Existence of equilibrium on asset markets with a countably infinite number of states - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Economics Année : 2017

Existence of equilibrium on asset markets with a countably infinite number of states

Résumé

We consider a model with a countably infinite number of states of nature. The agents have equivalent probability beliefs and von Neumann–Morgenstern utilities. The No-Arbitrage Prices in this paper are, up to a scalar, the marginal utilities. We introduce the Beliefs Strong Equivalence and the No Half Line Condition of the same type conditions. Under these conditions, the No Arbitrage price condition is sufficient for the existence of an equilibrium when the commodity space is lp,1≤p<+∞. This No Arbitrage condition is necessary and sufficient for the existence of equilibrium when the total endowment is in l∞. Moreover, it is equivalent to the compactness of the individually rational utility set.
Fichier principal
Vignette du fichier
JME.pdf (384.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02877952 , version 1 (22-11-2023)

Identifiants

Citer

Thai Ha-Huy, Cuong Le Van. Existence of equilibrium on asset markets with a countably infinite number of states. Journal of Mathematical Economics, 2017, 73, pp.44-53. ⟨10.1016/j.jmateco.2017.07.001⟩. ⟨hal-02877952⟩
103 Consultations
42 Téléchargements

Altmetric

Partager

More