Global optimization for recovery of clipped signals corrupted with Poisson-Gaussian noise
Résumé
We study a variational formulation for reconstructing nonlinearly distorted signals corrupted with a Poisson-Gaussian noise. In this situation, the data fidelity term consists of a sum of a weighted least squares term and a logarithmic one. Both of them are precomposed by a nonlinearity, modelling a clipping effect, which is assumed to be rational. A regularization term, being a piecewise rational approximation of the 0 function provides a suitable sparsity measure with respect to a preset linear operator. We propose a global optimization approach for such a problem. More specifically, it is first transformed into a generalized moment problem by introducing some auxiliary variables. Then, a hierarchy of semidefinite programming relaxations is built. Numerical examples show the good performance of the proposed approach.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...