra, i.e., the (directed) union ⋃𝑛 ℋ

𝑛
𝑅 (∅).

Let us first show the following lemma, in case 𝑋 = 𝐙.
Lemma5.9. If𝑅 ⊆ 𝐙2 is reflexive, transitive, and a𝐙-module,
then (omitting 𝑖𝑚(−) for readability)

(i) 𝐙 ⊆ 𝑅• (and so 𝐼 ⊆ 𝑅•);
(ii) 𝑅•; 𝑅 ⊆ 𝑅• (and so 𝑅 ⊆ 𝑅• by (i));
(iii) Σ0(𝑅•) ⊆ 𝑅•;
(iv) 𝑅• ⊗ 𝑅• ⊆ 𝑅• (and so 𝑅• ⊗ 𝐙 ⊆ 𝑅• by (i)).

Corollary 5.10. We have𝒯0(𝑅•); 𝑅 ⊆ 𝑅•.

We then narrow down the goal as follows, using (−)+ to
denote transitive closure.
Lemma 5.11. If (∼∨,⊗

𝐙 )•+ is a prebisimulation, then ∼⊗
𝐙 is a

congruence.

Proof. By hypothesis, (∼∨,⊗
𝐙 )•+ is a prebisimulation, hence

(∼∨,⊗
𝐙 )•+ ⊆ ∼∨,⊗

𝐙 . Moreover, the converse also holds by Lem-
ma 5.9(ii), so (∼∨,⊗

𝐙 )•+ = ∼∨,⊗
𝐙 . But by Lemma 5.9 and the

fact that subalgebras and submonoids are stable under tran-
sitive closure, (∼∨,⊗

𝐙 )•+ is a subalgebra and a submonoid,
hence so is ∼∨,⊗

𝐙 , and we conclude by Lemma 5.7. □

This would leave us with the task of delineating hypothe-
ses under which (∼∨,⊗

𝐙 )•+ is indeed a prebisimulation, but
we can narrow this down a bit further (this is sometimes
called the transitive closure trick), using the following two
intermediate lemmas.

Lemma 5.12. If 𝑅 ⊆ 𝑋2 in𝒞 is a presimulation up to tran-
sitivity [33], i.e., 𝑅 ↝𝑙 𝑅+, then 𝑅+ is a presimulation.

Lemma 5.13. If 𝑅 ⊆ 𝐙2 is an equivalence relation, then so
is 𝑅•+.

Lemma 5.14. If (∼∨,⊗
𝐙 )• is a presimulation, then ∼⊗

𝐙 is a con-
gruence.

Proof. By Lemma 5.12, (∼∨,⊗
𝐙 )•+ is a presimulation. But

(∼∨,⊗
𝐙 )

•+
is symmetric by Lemma 5.13, so it is in fact a pre-

bisimulation, hence we conclude by Lemma 5.11. □

5.4 Familiality and cellularity
In the previous section, we have established that congru-
ence of ∼⊗

𝐙 will follow from (∼∨,⊗
𝐙 )• being a presimulation,

and so are now seeking sufficient conditions for this. Our
key tool will be cellularity, a special case of familiality. As
we have already seen that Σ

0 is familial (Proposition 2.6),
let us now start by proving that Σ

1 is so too.

Example 5.15. Σ
1 is familial, and Σ

0 → Σ
1 preserves

generics. Using Theorem 2.5, the interesting point is that
we have Σ

1 (𝑋)(⇓) ≅ [𝐲1, 𝑋] + [𝐸𝛽, 𝑋], where 𝐸𝛽 denotes
the colimit of the diagram

ℒ(𝐲1) ℒ (𝐲0)

ℒ (𝐲⇓) ℒ (𝐲1 + 𝐲0) ℒ (𝐲⇓)
ℒ(𝑡) ℒ (𝑖𝑛𝑙) �̃� ℒ (𝑠)

with �̃� denoting the transpose of the morphism 𝜒∶ 𝐲0 →
𝒰ℒ(𝐲1 + 𝐲0) corresponding by Yoneda to the element

(𝑖𝑛𝑙(𝑖𝑑1))⦇𝑖𝑛𝑟(𝑖𝑑0)⦈ ∈ 𝒰ℒ (𝐲1 + 𝐲0)(0).
On the other hand, Σ̌1 is not familial, because the candidate
assignment el(Σ̌1(1)) → 𝒞 is not functorial.

Howe’s approach to proving that (∼∨,⊗
𝐙 )• is a presimu-

lation is by induction on the given transition. More gener-
ally, for any prebisimulation 𝑅 satisfying the hypotheses of
Lemma 5.9, we prove by induction on 𝑛 that any commuting
diagram as the solid part below left

𝑃 𝑅•

Σ̌𝑛
1 (0⊛) 𝐙

𝐿
𝐙

𝑄 𝑅•

𝑠

𝑡

𝑅•
𝑛 𝑅• 𝐙

Σ̌𝑛
1 (0⊛) 𝐙

may be completed as shown. This indeed entails that 𝑅• is
a presimulation, because 𝐙 is the colimit of all Σ̌𝑛

1 (0⊛), any
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morphism 𝐿 → 𝐙 factors through some Σ̌𝑛
1 (0⊛) → 𝐙, hence

we get 𝑅• ↝𝑙 𝑅• as desired. But this is equivalent to the
relation 𝑅•

𝑛 ↪ Σ̌𝑛
1 (0⊛)×𝐙 obtained by pullback above right

is a presimulation, so we want to prove by induction that
each 𝑅•

𝑛 is a presimulation.
Let us isolate the interesting part of this inductive proof:

Lemma 5.16. For all 𝑛 > 0, 𝑅•
𝑛 is a presimulation if, for all

commuting diagrams

𝑃 𝐿 𝑄

Σ1(𝐴) Σ1(𝐵) Σ1(𝐶),1(𝑘) 1(𝑙)

(18)

where denotes generic morphisms, 𝑘 and 𝑙 are such that any
diagram of the form below left may be completed as shown.

𝐴 𝑅•
𝑛−1

Σ̌𝑛−1
1 (0⊛)

𝐵
𝐙

𝐶 𝑅•
𝑛−1

𝑘

𝑙

𝐴 𝑅

𝑋
𝐵

𝑌

𝐶 𝑅

𝑘

𝑙

(19)

By induction hypothesis, we know that 𝑅•
𝑛−1 is a presim-

ulation, but the problem is that (𝑘, 𝑙)may not be of the form
(𝑠, 𝑡), andwill rarely be so in practice.This is precisely where
cellularity comes into play.
Definition 5.17. A copresimulation is any cospan (𝑘, 𝑙) such
that for any presimulation 𝑅 ↪ 𝑋×𝑌 , any square as in (19,
right) may be completed as shown.

The functor Σ1 is cospan-cellular iff it is familial and, for
all commuting diagrams (18) with generic vertical arrows,
the cospan (𝑘, 𝑙) is a copresimulation.

IfΣ1 is cospan-cellular, then by induction hypothesis𝑅•
𝑛−1

is a presimulation, so (19, left) may be completed as shown,
so by Lemma 5.16 𝑅•

𝑛 is a presimulation. We have proved:
Lemma 5.18. If Σ1 is cospan-cellular and 𝑅 ⊆ 𝐙2 is a pre-
bisimulation satisfying the hypotheses of Lemma 5.9, the rela-
tion 𝑅• is a presimulation.

Thus, by Lemma 5.14, we obtain:
Theorem 5.19. For any vertically finitary, layered 2-signa-
ture (Σ0, Σ1) with Σ1 cospan-cellular, substitution-closed bi-
similarity ∼⊗

𝐙 on the initial vertical algebra is a congruence.

A mysterious bit remains: what does cospan-cellularity
mean? In order to demonstrate that our running example
Σ

1 is cospan-cellular, we first need to develop some basic
results about copresimulations.
Lemma5.20. Copresimulations contain the basic cospans (𝑠, 𝑡)
and identity cospans. Moreover, they are closed under point-
wise coproduct, precomposition of their right-hand leg with
any morphism, and cospan composition.

Example 5.21. Recalling Example 5.15, we need to show
that the cospanℒ(𝐲0+𝐲0) → 𝐸𝛽 ← ℒ(𝐲1) corresponding
to the 𝛽-rule is a copresimulation, which holds by Lemma 5.20,
as it is the composite of

ℒ(𝐲0 + 𝐲0) → ℒ (𝐲⇓ + 𝐲0) ← ℒ (𝐲1 + 𝐲0)
�̃�
←− ℒ(𝐲0)

and the basic cospan ℒ(𝐲0 → 𝐲⇓ ← 𝐲1).

Example 5.22. Thecall-by-value𝜆-calculusmay be treated
similarly, with the same Σ0, using the same rule for val-
ues (5, right), but changing rule (5, left) to

𝑒1 ⇓ 𝑒′1 𝑒2 ⇓ 𝑒′2 𝑒′1[𝜆.𝑒′2] ⇓ 𝑒3
𝑒1 𝑒2 ⇓ 𝑒3

·

The induced functor Σ1 is cospan-cellular by Lemma 5.20,
since the cospan (18) for the new rule may be obtained by
starting with the pointwise coproduct

ℒ(2 · 𝐲0)
ℒ(2·𝑠)
−−−−−−→ ℒ(2 · 𝐲⇓)

ℒ(2·𝑡)
←−−−−− ℒ (2 · 𝐲1)

(where 𝑛 · 𝑐 denotes the 𝑛-fold coproduct 𝑐+…+𝑐), precom-
posing its right-hand leg with

ℒ(𝐲0)
�̃�
−→ ℒ(𝐲1)+ℒ (𝐲0)

ℒ(𝐲1)+�̃�−−−−−−−−→ 2·ℒ (𝐲1) ≅ ℒ (2·𝐲1),
and then composing with the basic cospan.

6 Conclusion and perspectives
We have presented an abstract framework, 2-signatures on
Howe contexts, in which, under suitable hypotheses, substi-
tution-closed bisimilarity is a congruence. We have proved
new initiality and familiality results along the way, notably
an adaptation ofwork by Fiore and collaborators to the skew-
monoidal case. Finally, we have covered the basic examples
of call-by-name and call-by-value variants of big-step 𝜆-cal-
culus. Future research directions include trying to gener-
alise our framework to cover variants of Howe’s method
which currently seem to lie beyond its scope, e.g., so-called
early-style bisimilarity in higher-order 𝜋-calculus or calculi
with passivation [27]. Similarly, we plan to try and apply
our techniques to variants of applicative bisimilarity, e.g.,
open bisimilarity [26].

Acknowledgments
Thanks toMarcelo Fiore, RichardGarner, Shin-ya Katsumata,
Sergueï Lenglet, Alan Schmitt, Pawel Sobocinski, Sam Sta-
ton, and the anonymous referees for useful input.

This research has partly been funded by the CoqHoTT
ERC Grant 637339.

References
[1] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques

Lévy. 1990. Explicit Substitutions. In Proc. 17th International Sympo-
sium on Principles of Programming Languages, Frances E. Allen (Ed.).
ACM, 31–46. https://doi.org/10.1145/96709.96712

https://doi.org/10.1145/96709.96712


LICS ’20, July 8–11, 2020, Saarbrücken, Germany Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont

[2] Samson Abramsky. 1990. The lazy lambda calculus. In Research Topics
in Functional Programming, D. A. Turner (Ed.). Addison–Wesley.

[3] Jir̆í Adámek and Jir̆í Rosicky. 1994. Locally Presentable and Accessi-
ble Categories. Cambridge University Press. https://doi.org/10.1017/
CBO9780511600579

[4] Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco
Maggesi. 2019. Reduction monads and their signatures. PACMPL 4,
POPL (2019). https://doi.org/10.1145/3371099

[5] Thorsten Altenkirch, James Chapman, and TarmoUustalu. 2015. Mon-
ads need not be endofunctors. Logical Methods in Computer Science
11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:3)2015

[6] Martin Bodin, Philippa Gardner, Thomas Jensen, and Alan Schmitt.
2019. Skeletal semantics and their interpretations. PACMPL 3, POPL
(2019), 44:1–44:31. https://doi.org/10.1145/3290357

[7] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. 2014.
Coinduction up-to in a fibrational setting. In Proc. 29th Symposium on
Logic in Computer Science ACM, 20:1–20:9. https://doi.org/10.1145/
2603088.2603149

[8] A. K. Bousfield. 1977. Constructions of Factorization Systems in Cat-
egories. Journal of Pure and Applied Algebra 9, 2-3 (1977), 287–329.

[9] Aurelio Carboni and Peter Johnstone. 1995. Connected Limits, Fa-
milial Representability and Artin Glueing. Mathematical Structures
in Computer Science 5, 4 (1995), 441–459. https://doi.org/10.1017/
S0960129500001183

[10] Aurelio Carboni, Stephen Lack, and Robert F. C. Walters. 1993. Intro-
duction to extensive and distributive categories. Journal of Pure and
Applied Algebra 84, 2 (1993).

[11] Andrea Corradini, Reiko Heckel, and Ugo Montanari. 2002. Compo-
sitional SOS and beyond: a coalgebraic view of open systems. Theo-
retical Computer Science 280, 1-2 (2002), 163–192. https://doi.org/10.
1016/S0304-3975(01)00025-1

[12] Yves Diers. 1978. Spectres et localisations relatifs à un foncteur.
Comptes rendus hebdomadaires des séances de l’Académie des sciences
287, 15 (1978), 985–988.

[13] Marcelo Fiore and Chung-Kil Hur. 2009. On the construction of free
algebras for equational systems. Theoretical Computer Science 410
(2009), 1704–1729.

[14] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. 1999. Abstract Syn-
tax and Variable Binding. In Proc. 14th Symposium on Logic in Com-
puter Science IEEE.

[15] Marcelo Fiore and Philip Saville. 2017. List Objects with Alge-
braic Structure. In Proc. 2nd International Conference on Formal
Structures for Computation and Deduction (LIPIcs), Dale Miller (Ed.),
Vol. 84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 16:1–
16:18. https://doi.org/10.4230/LIPIcs.FSCD.2017.16

[16] Marcelo Fiore and Philip Saville. 2019. List Objects with Algebraic
Structure. (2019). Long version of [15].

[17] Marcelo P. Fiore. 2008. Second-Order and Dependently-Sorted Ab-
stract Syntax. In Proc. 23rd Symposium on Logic in Computer Science
IEEE, 57–68. https://doi.org/10.1109/LICS.2008.38

[18] Richard Garner and Tom Hirschowitz. 2018. Shapely monads and
analytic functors. Journal of Logic and Computation 28, 1 (2018), 33–
83. https://doi.org/10.1093/logcom/exx029

[19] Makoto Hamana. 2004. Free S-Monoids: A Higher-Order Syntax with
Metavariables (Lecture Notes in Computer Science), Wei-Ngan Chin
(Ed.), Vol. 3302. Springer, 348–363. https://doi.org/10.1007/978-3-540-
30477-7_23

[20] André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. 2019.
Modules over monads and operational semantics. (2019). https:
//hal.archives-ouvertes.fr/hal-02338144 preprint.

[21] Tom Hirschowitz. 2019. Familial monads and structural operational
semantics. PACMPL 3, POPL (2019), 21:1–21:28. https://dl.acm.org/
citation.cfm?id=3290334

[22] Mark Hovey. 1999. Model Categories. Mathematical Surveys and
Monographs, Volume 63, AMS (1999), Vol. 63. American Mathemati-
cal Society.

[23] André Joyal, Mogens Nielsen, and GlynnWinskel. 1993. Bisimulation
and open maps. In Proc. 8th Symposium on Logic in Computer Science
IEEE, 418–427. https://doi.org/10.1109/LICS.1993.287566

[24] Stephen Lack and Ross Street. 2014. On monads and warpings.
Cahiers de Topologie et Géométrie Différentielle Catégoriques LV, 4
(2014), 244–266.

[25] Stephen Lack and Ross Street. 2015. Skew-monoidal reflection and
lifting theorems. Theory and Applications of Categories 30, 28 (2015),
985–1000.

[26] S. Lassen. 1999. Bisimulation in Untyped Lambda Calculus: Böhm
Trees and Bisimulation up to Context. In Proc. 15th Conference on
Mathematical Foundations of Progamming Semantics, MFPS 1999, Tu-
lane University, New Orleans, LA, USA, April 28 - May 1, 1999 (Elec-
tronic Notes in Theoretical Computer Science), Stephen D. Brookes,
Achim Jung, Michael W. Mislove, and Andre Scedrov (Eds.), Vol. 20.
Elsevier, 346–374. https://doi.org/10.1016/S1571-0661(04)80083-5

[27] Sergueï Lenglet and Alan Schmitt. 2015. Howe’s Method for Con-
textual Semantics. In Proc. 26th International Conference on Concur-
rency Theory, Luca Aceto and David de Frutos-Escrig (Eds.), Vol. 42.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 212–225. https:
//doi.org/10.4230/LIPIcs.CONCUR.2015.212

[28] Saunders Mac Lane. 1998. Categories for the Working Mathematician
(2nd ed.). Number 5 in Graduate Texts in Mathematics. Springer.

[29] Saunders Mac Lane and Ieke Moerdijk. 1992. Sheaves in Geometry and
Logic: A First Introduction to Topos Theory. Springer.

[30] Robert Paré. 1990. Simply connected limits. Canadian Journal of Math-
ematics 42 (1990), 731–746.

[31] Andrew M. Pitts. 2011. Howe’s method for higher-order languages,
Chapter 5. In Sangiorgi and Rutten [35].

[32] Gordon D. Plotkin. 1981. A structural approach to operational seman-
tics. DAIMI Report FN-19. Computer Science Department, Aarhus
University.

[33] Damien Pous and Davide Sangiorgi. 2011. Enhancements of the bisim-
ulation proof method, Chapter 6. In Sangiorgi and Rutten [35].

[34] Jan Reiterman. 1977. A left adjoint construction related to free triples.
Journal of Pure and Applied Algebra 10 (1977), 57–71.

[35] Davide Sangiorgi and Jan Rutten (Eds.). 2011. Advanced Topics in
Bisimulation and Coinduction. Number 52 in Cambridge Tracts inThe-
oretical Computer Science. Cambridge University Press.

[36] Sam Staton. 2008. General Structural Operational Semantics through
Categorical Logic. In Proc. 23rd Symposium on Logic in Computer Sci-
ence 166–177. https://doi.org/10.1109/LICS.2008.43

[37] Kornel Szlachányi. 2012. Skew-monoidal categories and bialgebroids.
Advances in Mathematics 231 (2012), 1694–1730. https://doi.org/10.
1016/j.aim.2012.06.027

[38] Daniele Turi and Gordon D. Plotkin. 1997. Towards a Mathematical
Operational Semantics. In Proc. 12th Symposium on Logic in Computer
Science 280–291. https://doi.org/10.1109/LICS.1997.614955

[39] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. 2019.
UniMath — a computer-checked library of univalent mathematics.
https://github.com/UniMath/UniMath

[40] Mark Weber. 2004. Generic morphisms, parametric representations
and weakly cartesian monads. Theory and Applications of Categories
13 (2004), 191–234.

[41] Mark Weber. 2007. Familial 2-functors and parametric right adjoints.
Theory and Applications of Categories 18, 22 (2007), 665–732.

https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1145/3371099
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.1145/3290357
https://doi.org/10.1145/2603088.2603149
https://doi.org/10.1145/2603088.2603149
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1016/S0304-3975(01)00025-1
https://doi.org/10.1016/S0304-3975(01)00025-1
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1093/logcom/exx029
https://doi.org/10.1007/978-3-540-30477-7_23
https://doi.org/10.1007/978-3-540-30477-7_23
https://hal.archives-ouvertes.fr/hal-02338144
https://hal.archives-ouvertes.fr/hal-02338144
https://dl.acm.org/citation.cfm?id=3290334
https://dl.acm.org/citation.cfm?id=3290334
https://doi.org/10.1109/LICS.1993.287566
https://doi.org/10.1016/S1571-0661(04)80083-5
https://doi.org/10.4230/LIPIcs.CONCUR.2015.212
https://doi.org/10.4230/LIPIcs.CONCUR.2015.212
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1016/j.aim.2012.06.027
https://doi.org/10.1016/j.aim.2012.06.027
https://doi.org/10.1109/LICS.1997.614955
https://github.com/UniMath/UniMath


A Cellular Howe Theorem LICS ’20, July 8–11, 2020, Saarbrücken, Germany

A Syntax: familiality and substitution
This section collects additional detail for §2, aside from the
proofs of both main theorems, which are dealt with in the
next two sections.

Proof of Proposition 2.6. Consider themorphism 𝐲0 → 𝒯 
0 (1)

picking the term 0⦇⦈ ∈ 𝒯 
0 (1)(0), where 1(𝑛) = 𝐲0(𝑛) =

{ 0} for all 𝑛, and assume it factors as

𝐲0
𝑓
−→ 𝒯 

0 (𝐴)
𝒯 

0 (!)
−−−−−→ 𝒯 

0 (1). (20)

Then, in order for the composite to be 0⦇⦈, we have 𝑓 =
𝑜⦇𝑒1, …, 𝑒𝑛⦈, for some 𝑜 ∈ 𝐴(𝑛) and 𝑒1, …, 𝑒𝑛 ∈ 𝒯 

0 (𝐴)(0).
Let us show that this factorisation is not generic. For this, we
observe that any term 𝑒 ∈ 𝒯 

0 (0)(0) yields a factorisation

𝐲0
1⦇!·𝑒⦈−−−−−→ 𝒯 

0 (𝐲1)
𝒯 

0 (!)
−−−−−→ 𝒯 

0 (1),

where 𝐲1(1) = { 1} and !·𝑒 is shorthand for𝒯 
0 (!𝐲1 )(𝑒), with

!𝐲1 ∶ 0 → 𝐲1 the unique such morphism. In order for (20) to
be generic, there should exist a lifting

𝐲0 𝒯 
0 (𝐲1)

𝒯 
0 (𝐴) 𝒯 

0 (1).

1⦇!·𝑒⦈

𝑜⦇𝑒1,…,𝑒𝑛⦈

𝒯 
0 (!)

𝒯 
0 (𝜑𝑒)

𝒯 
0 (!)

Now, the component at any 𝑛 of any such𝜑𝑒 maps 𝑜 to some
𝜑𝑒
𝑛(𝑜) ∈ 𝐲1(𝑛) = 𝑛, and we have

𝒯 
0 (𝜑𝑒) ∘ 𝑜⦇𝑒1, …, 𝑒𝑛⦈ = 𝜑𝑒 · (𝑜⦇𝑒1, …, 𝑒𝑛⦈)

= (𝜑𝑒 · 𝑜)⦇𝜑𝑒 · 𝑒1, …, 𝜑𝑒 · 𝑒𝑛⦈
= 1⦇𝜑𝑒 · 𝑒𝜑𝑒𝑛(𝑜)⦈.

But because !·𝑒 has no occurrence of any constant in 𝐲1, this
entails that 𝑒𝜑𝑒𝑛(𝑜) = !·𝑒′𝜑𝑒𝑛(𝑜), for some 𝑒′𝜑𝑒𝑛(𝑜) ∈ 𝒯 

0 (0)(0), and
therefore

𝒯 
0 (𝜑𝑒) ∘ 𝑜⦇𝑒1, …, 𝑒𝑛⦈ = 1⦇! · 𝑒′𝜑𝑒𝑛(𝑜)⦈.

Finally, there are infinitely many factorisations of the origi-
nal morphism which are the form𝒯 

0 (!) ∘ 1⦇! · 𝑒⦈, but only
at most 𝑛 admitting a lifting 𝜑𝑒, namely those 1⦇! · 𝑒′⦈ for
which 𝑒𝑖 = ! · 𝑒′ for some 𝑖 ∈ 𝑛. The given factorisation (20)
thus cannot be generic. □

DefinitionA.1. In any skew-monoidal category𝒞 , for any
monoid𝑋 , the category𝑋 -mod of (right)𝑋-modules has as
objects all 𝑀 ∈ 𝒞 equipped with an action 𝑟 ∶ 𝑀⊗𝑋 → 𝑀,
making the following diagrams commute, where 𝑒𝑋 and𝑚𝑋
are the unit and multiplication of 𝑋 .

(𝑀 ⊗ 𝑋) ⊗ 𝑋 𝑀 ⊗ (𝑋 ⊗ 𝑋) 𝑀 ⊗ 𝑋

𝑀⊗ 𝑋 𝑀

𝛼𝑀,𝑋,𝑋

𝑟⊗𝑋

𝑀⊗𝑚𝑋

𝑟

𝑟

𝑀⊗ 𝐼 𝑀 ⊗ 𝑋

𝑀 𝑀
𝜌𝑀

𝑒𝑋

𝑟

A module morphism is a morphism commuting with action.

DefinitionA.2. An action of a skew-monoidal category (𝒱 , ⊠, 𝐽)
on a skew-monoidal category (𝒞, ⊗, 𝐼) consists of a functor
⊙∶ 𝒞 ×𝒱 → 𝒞 equipped with natural transformations
𝜌𝐴 ∶ 𝐴 → 𝐴 ⊙ 𝐽 and 𝛼𝐴,𝑋,𝑌 ∶ 𝐴 ⊙ 𝑋 ⊙ 𝑌 → 𝐴 ⊙ (𝑋 ⊠ 𝑌)
such that the following diagrams commute.

(𝐴 ⊙ 𝐽) ⊙ 𝑋 𝐴 ⊙ (𝐽 ⊠ 𝑋)

𝐴 ⊙ 𝑋 𝐴 ⊙ 𝑋
𝜌⊙𝑋

𝛼

𝐴⊙𝜆𝑋

𝐴 ⊙ 𝑋 ⊙ 𝑌 ⊙ 𝑍

𝐴 ⊙ (𝑋 ⊠ 𝑌) ⊙ 𝑍 𝐴 ⊙ 𝑋 ⊙ (𝑌 ⊠ 𝑍)

𝐴 ⊙ ((𝑋 ⊠ 𝑌) ⊠ 𝑍) 𝐴 ⊙ (𝑋 ⊠ (𝑌 ⊠ 𝑍))

𝛼𝐴,𝑋,𝑌⊙𝑍 𝛼𝐴⊙𝑋,𝑌,𝑍

𝛼𝐴,𝑋⊠𝑌,𝑍 𝛼𝐴,𝑋,𝑌⊠𝑍

𝐴⊙𝛼𝑋,𝑌,𝑍

Definition A.3. A 𝒱 -strength on a functor 𝐹 ∶ 𝒞 → 𝒞 ′

is a natural transformation 𝑠𝑡𝐴,𝑋 ∶ 𝐹(𝐴) ⊙ 𝑋 → 𝐹(𝐴 ⊙ 𝑋)
(where the first ⊙ is the one of 𝒞 ′ and the second the one
of 𝒞 ), making the following diagrams commute.

𝐹(𝐴)

𝐹(𝐴) ⊙ 𝐽 𝐹(𝐴 ⊙ 𝐽)

𝜌𝐹(𝐴) 𝐹(𝜌𝐴)

𝑠𝑡𝐴,𝐽

𝐹(𝐴) ⊙ 𝑋 ⊙ 𝑌 𝐹(𝐴 ⊙ 𝑋) ⊙ 𝑌 𝐹(𝐴 ⊙ 𝑋 ⊙ 𝑌)

𝐹(𝐴) ⊙ (𝑋 ⊠ 𝑌) 𝐹(𝐴 ⊙ (𝑋 ⊠ 𝑌))

𝑠𝑡𝐴,𝑋⊙𝑌

𝛼𝐹(𝐴),𝑋,𝑌

𝑠𝑡𝐴⊙𝑋,𝑌

𝐹(𝛼𝐴,𝑋,𝑌 )

𝑠𝑡𝐴,𝑋⊠𝑌

Given any skew-monoidal category𝒞 , pointed 𝐼-modules
form a skew monoidal category with tensor product ⊠, the
original tensor product yielding an 𝐼 -mod𝐼 -action as in Re-
mark ⁇. In fact, it further induces an 𝐼 -mod𝐼 -action on
any power 𝒞𝑛 of 𝒞 by mapping any ((𝐴1, …,𝐴𝑛), 𝑋) to
(𝐴1 ⊗ 𝑋,…,𝐴𝑛 ⊗ 𝑋).

DefinitionA.4. A structural strength on a functor 𝐹 ∶ 𝒞𝑛 →
𝒞 is an 𝐼 -mod𝐼 -strength.

LemmaA.5. A natural transformation 𝐹(𝐴1, …,𝐴𝑛)⊗𝑋 →
𝐹(𝐴1 ⊗ 𝑋,…,𝐴𝑛 ⊗ 𝑋) forms a structural strength iff the fol-
lowing diagrams commute for all morphism 𝑓 ∶ 𝑋 ⊗ 𝑌 → 𝑈
coequalising the parallel pair of (4).
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𝐹(�̃�) 𝐹(�̃�) ⊗ 𝐼

𝐹(�̃� ⊗ 𝐼)

𝜌𝐹(�̃�)

𝐹(𝜌�̃�) 𝑠𝑡�̃�,𝐼

(𝐹(�̃�) ⊗ 𝑋) ⊗ 𝑌 𝐹(�̃� ⊗ 𝑋) ⊗ 𝑌 𝐹((�̃� ⊗ 𝑋) ⊗ 𝑌)

𝐹(�̃�) ⊗ (𝑋 ⊗ 𝑌) 𝐹(�̃� ⊗ (𝑋 ⊗ 𝑌))

𝐹(�̃� ⊗ (𝑋 ⊗ 𝑌)) 𝐹(�̃� ⊗ 𝑈)

𝑠𝑡�̃�,𝑋⊗𝑌

𝛼𝐹(�̃�),𝑋,𝑌

𝑠𝑡�̃�,𝑋⊗𝑌

𝑠𝑡�̃�⊗𝑋,𝑌

𝐹(𝛼�̃�,𝑋,𝑌 )

𝐹(𝐴⊗𝑓 )

𝐹(𝐴⊗𝑓 )

B Proof of Theorem 2.15
The theorem is proved in Coq (see supplementary material),
but here is a perhaps more accessible explanation.

By [28, Theorem IV.1.2(ii)], a left adjoint is entirely deter-
mined by constructing the free 𝐹-monoid for each𝑋 . Monadic-
ity then follows directly by Beck’s theorem [28,TheoremVI.7.1(ii)].

Our main tool in this proof will be [16, Theorem 4.8]. In
the notation of [16], the free 𝐹-monoid on𝑋 is𝜇𝐻(𝑋), where
𝐻(𝑋,𝐴) = 𝐺𝑋 (𝐴). We will rather denote it by 𝐹⊛(𝑋) or𝐴𝑋
(where𝐻 implicitly depends on 𝐹), and let𝜑𝑋 ∶ 𝐻(𝑋,𝐴𝑋 ) →
𝐴𝑋 denote the canonical isomorphism, whose components
are denoted by

[𝑒𝑋 , 𝜈𝑋 , 𝜎𝑋 ] ∶ 𝐼 + 𝐹(𝐴𝑋 ) + 𝑋 ⊗ 𝐴𝑋 → 𝐴𝑋 .
Thefirst step lies in proving that𝐴𝑋 is indeed an 𝐹-monoid.

The unit and 𝐹-algebra structure are clearly given by 𝑒𝑋 and
𝜈𝑋 . Multiplication is more complicated, as it needs to be de-
fined inductively.

Our first observation is:

Lemma B.1. For any 𝑋 , 𝐴𝑋 is a pointed 𝐼-module.

Proof. The point is obviously given by

𝐼
𝑖𝑛1−−→ 𝐼 + 𝐹(𝐴𝑋 ) + 𝑋 ⊗ 𝐴𝑋 = 𝐻(𝑋,𝐴𝑋 )

𝜑𝑋−−→ 𝐴𝑋 .
For the action of 𝐼 , we apply [16, Theorem 4.8] to get a map
𝑟 ∶ 𝐴𝑋 ⊗ 𝐼 → 𝐴𝑋 making the following diagram commute,

𝐻(𝑋,𝐴𝑋 ) ⊗ 𝐼 𝐻(𝑋,𝐴𝑋 ⊗ 𝐼) 𝐻(𝑋,𝐴𝑋 )

𝐴𝑋 ⊗ 𝐼 𝐴𝑋

𝜅𝑋

𝜑𝑋⊗𝐼

𝐻(𝑋,𝑟)

𝑟

𝜑𝑋

where 𝜅𝑋 is defined up to commutation of coproduct with
tensor by

𝐼 ⊗ 𝐼 + 𝐹(𝐴𝑋 ) ⊗ 𝐼 + 𝑋 ⊗ 𝐴𝑋 ⊗ 𝐼
↓ 𝜆𝐼 + 𝑠𝑡𝐹𝐴𝑋 ,𝐼 + 𝛼𝑋,𝐴𝑋 ,𝐼

𝐼 + 𝐹(𝐴𝑋 ⊗ 𝐼) + 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐼).

To show that 𝑟 is indeed a left inverse to 𝜌, we prove that
both 𝑖𝑑 and 𝑟∘𝜌 satisfy the defining equation of (𝑖𝑑𝐻(𝑋,𝐴𝑋 ))♯.
The first does trivially, and the second because Diagram (21)

(Figure 1) commutes, where the upper part commutes by
definition of skew monoidality and monoidal strength. □

Let us now construct the multiplication of 𝐴𝑋 . Letting
𝐿(𝑌, 𝐵) = 𝐴𝑋 + 𝐹(𝐵) + 𝑌 ⊗ 𝐵, multiplication will follow as
𝑠♯, where

𝒞 ×𝒞 𝒞

𝒞 ×𝒞 𝒞

𝐻

𝒞×(−⊗𝐴𝑋 )

𝐻

(−⊗𝐴𝑋 )𝑠

is defined by
𝐻(𝑌, 𝐵) ⊗ 𝐴𝑋≅

𝐼 ⊗ 𝐴𝑋 + 𝐹(𝐵) ⊗ 𝐴𝑋 + 𝑌 ⊗ 𝐵 ⊗ 𝐴𝑋
↓ 𝜆𝐴𝑋 + 𝑠𝑡𝐹𝐵,𝐴𝑋 + 𝛼𝑌,𝐵,𝐴𝑋

𝐿(𝑌, 𝐵 ⊗ 𝐴𝑋 ).
We thus obtain by [16,Theorem 4.8] again a unique𝑚𝑋 ∶ 𝐴𝑋⊗
𝐴𝑋 → 𝐴𝑋 making the Diagram (22) (Figure 1) commute.
We now have our candidate 𝐹-monoid structure for𝐴𝑋 . Let
us check that it satisfies the axioms, in successive lemmas.

Lemma B.2. The point 𝑒𝑋 is a left unit for 𝑚𝑋 , i.e., the fol-
lowing diagram commutes.

𝐼 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋

𝐴𝑋

𝑒𝑋⊗𝐴𝑋

𝜆𝐴𝑋
𝑚𝑋

Proof. The composite 𝑚𝑋 ∘ (𝑒𝑋 ⊗𝐴𝑋 ) factors through 𝜑𝑋 ⊗
𝐴𝑋 , as

𝐼 ⊗ 𝐴𝑋
↓𝑖𝑛1 ⊗ 𝐴𝑋

(𝐼 + 𝐹(𝐴𝑋 ) + 𝑋 ⊗ 𝐴𝑋 ) ⊗ 𝐴𝑋
∥

𝐻(𝑋,𝐴𝑋 ) ⊗ 𝐴𝑋
𝜑𝑋⊗𝐴𝑋−−−−−−−→ 𝐴𝑋 ⊗ 𝐴𝑋 .

Diagram (23) (Figure 1) thus commute, whence the result.
□

Lemma B.3. The point 𝑒𝑋 is a right unit for 𝑚𝑋 , i.e., the fol-
lowing diagram commutes.

𝐴𝑋 ⊗ 𝐼 𝐴𝑋 ⊗ 𝐴𝑋

𝐴𝑋 𝐴𝑋

𝜌𝑋𝐴

𝐴𝑋⊗𝑒𝑋

𝑚𝑋

Proof. The identity on𝐴𝑋 may be characterised as (𝑖𝑑𝐻(𝑋,𝐴𝑋 ))♯,
so by uniqueness in[16,Theorem 4.8] it suffices to show that
the top composite satisfies the same defining diagram. We
do so separately for each term of 𝐻(𝑋,𝐴𝑋 ). For the first
term, the top morphism reduces to the identity, i.e., Dia-
gram (24) (Figure 1) commutes. We use this to show that
the defining diagram for the first term commutes:
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𝐻(𝑋,𝐴𝑋 ) 𝐻(𝑋,𝐴𝑋 ) ⊗ 𝐼 𝐻(𝑋,𝐴𝑋 ⊗ 𝐼) 𝐻(𝑋,𝐴𝑋 )

𝐴𝑋 𝐴𝑋 ⊗ 𝐼 𝐴𝑋

𝜌𝐻(𝑋,𝐴𝑋 )

𝐻(𝑋,𝜌𝐴𝑋 )

𝜑𝑋

𝜅𝑋
𝐻(𝑋,𝑟)

𝜌𝐴𝑋 𝑟

𝜑𝑋⊗𝐼 𝜑𝑋

(21)

𝐻(𝑋,𝐴𝑋 ) ⊗ 𝐴𝑋 𝐿(𝑋,𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐿(𝑋,𝐴𝑋 ) 𝐴𝑋 + 𝐹(𝐴𝑋 ) + 𝑋 ⊗ 𝐴𝑋

𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝑠𝑋,𝐴𝑋

𝜑𝑋⊗𝐴𝑋

𝐿(𝑋,𝑚𝑋 )

𝑚𝑋

[𝐴𝑋 ,𝜈𝑋 ,𝜎𝑋 ]

(22)

𝐼 ⊗ 𝐴𝑋 𝐴𝑋 𝐴𝑋 𝐴𝑋

𝐻(𝑋,𝐴𝑋 ) ⊗ 𝐴𝑋 𝐿(𝑋,𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐿(𝑋,𝐴𝑋 ) 𝐴𝑋 + 𝐹(𝐴𝑋 ) + 𝑋 ⊗ 𝐴𝑋

𝐼 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝜆𝐴𝑋

𝑖𝑛1⊗𝐴𝑋 𝑖𝑛1 𝑖𝑛1 𝑖𝑛1

𝑠𝑋,𝐴𝑋

𝜑𝑋⊗𝐴𝑋

𝐿(𝑋,𝑚𝑋 )

𝑚𝑋

[𝐴𝑋 ,𝜈𝑋 ,𝜎𝑋 ]

𝑒𝑋⊗𝐴𝑋

(23)

𝐼 𝐼 𝐼 𝐼

𝐻(𝑋,𝐴𝑋 ) 𝐻(𝑋,𝐴𝑋 ⊗ 𝐼) 𝐻(𝑋,𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐻(𝑋,𝐴𝑋 )
𝑖𝑛1

𝐻(𝑋,𝜌𝐴𝑋 )

𝑖𝑛1

𝐻(𝑋,𝐴𝑋⊗𝑒𝑋 )

𝑖𝑛1

𝐻(𝑋,𝑚𝑋 )

𝑖𝑛1

(24)

𝐹(𝐴𝑋 ) 𝐹(𝐴𝑋 ⊗ 𝐼) 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐹(𝐴𝑋 )

𝐹(𝐴𝑋 ) ⊗ 𝐼 𝐹(𝐴𝑋 ) ⊗ 𝐴𝑋

𝐴𝑋 𝐴𝑋 ⊗ 𝐼 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 .

𝐹(𝜌𝐴𝑋 )

𝜌𝐹(𝐴𝑋 )

𝜎𝑋

𝑠𝑡𝐹𝐴𝑋 ,𝐼

𝐹(𝐴𝑋 )⊗𝑒𝑋
𝜈𝑋⊗𝐼

𝐹(𝐴𝑋⊗𝑒𝑋 ) 𝐹(𝑚𝑋 )

𝜌𝐴𝑋 𝐴𝑋⊗𝑒𝑋 𝑚𝑋

𝑠𝑡𝐹𝐴𝑋 ,𝐴𝑋

𝜈𝑋⊗𝐴𝑋

𝜈𝑋

(25)

𝑋 ⊗ 𝐴𝑋 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐼) 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝑋 ⊗ 𝐴𝑋

𝑋 ⊗ 𝐴𝑋 ⊗ 𝐼 𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋

𝐴𝑋 𝐴𝑋 ⊗ 𝐼 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 .

𝑋⊗(𝜌𝐴𝑋 )

𝜌𝑋⊗𝐴𝑋

𝜎𝑋

𝛼𝑋,𝐴𝑋 ,𝐼

𝑋⊗𝐴𝑋⊗𝑒𝑋
𝜎𝑋⊗𝐼

𝑋⊗(𝐴𝑋⊗𝑒𝑋 ) 𝑋⊗(𝑚𝑋 )

𝜌𝐴𝑋 𝐴𝑋⊗𝑒𝑋 𝑚𝑋

𝛼𝑋,𝐴𝑋 ,𝐴𝑋

𝜎𝑋⊗𝐴𝑋

𝜎𝑋

(26)

Figure 1. Diagrams for Appendix B

𝐼 𝐼 ⊗ 𝐼 𝐼 ⊗ 𝐴𝑋 𝐼

𝐴𝑋 𝐴𝑋 ⊗ 𝐼 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 .

𝜌𝐼

𝑒𝑋

𝜌𝐴𝑋

𝐼⊗𝑒𝑋

𝑒𝑋⊗𝐼

𝜆𝐼

𝐴𝑋⊗𝑒𝑋

𝑒𝑋⊗𝐴𝑋 𝜆𝐴𝑋

𝑚𝑋

𝑒𝑋

The triangle commutes by the previous lemma. For the sec-
ond term, we obtain similarly that Diagram (25) (Figure 1)
commutes. For the third term, we get Diagram (26), which
commutes as desired. □
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Lemma B.4. The multiplication 𝑚𝑋 is associative, i.e., the
following diagram commutes.

𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 )

𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋

𝐴𝑋

𝛼𝐴𝑋 ,𝐴𝑋 ,𝐴𝑋

𝑚𝑋⊗𝐴𝑋 𝐴𝑋⊗𝑚𝑋

𝑚𝑋 𝑚𝑋

Proof. We apply [16, Theorem 4.8] again, with 𝐽(𝐵) = 𝐵 ⊗
𝐴𝑋⊗𝐴𝑋 , showing that both morphisms satisfy the defining
diagram of (𝑠′𝑋,𝐴𝑋⊗𝐴𝑋 ∘ (𝑠𝑋,𝐴𝑋 ⊗ 𝐴𝑋 ))♯, where the relevant
natural transformation 𝑠′𝑌,𝐵 is

𝐴𝑋 ⊗ 𝐴𝑋 + 𝐹(𝐵 ⊗ 𝐴𝑋 ) ⊗ 𝐴𝑋 + 𝑌 ⊗ (𝐵 ⊗ 𝐴𝑋 ) ⊗ 𝐴𝑋
↓ [𝑚𝑋 ,𝑠𝑡𝐹𝐵⊗𝐴𝑋 ,𝐴𝑋

,𝛼𝑌,𝐵⊗𝐴𝑋 ,𝐴𝑋 ]
𝐴𝑋 + 𝐹(𝐵 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ) + 𝑌 ⊗ (𝐵 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ).

Let us start with the first component of the first mor-
phism, which commutes easily:

𝐼 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 .

𝜆𝐴𝑋⊗𝐴𝑋

𝑒𝑋⊗𝐴𝑋⊗𝐴𝑋

𝑚𝑋⊗𝐴𝑋

𝑚𝑋

𝑚𝑋

The first term of the second morphism is a bit more com-
plex: see Diagram (27) (Figure 2). Both second terms are
treated as Diagrams (28) and (29). Commutation of (29) is
subtler than it looks, because the top pentagon only com-
mutes upon postcompositionwith 𝐹(𝐴𝑋⊗𝑚𝑋 ), using LemmaA.5.
But in order for this lemma to apply, we should show that
the following diagram commutes,

𝐴𝑋 ⊗ 𝐼 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ (𝐼 ⊗ 𝐴𝑋 ) 𝐴𝑋 ⊗ 𝐴𝑋

𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝛼

𝑟

𝐴𝑋⊗𝜆𝐴𝑋

𝑚𝑋

𝑚𝑋

which holds by…
Finally, both third terms are displayed as Diagrams (30)

and (31). □

Lemma B.5. The 𝐹-algebra and monoid structure on𝐴𝑋 are
compatible, i.e., the following diagram commutes.

𝐹(𝐴𝑋 ) ⊗ 𝐴𝑋 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐹(𝐴𝑋 )

𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝑠𝑡𝐹𝐴𝑋 ,𝐴𝑋

𝜈𝑋⊗𝐴𝑋

𝐹(𝑚𝑋 )

𝑚𝑋

𝜈𝑋

Proof. This is merely the second term of the defining dia-
gram for 𝑚𝑋 . □

We have shown that 𝐴𝑋 is indeed and 𝐹-monoid. It re-
mains to prove its initiality property.

Lemma B.6. 𝐴𝑋 is the initial 𝐹-monoid over 𝑋 .

Proof. Let 𝑀 denote any 𝐹-monoid, with structure

[𝑒𝑀, 𝜈𝑀, 𝑚𝑀] ∶ 𝐼 + 𝐹(𝑀) +𝑀 ⊗𝑀 → 𝑀,

and let 𝑓 ∶ 𝑋 → 𝑀 denote anymorphism.We let the desired
extension ̄𝑓 arise as 𝑖𝑑♯𝐻(𝑋,𝐴𝑋 ), using the fact that 𝑀 admits
an 𝐻-algebra structure 𝜑𝑀 defined as the composite

𝐻(𝑋,𝑀) = 𝐼 + 𝐹(𝑀) + 𝑋 ⊗𝑀
↓ 𝐼 + 𝐹(𝑀) + 𝑓 ⊗𝑀

𝐼 + 𝐹(𝑀) +𝑀 ⊗𝑀
↓ [𝑒𝑀, 𝜈𝑀, 𝑚𝑀]
𝑀,

i.e., ̄𝑓 is the uniquemorphismmaking the following diagram
commute.

𝐻(𝑋,𝐴𝑋 ) 𝐻(𝑋,𝑀)

𝐴𝑋 𝑀

𝐻(𝑋, ̄𝑓 )

𝜑𝑋

̄𝑓

𝜑𝑀

We need to show that it is a morphism of 𝐹-monoids, that
precomposing it with 𝜂𝑋 ∶ 𝑋 → 𝐴𝑋 yields 𝑓 , and that it
is the unique such. The first point is a direct consequence
of ̄𝑓 being an 𝐻(𝑋, −)-algebra morphism, which holds by
construction. For the second point, it holds because

𝑋 ⊗ 𝐼 𝑋 ⊗ 𝐴𝑋 𝑋 ⊗𝑀

𝐻(𝑋,𝐴𝑋 ) 𝐻(𝑋,𝑀)

𝑋 𝐴𝑋 𝑀

𝑋⊗ ̄𝑓

𝑖𝑛3

𝐻(𝑋, ̄𝑓 )

𝑖𝑛3

𝜑𝑋

̄𝑓

𝜑𝑀

𝜌𝑋

𝜂𝑋

𝑋⊗𝑒𝑋

𝑋⊗𝑒𝑀

commutes, which in turn holds because

𝑋 𝑋 ⊗ 𝐼 𝑋 ⊗𝑀

𝑀 𝑀⊗ 𝐼 𝑀 ⊗𝑀

𝑀

𝜌𝑋

𝑓
𝜌𝑀

𝑓 ⊗𝐼

𝑋⊗𝑒𝑀

𝑀⊗𝑒𝑀

𝑓 ⊗𝑀

𝑚𝑀

commutes. Finally, let us show that any morphism fulfilling
the relevant conditions would in particular be a morphism
of 𝐻(𝑋, −)-algebras, hence equal to ̄𝑓 , as desired. For this,
assume given an 𝐹-monoid morphism 𝑓 ′ ∶ 𝐴𝑋 → 𝑀 such
that 𝑓 ′ ∘𝜂𝑋 = 𝑓 . We show that 𝑓 ′ is a morphism of𝐻(𝑋, −)-
algebras, term by term. For the first and second terms, it
follows directly from 𝑓 ′ being a morphism of 𝐹-monoids.
For the third term, this follows from commutation of
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𝐼 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝐼 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐼 ⊗ 𝐴𝑋

𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 .

𝜆𝐴𝑋⊗𝐴𝑋

𝛼𝐼,𝐴𝑋 ,𝐴𝑋

𝑒𝑋⊗𝐴𝑋⊗𝐴𝑋 𝐼⊗𝑚𝑋
𝑒𝑋⊗(𝐴𝑋⊗𝐴𝑋 )

𝜆𝐴𝑋⊗𝐴𝑋

𝑚𝑋

𝜆𝐴𝑋

𝜆𝐴𝑋

𝑒𝑋⊗𝐴𝑋

𝛼𝐴𝑋 ,𝐴𝑋 ,𝐴𝑋 𝐴𝑋⊗𝑚𝑋 𝑚𝑋

(27)

𝐹(𝐴𝑋 ) ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ) ⊗ 𝐴𝑋 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐹(𝐴𝑋 )

𝐹(𝐴𝑋 ) ⊗ 𝐴𝑋

𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝑠𝑡𝐹𝐴𝑋 ,𝐴𝑋
⊗𝐴𝑋

𝜈𝑋⊗𝐴𝑋⊗𝐴𝑋

𝑠𝑡𝐹𝐴𝑋⊗𝐴𝑋 ,𝐴𝑋

𝐹(𝑚𝑋 )⊗𝐴𝑋

𝐹(𝑚𝑋⊗𝐴𝑋 ) 𝐹(𝑚𝑋 )

𝑠𝑡𝐹𝐴𝑋 ,𝐴𝑋

𝜈𝑋⊗𝐴𝑋

𝑚𝑋⊗𝐴𝑋 𝑚𝑋

𝜈𝑋

(28)

𝐹(𝐴𝑋 ) ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ) ⊗ 𝐴𝑋 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐹(𝐴𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ))

𝐹(𝐴𝑋 ) ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐹(𝐴𝑋 ) ⊗ 𝐴𝑋 𝐹(𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐹(𝐴𝑋 )

𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 .

𝑠𝑡𝐹𝐴𝑋 ,𝐴𝑋
⊗𝐴𝑋

𝜈𝑋⊗𝐴𝑋⊗𝐴𝑋

𝛼𝐹(𝐴𝑋 ),𝐴𝑋 ,𝐴𝑋

𝑠𝑡𝐹𝐴𝑋⊗𝐴𝑋 ,𝐴𝑋 𝐹(𝛼𝐴𝑋 ,𝐴𝑋 ,𝐴𝑋 )

𝐹(𝐴𝑋⊗𝑚𝑋 )𝑠𝑡𝐹𝐴𝑋 ,𝐴𝑋⊗𝐴𝑋

𝐹(𝐴𝑋 )⊗𝑚𝑋

𝜈𝑋⊗(𝐴𝑋⊗𝐴𝑋 )

𝑠𝑡𝐹𝐴𝑋 ,𝐴𝑋

𝜈𝑋⊗𝐴𝑋

𝐹(𝑚𝑋 )

𝜈𝑋

𝛼𝐴𝑋 ,𝐴𝑋 ,𝐴𝑋 𝐴𝑋⊗𝑚𝑋 𝑚𝑋

(29)

𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) ⊗ 𝐴𝑋 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ) 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 )

𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝑋 ⊗ 𝐴𝑋

𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝛼𝑋,𝐴𝑋 ,𝐴𝑋⊗𝐴𝑋

𝜎𝑋⊗𝐴𝑋⊗𝐴𝑋

𝛼𝑋,𝐴𝑋⊗𝐴𝑋 ,𝐴𝑋

𝑋⊗𝑚𝑋⊗𝐴𝑋

𝑋⊗(𝑚𝑋⊗𝐴𝑋 )

𝛼𝑋,𝐴𝑋 ,𝐴𝑋

𝜎𝑋⊗𝐴𝑋

𝑋⊗𝑚𝑋

𝜎𝑋

𝑚𝑋⊗𝐴𝑋 𝑚𝑋

(30)

𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) ⊗ 𝐴𝑋 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 ) 𝑋 ⊗ (𝐴𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ))

𝑋 ⊗ 𝐴𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝑋 ⊗ 𝐴𝑋

𝐴𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 ) 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 .

𝛼𝑋,𝐴𝑋 ,𝐴𝑋⊗𝐴𝑋

𝜎𝐴⊗𝐴𝑋⊗𝐴𝑋

𝛼𝑋⊗𝐴𝑋 ,𝐴𝑋 ,𝐴𝑋

𝛼𝑋,𝐴𝑋⊗𝐴𝑋 ,𝐴𝑋 𝑋⊗𝛼𝐴𝑋 ,𝐴𝑋 ,𝐴𝑋

𝑋⊗(𝐴𝑋⊗𝑚𝑋 )𝛼𝑋,𝐴𝑋 ,𝐴𝑋⊗𝐴𝑋

𝑋⊗𝐴𝑋⊗𝑚𝑋

𝜎𝑋⊗(𝐴𝑋⊗𝐴𝑋 )

𝛼𝑋,𝐴𝑋 ,𝐴𝑋

𝜎𝑋⊗𝐴𝑋

𝑋⊗𝑚𝑋

𝜎𝑋

𝛼𝐴𝑋 ,𝐴𝑋 ,𝐴𝑋 𝐴𝑋⊗𝑚𝑋 𝑚𝑋

(31)

Figure 2. Diagrams for the proof of Lemma B.4

𝑋 ⊗ 𝐴𝑋 𝑋 ⊗𝑀

𝐴𝑋 ⊗ 𝐴𝑋 𝑀⊗𝑀

𝐴𝑋 𝑀,

𝑋⊗𝑓 ′

𝜂𝑋⊗𝐴𝑋

𝜎𝑋 𝑓 ′⊗𝑓 ′
𝑚𝑋

𝑓 ′

𝑓 ⊗𝑀

𝑚𝑀

where the triangle commutes because the diagram of Fig-
ure 3 does. □
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𝑋 ⊗ 𝐴𝑋 𝑋 ⊗ 𝐼 ⊗ 𝐴𝑋 𝑋 ⊗ 𝐴𝑋 ⊗ 𝐴𝑋 𝐴𝑋 ⊗ 𝐴𝑋

𝑋 ⊗ (𝐼 ⊗ 𝐴𝑋 ) 𝑋 ⊗ (𝐴𝑋 ⊗ 𝐴𝑋 )

𝑋 ⊗ 𝐴𝑋 𝐴𝑋

𝜌𝑋⊗𝐴𝑋

𝜂𝑋⊗𝐴𝑋

𝑋⊗𝑒𝑋⊗𝐴𝑋

𝛼𝑋,𝐼,𝐴𝑋

𝜎𝑋⊗𝐴𝑋

𝛼𝑋,𝐴𝑋 ,𝐴𝑋
𝑋⊗(𝑒𝑋⊗𝐴𝑋 )

𝑋⊗𝜆𝐴 𝑋⊗𝑚𝑋

𝜎𝑋

𝑚𝑋

Figure 3. Diagram for Lemma B.6

C Proof of Theorem 2.19
For familiality of 𝐹⊛, let us start with the following observa-
tions:

• 𝐼 , 𝐹, and ⊗ are all familial, and familial functors are
well-known to be stable under coproducts and com-
position, so each 𝐺𝑛

−(0) is familial;
• 0 = 𝐺0

𝑋 (0) → 𝐺1
𝑋 (0) is trivially cartesian, so by in-

duction each 𝜕𝑛𝑋 is cartesian by familiality of 𝐹 and
⊗;

• by a similar argument, each 𝜕𝑛𝑋 is monic.
By generalising the pullback lemma, pullback squares are
stable under 𝜔-composition in locally finitely presentable
categories, so each 𝜔-composite

𝜆𝑛
𝑋 = (… ∘ 𝜕𝑛+1𝑋 ∘ 𝜕𝑛𝑋 ) ∶ 𝐺𝑛

𝑋 (0) → 𝐹⊛(𝑋),

is cartesian hence preserves generics by Proposition 2.17.
Similarly, each 𝜆𝑛

𝑋 is monic by [3, Proposition 1.62]. Thus
the generic factorisation of any 𝐲𝑐 → 𝐹⊛(𝑋) is given by
first factoring through some 𝐺𝑛

𝑋 (0) by finite presentability
of 𝐲𝑐, then finding some 𝐺𝑛

−(0)-generic factorisation by fa-
miliality of 𝐺𝑛

−(0), and then conclude by cartesianness of
𝐺𝑛
−(0) → 𝐹⊛. We finally conclude that 𝐹⊛ is familial by [18,

Lemma 3.9(ii)].
Let us now show that 𝜂𝐹 is monic and cartesian. We take

the same notation as in the proof of Theorem 2.15: 𝐴𝑋 de-
note 𝐹⊛(𝑋), with 𝜑𝑋 ∶ 𝐻𝐹(𝑋,𝐴𝑋 ) −∼ 𝐴𝑋 the structural iso-
morphism, which decomposes as [𝑒𝑋 , 𝜈𝑋 , 𝜎𝑋 ] ∶ 𝐼 + 𝐹(𝐴𝑋 ) +
𝑋 ⊗ 𝐴𝑋 → 𝐴𝑋 .

The component of 𝜂𝐹 at 𝑋 is then the composite
𝐹(𝑋)
↓ 𝐹(𝜌𝑋 )

𝐹(𝑋 ⊗ 𝐼)
↓ 𝑖𝑛2(𝑋 ⊗ 𝑖𝑛1)

𝐺𝑋 (𝑋 ⊗ 𝐺𝑋 (0))
↓ 𝐺𝑋 (𝑖𝑛3)

𝐺𝑋 (𝐺𝑋 (𝐺𝑋 (0)))
↓ 𝜆3

𝑋
𝐴𝑋 ,

of which we have seen that the last factor is cartesian and
monic. But 𝜌𝑋 and coproduct injections are cartesian and

monic, so by preservation of pullbacks the composite is again
cartesian and monic, as desired.

D Howe contexts
This section collects proofs and intermediate results for §4.

D.1 Basic properties
Lemma D.1. Any morphism 𝑓 ∶ 𝑃′ → 𝐿 with 𝑃′ some state
type, and 𝐿 some transition type with associated copairing
[𝑠, 𝑡] ∶ 𝑃 + 𝑄 → 𝐿, lifts through [𝑠, 𝑡] in the sense that there
exists 𝑘 making the following diagram commute.

𝑃 + 𝑄

𝑃′ 𝐿
𝑘

𝑓

[𝑠,𝑡] (32)

Proof. This follows directly from the fact that 𝒟[𝑠, 𝑡] is an
isomorphism. □

As presheaf categories, 𝒞0 and 𝒞 are toposes, hence in
particular regular, i.e., they admit strong epi - mono factori-
sations, and strong epis are stable under pullbacks. Our as-
sumptions furthermore entail that such image factorisations
are preserved by tensor product on the left.
Lemma D.2. Each functor − ⊗ 𝐶 preserves image (= strong
epi/mono) factorisations.

Proof. By preservation of colimits, hence of strong epis, and
connected limits, hence of monos. □

Lemma D.3. For any 𝑋 ∈ 𝒞 , we have 𝒟(𝜀𝑋 ) = id𝒟(𝑋).

Proof. 𝒟(𝜀𝑋 ) becomes the identity upon composition with
the unit 𝜂𝒟(𝑋), which is itself an identity by hypothesis. □

D.2 Substitution-closed bisimulation
Proof of Lemma 4.6. There is an abstract-nonsense proof here,
but let us be concrete to aid intuition. First of all, 𝑈0 being
monadic is automatically an iso-fibration. For a choice of
the pullback𝒟 ∗(ℰ ), we take the standard construction as a
subcategory of the product.

Let us first consider the left adjoint ℰ ↾ ℳ to 𝒟 ↾ ℰ .
For any 𝐸 ∈ ℰ , we have by coreflection 𝜂𝑈0(𝐸) ∶ 𝑈0(𝐸) −∼
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𝒟(ℳ (𝑈0(𝐸))), so by lifting along this isomorphismwe find
an isomorphism𝐸 ↾ 𝜂𝑈0(𝐸) ∶ 𝐸 → 𝐸′ 𝑈0(𝐸′) = 𝒟(ℳ (𝑈0(𝐸)))
and 𝑈0(𝐸 ↾ 𝜂𝑈0(𝐸)) = 𝜂𝑈0(𝐸). By making a global choice of
such 𝐸′, we may let ℰ ↾ ℳ (𝐸) = (ℳ (𝑈0(𝐸)), 𝐸′), which is
in the pullback𝒟 ∗(ℰ ) by construction. This assignment ex-
tends straightforwardly to a functor by adjusting any𝐸 → 𝐹
to 𝐸′ ≅ 𝐸 → 𝐹 ≅ 𝐹′. Let us now prove this functor is left
adjoint to 𝒟 ↾ ℰ . Indeed, 𝒟 ↾ ℰ (ℳ (𝑈0(𝐸)), 𝐸′) = 𝐸′,
so it makes sense to take the unit to be the given isomor-
phism 𝐸 ≅ 𝐸′. This is natural by construction of the above
adjustment. Furthermore, for any 𝑓 ∶ 𝐸 → (𝒟 ↾ ℰ )(𝐵) inℰ
with 𝐵 = (𝐵1, 𝐵2), the pair ( 𝑈0(𝑓 ), 𝑓 ∘ (𝐸 ↾ 𝜂𝑈0(𝐸))−1) ∶ ℰ ↾
ℳ (𝐸) → 𝐵, where 𝑈0(𝑓 ) ∶ ℳ𝑈0𝐸 → 𝐵1 denotes the trans-
pose of𝑈0(𝑓 ) ∶ 𝑈0(𝐸) → 𝑈0(𝒟 ↾ ℰ (𝐵)) = 𝒟(𝒟 ∗(𝑈0)(𝐵)) =
𝒟(𝐵1), and is indeed in 𝒟 ∗(ℰ ) by the triangle identities. It
furthermore verifies the expected identity, with candidate
unit given at 𝐸 by 𝐸 ↾ 𝜂𝑈0(𝐸) itself: 𝒟 ↾ ℰ ( 𝑈0(𝑓 ), 𝑓 ∘ (𝐸 ↾
𝜂𝑈0(𝐸))−1) ∘ 𝜂 = 𝑓 ∘ (𝐸 ↾ 𝜂𝑈0(𝐸))−1 ∘ (𝐸 ↾ 𝜂𝑈0(𝐸)) = 𝑓 , and
does so uniquely because any other candidate must have
the form (𝑔, 𝑓 ′) with 𝑔∶ ℳ𝑈0𝐸 → 𝐵1 and 𝒟(𝑔) = 𝑈0(𝑓 ′)
hence 𝑔 = 𝑈0(𝑓 ) by uniqueness in the universal property.

Finally, briefly, ℒ is given on any object 𝐶 ∈ 𝒞 by a
choice of opcartesian lifting of𝐶 alongℳ(𝜂0𝒟𝐶) ∶ ℳ𝒟𝐶 →
ℳ𝑇0𝒟𝐶, where 𝑇0 denotes the monad induced by 𝑈0, the
unit being given by the chosen lifting, so that in particular
𝒟(𝜂𝐶) = 𝜂0𝒟𝐶. □

Because𝒟(𝑋)-modules are algebras for themonad −⊗𝑋 ,
which preserves all colimits, we have

Lemma D.4. The forgetful functor ℱ ∶ 𝒟(𝑋) -mod → 𝒞0
is monadic, and creates all limits, colimits, and image factori-
sations.

Proof. The result holds generally for limits, and for colim-
its follows from their preservation. Finally, consider any im-
age factorisation 𝑀 𝑒 𝑁 𝑚 𝑃 of some given 𝑋-module
morphism. Then because tensoring with 𝑋 on the right pre-
serves image factorisations, 𝑀 ⊗ 𝑋 𝑒⊗𝑋 𝑁 ⊗ 𝑋 𝑚⊗𝑋

𝑃 ⊗ 𝑋 is a again an image factorisation, so we get a lifting

𝑀⊗𝑋 𝑀

𝑁 ⊗ 𝑋 𝑁

𝑃 ⊗ 𝑋 𝑃

𝑒⊗𝑋 𝑒

𝑚⊗𝑋 𝑚

which equips 𝑁 with 𝑋-module structure. □

Lemma D.5. In a pullback

𝒜 ℬ

𝒞 𝒟

𝐹

𝑈

𝐺

𝑉

of functors such that 𝐺 preserves and 𝑉 creates a given type
of limit or colimit, then 𝐹 preserves and 𝑈 creates them.

Proof. Let us treat the case of colimits, the one for limits be-
ing symmetric. Consider any functor 𝐴∶ 𝒥 → 𝒜 and col-
imiting cocone 𝜎𝒞 for𝑈𝐴. By preservation of colimits for𝐴,
𝜎𝒞 is mapped to a colimiting cocone 𝜎𝒟 for 𝐺𝑈𝐴 = 𝑉𝐹𝐴
by 𝐺, which by creation of colimits for 𝐴 lifts uniquely to a
cocone 𝜎ℬ for 𝐹𝐴, which is colimiting. The colimiting co-
cone formed by componentwise pairing of 𝜎𝒞 and 𝜎ℬ thus
yields a colimiting cocone 𝜎𝒜 from 𝐴 over 𝜎𝒞 . It remains
to prove that this is the unique cocone over 𝜎𝒞 . But any co-
cone 𝜏 over 𝜎𝒞 maps to some cocone 𝐹(𝜏) over 𝜎𝒟 , which
by creation of colimits for 𝑉 has to be precisely 𝜎ℬ , hence
𝜏 = 𝜎𝒜 by universal property of pullback. □

Corollary D.6. The forgetful functor ℱ ∶ 𝒟(𝑋) -mod →
𝒞0 creates unions.

Proof. Consider any family of relations 𝑅𝑖 ↪ 𝑀 × 𝑁 in
𝒟(𝑋) -mod, their union in 𝒞0 is given by the image of the
copairing∑𝑖 𝑅𝑖 → 𝑀×𝑁 . By creation of colimits the copair-
ing lifts to a copairing in𝒟(𝑋) -mod, and the result follows
by creation of image factorisations. □

Thus, because 𝒟 , as a left and right adjoint, preserves all
limits and colimits, we get

Corollary D.7. The forgetful functor ℱ ′ ∶ 𝑋 -Mod → 𝒞0
creates all limits and colimits.

Finally, we proceed similarly for image factorisations.

Lemma D.8. In the situation of Lemma D.5, if 𝐺 preserves
and 𝑉 creates image factorisations, then 𝐹 preserves and 𝑈
creates them.

Remark D.9. It may not be entirely clear what is meant
by creation of image factorisations: we mean that for all
𝑓 ∶ 𝑏1 → 𝑏2 and image factorisation 𝑚 ∘ 𝑒 = 𝑉(𝑓 ), there
is a unique factorisation𝑚′ ∘ 𝑒′ of 𝑓 such that 𝑉(𝑒′) = 𝑒 and
𝑉(𝑚) = 𝑚′, which is furthermore an image factorisation
(i.e., 𝑒′ is a strong epi and 𝑚′ is a mono).

Proof. Similar to the proof of Lemma D.5, using the fact, ob-
vious for limits and colimits but perhaps less so for image
factorisations, that the canonical embedding 𝒜 → 𝒞 ×ℬ
reflects image factorisations. □

Corollary D.10. The forgetful functor ℱ ′ ∶ 𝑋 -Mod → 𝒞
creates image factorisations.

Proof of Proposition 4.10. Same idea as Corollary D.6 using
the previous lemmas. □
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D.3 Signatures, models, and initiality
Lemma D.11. The forgetful functor Σ̌1 -alg𝑣 → Σ0 -mon is
a fibration.

Proof. By [4, Lemma 6.9]. □

LemmaD.12. The forgetful functor𝒲 ∶ Σ̌
1 -alg𝑣 → Σ

0 -Mon
is a morphism of fibrations, i.e., it preserves cartesian mor-
phisms.

Proof of Theorem 4.20. Consider any transition Σ
0 -monoid

𝑋 . Assume thatℒ(𝑋) is free over𝑋 in the fibre over𝒟 ′(𝑋).
We show that ℒ(𝑋) is free over 𝑋 in the whole category.
For this, consider any 𝑓 ∶ 𝑋 → 𝒲 (𝑌). By cartesian lifting of
𝑌 along 𝒟 ′(𝑓 ), we obtain a cartesian morphism 𝑓 ′ ∶ 𝑌′ →
𝑌 in Σ̌

1 -alg𝑣. By the lemma,𝒲 (𝑓 ′) is cartesian, which yields
a unique vertical 𝑔∶ 𝑋 → 𝒲 (𝑌′), such that 𝒲 (𝑓 ′) ∘ 𝑔 = 𝑓 .
By initiality of ℒ(𝑋), we thus obtain a unique morphism
�̃� ∶ ℒ (𝑋) → 𝑌′ of vertical algebras such that𝒲 (�̃�)∘𝜂𝑋 = 𝑔.
The composite 𝑓 ′ ∘ �̃� is thus such that 𝒲 (𝑓 ′ ∘ �̃�) ∘ 𝜂𝑋 =
𝒲 (𝑓 ′) ∘ 𝑔 = 𝑓 , as desired. Finally, given any ̃𝑓 ∶ ℒ (𝑋) →
𝑌 satisfying this, by cartesianness of 𝑓 ′ we find a unique
vertical ℎ∶ ℒ (𝑋) → 𝑌′ such that 𝑓 ′ ∘ ℎ = ̃𝑓 . But then
𝑔′ = 𝒲 (ℎ) ∘𝜂𝑋 is such that𝒲 (𝑓 ′) ∘𝑔′ = 𝑓 , hence 𝑔′ = 𝑔 by
uniqueness in the universal property of 𝑓 ′. By uniqueness
in the universal property of ℒ(𝑋), we thus obtain ℎ = �̃�
and so ̃𝑓 = 𝑓 ′ ∘ �̃� as desired.

We have thus reduced the goal to proving existence of
free algebras in each fibre of 𝒟 ′. By [34, §2.Theorem] and
vertical finitarity the result boils down to cocompleteness of
each fibreΣ0 -Mon𝑋 over any𝑋 ∈ Σ

0 -mon. ButΣ0 -Mon𝑋
is equivalent to the full subcategory ℳ ′(𝑋)/𝑝𝑣Σ0 -Mon of
the coslice categoryℳ ′(𝑋)/Σ0 -Mon spanning pseudo-vertical
morphisms (notably thanks to the cancellation properties
of pseudo-vertical morphisms), so it suffices to prove that
the latter is cocomplete. Finally, as the coslice of a cocom-
plete category,ℳ ′(𝑋)/Σ0 -Mon is cocomplete, and pseudo-
vertical morphisms are closed under colimits therein, hence
the result.

Let us now consider monadicity, first of vertical algebras
over transition Σ0-monoids. For this, we apply Beck’s the-
orem: consider any parallel pair 𝑓 , 𝑔 ∶ 𝑋 → 𝑌 in Σ0 -Mon
where𝑋 and 𝑌 are equipped with vertical ̌Σ1-algebra struc-
ture, (𝑓 , 𝑔) is a parallel pair in ̌Σ1 -alg𝑣, which admits an
absolute coequaliser, say 𝑞 ∶ 𝑌 ↠ 𝑍, in Σ0 -Mon. By abso-
luteness, ̌Σ1(𝑞) is a coequaliser of ( ̌Σ1(𝑓 ), ̌Σ1(𝑞)), so we get
a unique map 𝑧 as below.

̌Σ1(𝑋) ̌Σ1(𝑌) ̌Σ1(𝑍)

𝑋 𝑌 𝑍

̌1(𝑓 )

̌1(𝑔)
𝑓

𝑔

̌1(𝑞)

𝑞

𝑧

Let us show that 𝑧 is vertical: because𝑌 is vertical, the right-
hand square is mapped by 𝒟 ′ to

𝒟 ′(𝑌) 𝒟 ′(𝑍)

𝒟 ′(𝑌) 𝒟 ′(𝑍)

𝒟 ′(𝑞)

𝒟 ′(𝑞)

𝒟 ′(𝑧)

and, 𝑞 being absolute, 𝒟 ′(𝑞) is a coequaliser, hence epi, so
𝒟 ′(𝑧) = id, as desired.

By absoluteness of 𝑞, this is clearly the unique lifting of
𝑞 to vertical algebras, and furthermore it makes (𝑍, 𝑧) a co-
equaliser in vertical algebras, which shows that the forgetful
functor creates the needed coequalisers for Beck’s theorem
to apply. □

D.4 Weak compositionality
Proof of Proposition 4.23. The right-hand morphism in (13)

factors as Σ1(𝐙)
𝛾𝐙−−→ Σ̌1(𝐙) → 𝐙, where the second factor

is the structure map of 𝐙, which is an isomorphism by Lam-
bek’s lemma, so we find a first lifting 𝑟′ ∶ 𝐿 → Σ̌1(𝐙). Then,
the opcartesian lifting of a pointwise surjective morphism is
again pointwise surjective by construction, themap𝛾𝐙 ∶ Σ1(𝐙) →
Σ̌1(𝐙) is pointwise surjective, so we find a transition 𝑘 ∶ 𝐿 →
Σ1(𝐙) such that 𝛾𝐙 ∘ 𝑘 = 𝑟′. It remains to prove that the
upper triangle commutes. It certainly would commute by
uniqueness if we had 𝑒 = 𝑘 ⧵ 𝑠. But we have seen that
𝒟(𝒰(𝐙)) = 0⊛, so the Σ0-monoid structure of 0⊛ yields
an isomorphism 𝜑0 ∶ Σ0(𝒟(𝒰(𝐙))) → 𝒟(𝒰(𝐙)). Further-
more, the diagram in Figure 4 commutes, the middle square
by construction of 𝛾𝐙. We thus have

𝜀𝒰(𝐙) ∘ ℳ (𝜑0) ∘ 𝑒 = 𝑟 ∘ 𝑠 = 𝜀𝒰(𝐙) ∘ ℳ (𝜑0) ∘ (𝑘 ⧵ 𝑠).
By verticality, we obtain 𝑒 = 𝑘 ⧵ 𝑠, as desired. □

E Howe’s method
E.1 Prebisimulations
In this section, we provide some detail on how to adapt [21,
§5.2] to the present setting.

Lemma E.1. The set of copairings [𝑠, 𝑡] ∶ 𝑃 + 𝑄 → 𝐿 cofi-
brantly generates a strong factorisation system on𝒞 , say (𝒱 ,ℋ ).

Proof. The construction follows the small object argument
for strong factorisation systems, which works in all locally
presentable categories [8]. □

Lemma E.2. A morphism 𝑓 is in 𝒱 iff 𝒟(𝑓 ) is an isomor-
phism; it is in ℋ iff it is 𝒟 -cartesian.

Proof. By construction, all maps in 𝒱 are transfinite com-
posites of pushouts of copairings [𝑠, 𝑡]. But the latter are
mapped to isomorphisms by 𝒟 by (H3), hence so are all
maps in𝒱 because isomorphisms are stable under pushouts
and transfinite composition. Conversely, let 𝑓 ∶ 𝑋 → 𝑌 be
such that𝒟(𝑓 ) is an isomorphism.We thus have a commut-
ing square
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ℳ(Σ0(𝒟(𝒰(𝐙)))) ℳ (𝒯0(𝒟(𝒰(𝐙)))) ℳ (𝒟(𝒰(Σ1(𝐙)))) 𝒰(Σ1(𝐙))

ℳ (𝒟(𝒰(Σ̌1(𝐙)))) 𝒰(Σ̌1(𝐙))

ℳ (𝒟(𝒰(𝐙))) ℳ (𝒟(𝒰(𝐙))) ℳ (𝒟(𝒰(𝐙))) 𝒰(𝐙)

ℳ(𝜂0,𝒟(𝒰(𝐙)))

ℳ (𝜑0) ℳ (�̄�0)

ℳ (𝒟(𝒰(𝛾𝐙)))

ℳ (𝒟(𝒰(𝜑1)))

𝜀𝒰(1(𝐙))

𝜀𝒰(�̌�1(𝐙))
𝒰(𝛾𝐙)

𝜀𝒰(𝐙)

𝒰(𝜑1)

Figure 4. Diagram for the proof of Proposition 4.23

ℳ(𝒟(𝑋)) 𝑋

ℳ (𝒟(𝑌)) 𝑌

𝜀𝑋

≅

𝜀𝑌

𝑓

with both horizontal maps in 𝒱 , which entails 𝑓 ∈ 𝒱 by
right cancellation. □

We call morphisms in 𝒱 pseudo-vertical.

Corollary E.3. The factorisations of Corollary 4.5 are partic-
ular cases.

Lemma E.4. Any morphism 𝑓 ∶ 𝐶 → ℳ (𝐴) is in the essen-
tial image of ℳ .

Proof. Because ℳ(𝐴) is empty on transition types, so is 𝐶.
□

Lemma E.5. Given any prebisimulation 𝑚∶ 𝑅 ↪ 𝒟(𝑋) ×
𝒟(𝑌) ≅ 𝒟(𝑋 × 𝑌), the cartesian factor �̅� ∶ �̅� → 𝑋 × 𝑌 of
the transpose �̌� ∶ ℳ (𝑅) → 𝑋 × 𝑌 is a bisimulation.

Proof. Just as [21, Proposition 5.8], up to the following two
glitches. First, the transpose �̌� is not obviously monic. But
consider any parallel pair of arrows 𝑓 , 𝑔 ∶ 𝐴 ⇉ ℳ (𝑅). By
Lemma E.4, 𝑓 and 𝑔 are in the image of ℳ , say as 𝑓 =
ℳ (𝑓 ′) and 𝑔 = ℳ (𝑔′), so by transposition, we have that
𝑚 coequalises 𝑓 ′ and 𝑔′. But 𝑚 is monic by hypothesis, so
𝑓 ′ = 𝑔′, whence 𝑔 = 𝑓 , as desired. The second glitch is that
�̅� is not obviously monic either. But by density, it is enough
to show that it is monic on parallel morphisms 𝑓 , 𝑔 ∶ 𝐴 →
�̅�, for 𝐴 some basic object. So consider any such 𝑓 and 𝑔
such that �̅� ∘ 𝑓 = �̅� ∘ 𝑔. If 𝐴 = 𝑃, then by Lemma D.1, we
obtain liftings 𝑓 ′ and 𝑔′ of 𝑓 and 𝑔 through the first factor
𝑙 ∶ 𝑅 → �̅�. Because the composite �̅� ∘ 𝑙 = �̌� is monic we
have 𝑓 ′ = 𝑔′, hence 𝑓 = 𝑙 ∘ 𝑓 ′ = 𝑙 ∘ 𝑔′ = 𝑔, as desired. If

finally, 𝐴 = 𝐿 appears in some transition type 𝑃
𝑠
−→ 𝐿

𝑡
←− 𝑄,

then by the previous case 𝑓 ∘𝑠 = 𝑔∘𝑠 and 𝑓 ∘ 𝑡 = 𝑔∘ 𝑡, and so
𝑓 and 𝑔 are both diagonal liftings for the following square

𝑃 + 𝑄 �̅�

𝐿 𝑋 × 𝑌,

[𝑓 ∘𝑠,𝑓 ∘𝑡]=[𝑔∘𝑠,𝑔∘𝑡]

[𝑠,𝑡]

𝑓 ∘�̅�=𝑔∘�̅�

𝑓
𝑔 �̅�

hence are equal by uniqueness of lifting in strong factorisa-
tion systems. □

Because the image under𝒟 of any bisimulation 𝑅 → 𝑋2

is a prebisimulation, we have

Corollary E.6. Calling𝑃𝑟𝑒𝐵𝑖𝑠𝑖𝑚(𝑋) and𝐵𝑖𝑠𝑖𝑚(𝑋) the posets
of prebisimulations and bisimulations over 𝑋2, the monotone

maps 𝑃𝑟𝑒𝐵𝑖𝑠𝑖𝑚(𝑋) ⊥ 𝐵𝑖𝑠𝑖𝑚(𝑋)
̅(−)

𝒟
form a

Galois connection.

Furthermore, we also have a natural notion of prebisimi-
larity:

Proposition E.7. Prebisimulations are stable under union.

Definition E.8. The union of all prebisimulations over any
fixed object is called prebisimilarity and denoted by ∼∨

𝑋 .

In fact, this all lifts to substitution-closed prebisimulations:

Definition E.9. An 𝑋-prebisimulation is a relation 𝑅 ↪
𝑀2 in 𝑋 -mod such that 𝒰0(𝑅) is a prebisimulation.

Lemma E.10. 𝑋-prebisimulations are closed under unions.

Corollary E.11. The union ∼∨,⊗
𝑋 of all 𝑋-prebisimulations

over 𝑋2, called 𝑋-prebisimilarity, is an 𝑋-prebisimulation.

PropositionE.12. Calling𝑋-𝑃𝑟𝑒𝐵𝑖𝑠𝑖𝑚(𝑋) and𝑋-𝐵𝑖𝑠𝑖𝑚(𝑋)
the posets of 𝑋-prebisimulations and 𝑋-bisimulations over
𝑋2, the monotone maps

𝑋-𝑃𝑟𝑒𝐵𝑖𝑠𝑖𝑚(𝑋) ⊥ 𝑋-𝐵𝑖𝑠𝑖𝑚(𝑋).
̅(−)

𝒟
form a Galois connection over the one of Corollary E.6.

Proof. The only non-trivial part lies in showing that if 𝑅
is an 𝑋-prebisimulation over 𝑋 then �̄� ↪ 𝑋2 is an 𝑋-
bisimulation. We already know from Lemma E.1 that it is
a bisimulation, and furthermore 𝒟(�̄�) is a 𝒟(𝑋)-module
through the following composite
𝒟(�̄�) ⊗ 𝒟(𝑋) ≅ 𝒟(ℳ (𝑅)) ⊗ 𝒟(𝑋) = 𝑅 ⊗𝒟(𝑋) → 𝑅,

where the first isomorphism follows from Lemma E.2 and
thewell-known fact [22, Corollary 2.1.15] that in a cofibrantly
generated factorisation system all members of the left class
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are retracts of transfinite composites of pushouts of gener-
ators, hence if some functor maps all generators to isomor-
phisms, then it in fact does so for the whole left class. □

Proof of Proposition 5.6. As a right adjoint to (−),𝒟 preserves
the maximum element. □

E.2 Howe closure
Before attacking the proof of Lemma 5.9, we need the fol-
lowing lemmas.

Lemma E.13. Under the hypotheses of Lemma 5.9, 𝑅• is a
pointed 𝐼-module.

Proof. We need to show that 𝑅• ⊗ 𝐼 → 𝐙2 factors through
𝑅• → 𝐙2. Because tensor product preserves colimits on the
left, this reduces to finding a cocone (𝑅𝑛 ⊗ 𝐼 → 𝑅•)𝑛 over
𝐙2, which we do by induction on 𝑛. The base case is triv-
ial by preservation of the initial object by tensor product.
Assuming 𝑅𝑛 ⊗ 𝐼 → 𝑅• over 𝐙2, by preservation of coprod-
ucts and pullbacks by tensor product on the left, we have
𝑅𝑛+1 ⊗ 𝐼 ≅ 𝐼 ⊗ 𝐼 + (Σ0(𝑅𝑛) ⊗ 𝐼; 𝑅 ⊗ 𝐼). But 𝑅 is a pointed
𝐼-module by hypothesis, and 𝐼 is one in any skew-monoidal
category, hence we get 𝑅𝑛+1 ⊗ 𝐼 → 𝐼 +Σ0(𝑅𝑛 ⊗ 𝐼); 𝑅 hence
the result by induction hypothesis. □

LemmaE.14. Given relations𝐴,𝐵, 𝐶 over𝑋 , we have (𝐴; 𝐵)⊗
𝐶 ⊆ (𝐴 ⊗ 𝐶); (𝐵 ⊗ 𝑋).
Proof. By tensoring the defining pullback of𝐴;𝐵with 𝐶we
obtain the back face below.

(𝐴; 𝐵) ⊗ 𝐶 𝐵 ⊗ 𝐶

(𝐴 ⊗ 𝐶); (𝐵 ⊗ 𝑋) 𝐵 ⊗ 𝑋

𝐴 ⊗ 𝐶 𝑋 ⊗ 𝐶

𝐴 ⊗ 𝐶 𝑋 ⊗ 𝑋

𝐵⊗𝜋2

𝜋2⊗𝐶

𝜋2⊗𝜋2

𝑋⊗𝜋2

𝜋1⊗𝐶

𝜋1⊗𝑋

By universal property of pullback, we then get the dashed
arrow making all faces commute, which entails the result.

□

Proof of Lemma 5.9.
(i) We proceed by induction, as 𝐙 = 𝑐𝑜𝑙𝑖𝑚𝑛𝐙𝑛(0), where

𝐙0 = 0 and 𝐙𝑛+1 = 𝐼 + Σ0(𝐙𝑛). The base case is triv-
ial, and assuming 𝐙𝑛 → 𝐙 → 𝐙2 factors through
𝑅𝑛 → 𝐙2, we have that Σ0(𝑅𝑛) → 𝐙2 factors through
Σ0(𝑅𝑛); 𝑅 → 𝐙2 by reflexivity, hence so doesΣ0(𝐙𝑛) →
𝐙2, which easily entails that𝐙𝑛+1 → 𝐙2 factors through
𝑅𝑛+1 → 𝐙2, as desired.

(ii) By commutation of filtered colimits with finite limits
(in presheaf categories), we have𝑅•; 𝑅 ≅ 𝑐𝑜𝑙𝑖𝑚𝑛(𝑅𝑛; 𝑅),
which reduces the problem to finding a cocone (𝑅𝑛; 𝑅 ↪
𝑅•)𝑛, for then we conclude by universal property of

the colimit. We proceed by induction. The base case is
trivial, and assuming 𝑅𝑛; 𝑅 ↪ 𝑅• over 𝐙2, since co-
products commute with connected colimits in general
hence pullbacks in particular, we have

𝑅𝑛+1; 𝑅 ≅ 𝐼; 𝑅 + Σ0(𝑅𝑛); 𝑅; 𝑅.

Because 𝐼; 𝑅 ↪ 𝑅1 and by transitivity of 𝑅, this em-
beds into 𝑅𝑛 + Σ0(𝑅𝑛); 𝑅, which indeed embeds into
𝑅• by construction, hence the result.

(iii) BecauseΣ0 is finitary and filtered limits commutewith
finite limits in general hence pullbacks in particular
(in presheaf categories), we have

Σ0(𝑅•); 𝑅 ≅ 𝑐𝑜𝑙𝑖𝑚𝑛Σ0(𝑅𝑛); 𝑅.

Hence, because Σ0(𝑅𝑛); 𝑅 ↪ 𝑅• for all 𝑛, we have
a cocone to (Σ0(𝑅𝑛); 𝑅 ↪ 𝑅•)𝑛, hence by universal
property of the colimit Σ0(𝑅•); 𝑅 ↪ 𝑅•, hence by re-
flexivity of 𝑅 also Σ0(𝑅•) ↪ 𝑅•, as desired.

(iv) Finally, tensor product preserves colimits on the left,
so we have 𝑅•⊗𝑅• ≅ 𝑐𝑜𝑙𝑖𝑚𝑛(𝑅𝑛⊗𝑅•), which reduces
the problem to finding a cocone (𝑅𝑛⊗𝑅• ↪ 𝑅•)𝑛 over
𝐙2, for we then conclude by universal property. We
proceed by induction.The base case follows by preser-
vation of colimits, hence of the initial object, on the
left by tensor products, and assuming 𝑅𝑛 ⊗ 𝑅• ↪ 𝑅•,
by Lemma E.14, we have

𝑅𝑛+1 ⊗ 𝑅• ⊆ 𝐼 ⊗ 𝑅• + (Σ0(𝑅𝑛) ⊗ 𝑅•); (𝑅 ⊗ 𝐙),

hence may proceed componentwise. We clearly have
𝜆𝑅• ∶ 𝐼 ⊗𝑅• → 𝑅•. Furthermore, by Lemma E.13,𝑅• is
a pointed 𝐼-module, so by structural strength we have

Σ0(𝑅𝑛) ⊗ 𝑅• → Σ0(𝑅𝑛 ⊗ 𝑅•) → Σ0(𝑅•),

the second arrow by induction hypothesis. Finally, 𝑅
is substitution-closed, so 𝑅 ⊗ 𝐙 ⊆ 𝑅, hence we get
(Σ0(𝑅𝑛) ⊗ 𝑅•); (𝑅 ⊗ 𝐙) → Σ0(𝑅•); 𝑅 → 𝑅• by the
previous points, which concludes the proof. □

Lemma E.15. If 𝑅 ↝𝑙 𝑅+, then 𝑅+ ↝𝑙 𝑅+.

Proof of Lemma 5.13. 𝑅•+ is transitive by construction, and
reflexive because 𝑅• is by Lemma 5.9(i). For symmetry, it
suffices to show that 𝑅• is included in the converse 𝑅•+† of
its transitive closure. This in turn follows by induction from
Lemma E.15:

• Clearly, 𝐙 and 𝑅 are included in 𝑅•+†.
• It is then enough to show that if𝑅𝑛 is included in𝑅•+†,

then so is Σ0(𝑅𝑛); 𝑅. And indeed we have

Σ0(𝑅𝑛) ⊆ Σ0(𝑅•+†) = (Σ0𝑅•+)† ⊆ 𝑅•+†

(using Lemma E.15 for the last inclusion) and so

Σ0(𝑅𝑛); 𝑅 ⊆ 𝑅•+†; 𝑅•+† ⊆ 𝑅•+†,

as desired. □
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E.3 Cellularity (proofs)
Although Theorem 5.19 is mostly proved in §5.4, we give a
bit more detail in this section. First, in §E.3.1, we sketch a
proof of Lemma 5.16.The following three sections provide a
bit more detail on particular points. We first prove that the
morphism 𝑃 → 𝑅• factors through some Σ0(𝑅•); 𝑅. We fur-
thermore explain how (33) decomposes into (34). We then
give more detail about how the various implicit coercions
are handled, and how generics transfer across adjunctions.
Finally, Section E.3.5 provides a proof of Lemma 5.20.

E.3.1 Proof sketch for Lemma 5.16.

Notation E.16. For any functor 𝐹, let denote free mor-
phisms, i.e., morphisms in the image of 𝐹. Commutation of
a diagram made of such arrows means commutation before
applying 𝐹.

Notation E.17. For conciseness, instead of assuming the
induction hypothesis for 𝑛 − 1 and proving the result for 𝑛,
we assume it for 𝑛 and prove it for 𝑛 + 1.

By Lemma 4.4, an opcartesian lifting Σ1 → Σ̌1 is epi at
any 𝐿, so we further factor the given morphism through
Σ1(Σ̌𝑛

1 (0⊛)). Moreover, by construction of 𝑅•, the top mor-
phism factors through Σ0(𝑅•); 𝑅 → 𝑅•. By definition of
sequential composition, we thus get a square

𝑃 Σ0(𝑅•)

𝐿 𝐙,
(33)

which we will complete as in (17), with 𝑅′ = 𝒯0(𝑅•). By
weak compositionality of 𝐙, familiality of Σ0 and Σ1, and
cartesianness ofΣ0 → Σ1 (which follows fromTheorem 2.19),
it factors as below.

𝑃 Σ0(𝐴) Σ0(𝑅•)

Σ1(𝐴) Σ1(𝑅•) Σ0(𝐙)

Σ1(𝐵) Σ1(Σ̌𝑛
1 (0⊛)) Σ1(𝐙)

𝐿 𝐙

1(𝑘)

(34)
By generic factorisation of the composite 𝑄 → 𝐿 → Σ1(𝐙)
(though through 𝒯0 instead of Σ0), we obtain precisely the
diagram (19, left) – with 𝑛 instead of 𝑛 − 1 because of dif-
ferent conventions – which we complete by hypothesis. Let
us now use this to complete the square (33) as desired. The
obtained morphism 𝐿 → 𝐙 yields a square

𝑃 𝑅

𝐿 𝐙,

which we may complete because 𝑅 is a prebisimulation. Fi-
nally, we take the pairing of the obtained morphisms 𝑄 →
𝒯0(𝑅•) and 𝑄 → 𝑅 to get a morphism 𝑄 → 𝒯0(𝑅•); 𝑅,
hence𝑄 → 𝑅• by Corollary 5.10, which completes the orig-
inal diagram as desired.

E.3.2 Factorisation of 𝑃 → 𝑅•. The only way for 𝑃 →
𝑅• not to factor through someΣ0(𝑅•); 𝑅 is to factor through
𝐼 . But in this case we would have a commuting square

𝑃 𝐼

𝐿

Σ1(𝐙) 𝐙,

𝑠

which because (Σ0, Σ1) is layered refactors as

𝑃 𝐼

Σ0(𝐙) 𝐙.
(35)

But the cospan 𝐼 → 𝐙 ← Σ0(𝐙) is a coproduct diagram at
each state type 𝑃, hence the pullback is empty because co-
products are disjoint in presheaf categories, which renders
impossible the existence of any square of the form (35).

E.3.3 Decomposition into (34). Let us now explain why
the square (33) decomposes as (34). Letting 𝐙𝑛 = Σ̌𝑛

1 (0⊛),
the given square factors as the exterior of

𝑃 Σ0(𝐙) Σ1(𝐙)

𝐿 Σ1(𝐙𝑛) 𝐙,𝑟

ℎ
1(𝜆𝑛)

so we get a dashed 𝑘 as shown by weak compositionality.
Furthermore, the triangle below right commutes by construc-
tion, so because Σ1(𝐙) → 𝐙 is monic at each 𝐿, we get
Σ1(𝜆𝑛) ∘ 𝑟 = ℎ. The rest is easy by familiality of Σ1 and
Σ0 and preservation of generics by Σ0 → Σ1.

E.3.4 Coercions and transfer of generics across ad-
junctions. First of all, the given top morphism in (34) has
in fact type ℳ𝑃 → ℳΣ0𝑅•. By full faithfulness of ℳ , we
find its unique antecedent by ℳ , say 𝑓 ∶ 𝑃 → Σ0𝑅•. We

factor 𝑓 as 𝑃
𝜉
−→ Σ0𝐴

0𝑓 ′−−−−→ Σ0𝑅• with 𝜉 generic. Our abuse
of notation is harmless, though, because we have:

LemmaE.18. For any functor 𝐹 ∶ 𝒜 → ℬ , any fully-faithful
functor 𝐺∶ ℬ → ℰ preserves 𝐹-generics, in the sense that if
𝑓 ∶ 𝐷 → 𝐹𝐶 is 𝐹-generic, then 𝐺(𝑓 ) ∶ 𝐺(𝐷) → 𝐺𝐹𝐶 is 𝐺𝐹-
generic.

Furthermore, the alleged naturality square
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Σ0𝐴 Σ0𝑅•

Σ1𝐴 Σ1𝑅•

should in fact be refined as follows, the natural transforma-
tion actually being

ℳΣ0
↓ ℳ𝜂0

ℳ𝒯0
↓ ℳ𝒯0𝜂ℳ

ℳ𝒯0𝒟ℳ
↓ℳ𝒯0𝒟𝜂ℒ

ℳ𝒯0𝒟𝒰ℒℳ
∥

ℳ𝒟𝒰Σ1ℒℳ
↓ 𝜀ℳ

𝒰Σ1ℒℳ .
A first problem is that we reach 𝒰Σ1ℒℳ𝑅•, so we need
to postcompose the right-hand morphism by

𝒰Σ1ℒℳ𝑅• 𝒰1ℒ𝜋1−−−−−−−−→ 𝒰Σ1ℒ𝒰𝐙
𝒰1𝜀ℒ𝐙−−−−−−−→ 𝒰Σ1𝐙,

still maintining equality with the top right path of the dia-
gram.

It remains to show that the obtained composite ℳ𝑃 →
𝒰Σ1ℒℳ𝐴 is 𝒰Σ1-generic (the rest goes roughly as an-
nounced). That postcomposition with 𝜂0 preserves gener-
icness follows fromTheorem 2.19.The rest follows from var-
ious applications of the following two lemmas.
Lemma E.19. Given any adjunction

𝒜 ⊥ ℬ
𝐹

𝐺
and functor 𝐻 ∶ 𝒳 → ℬ , if a morphism 𝜉∶ 𝐴 → 𝐺𝐻𝑋 is
𝐺𝐻-generic, then its transpose �̌� ∶ 𝐹𝐴 → 𝐻𝑋 is 𝐻-generic.

Proof. By transposition, liftings for any square of the form
below left are exactly the same as liftings for the correspond-
ing square below right, and conversely.

𝐹(𝐴) 𝐻(𝑌)

𝐻(𝑋) 𝐻(𝑍)

𝜒

�̌�

𝐻(𝑓 )

𝐻(𝑔)

𝐴 𝐺(𝐻(𝑌))

𝐺(𝐻(𝑋)) 𝐺(𝐻(𝑍))

�̃�

𝜉

𝐺(𝐻(𝑓 ))

𝐺(𝐻(𝑔))

□

Lemma E.20. Given any adjunction

𝒜 ⊥ ℬ
𝐹

𝐺
and functor 𝐻 ∶ 𝒳 → 𝒜 , if a morphism 𝜉∶ 𝐴 → 𝐻𝑋 is
𝐻-generic, then the composite

𝐴
𝜉
−→ 𝐻𝑋

𝐻(𝜂𝑋 )−−−−−→ 𝐻𝐺𝐹𝑋
is 𝐻𝐺-generic.

Proof. Consider any diagram as the exterior of

𝐴 𝐻(𝑋) 𝐻(𝐺(𝐹(𝑋)))

𝐻(𝐺(𝐵)) 𝐻(𝐺(𝐵′)).

𝜉

𝜒

𝐻(𝜂𝑋 )

𝐻(𝑘)

𝐻(𝐺(𝑓 ))

𝐻(𝐺(𝑔))
𝐻(𝐺(𝑘′))

By genericness of 𝜉, we first find a unique lifting 𝑘. By uni-
versal property of 𝜂𝑋 , we then find a unique 𝑘′ as shown,
such that 𝐺(𝑘′) ∘ 𝜂𝑋 = 𝑘, which by uniqueness further satis-
fies 𝑓 ∘ 𝑘′ = 𝑔, as desired. □

E.3.5 Proof of Lemma5.20. Theonly non-trivial point is
composition: consider any presimulation 𝑅, and start from
the solid part of the diagram below, where 𝐹 is the compos-
ite, obtained by pushout.

𝐴 𝑅

𝐵

𝐶

𝑋 𝑅 𝑋

𝐹

𝐷

𝐸 𝑅

By hypothesis, we obtained first the dashed, and then, induc-
tively, the dotted arrows. By universal property of pushout,
we finally obtained the dash/dotted one, as desired.

Here is a perhaps more geometrical perspective on the
same argument, with the same graphical conventions, bear-
ing in mind that only two out of four ‘squares’ in the left
and right faces are proper (commuting) squares.

𝐴 𝑅

𝐵 𝑋

𝐵 𝑋

𝐹 𝑋

𝐶 𝑅

𝐹 𝑋

𝐷 𝑋

𝐷 𝑋

𝐸 𝑅



A Cellular Howe Theorem LICS ’20, July 8–11, 2020, Saarbrücken, Germany

F Conclusion and perspectives
The additional coherence condition alluded to in §6 consists
in demanding 𝐼-modules (𝐴, 𝑟, 𝑒) to further make the follow-
ing diagram commute.

𝐼 ⊗ 𝐼 𝐴 ⊗ 𝐼

𝐼 𝐴

𝑒⊗𝐼

𝜆𝐼

𝑒

𝑟 (36)
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