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Global Optimization for Recovery of Clipped
Signals Corrupted with Poisson-Gaussian Noise

A. Marmin, A. Jezierska, M. Castella, Member IEEE, and J.-C. Pesquet, Fellow IEEE

Abstract—We study a variational formulation for reconstruct-
ing nonlinearly distorted signals corrupted with a Poisson-
Gaussian noise. In this situation, the data fidelity term consists
of a sum of a weighted least squares term and a logarithmic one.
Both of them are precomposed by a nonlinearity, modelling a
clipping effect, which is assumed to be rational. A regularization
term, being a piecewise rational approximation of the `0 function
provides a suitable sparsity measure with respect to a preset
linear operator. We propose a global optimization approach for
such a problem. More specifically, it is first transformed into a
generalized moment problem by introducing some auxiliary vari-
ables. Then, a hierarchy of semidefinite programming relaxations
is built. Numerical examples show the good performance of the
proposed approach.

Index Terms—signal reconstruction, polynomial optimization,
Poisson-Gaussian noise, `0 penalization, nonconvex models, Padé
approximation

I. INTRODUCTION

Over the last years, there has been a growing interest
for signal reconstruction from measurements corrupted by
Poisson-Gaussian (PG) noise. Examples of application areas
are fluorescence microscopy [1], low dose computer tomogra-
phy [2]–[4], and visible light communication (VLC) [5]. Most
reconstruction methods rely on some approximations to PG
statistics. Among them, the weighted least squares approxi-
mation is one of the most popular [6], [7]. In existing works,
the log-likelihood is approximated by the log-likelihood of a
Gaussian variable whose variance depends on the data model.
The data fit term is then a sum of a weighted least squares
plus a logarithm term, the latter being often omitted in order
to ensure the convexity of the problem, and to simplify it.
Recently in [2], the authors proposed to keep this term and
to handle the resulting nonconvex optimization problem. The
latter problem was addressed by employing the alternating
direction method of multipliers which, in this nonconvex
setting, provides only a guarantee to return a local minimizer.

In this letter, we propose a novel approach with global con-
vergence properties. More precisely, our contributions consist
in (i) proposing a new rational approximation to the PG data fi-
delity term, (ii) showing that rational approximations to the `0
sparsity measure introduced in [8] can be combined efficiently
with a linear operator such as a discrete gradient, (iii) solving

A. Marmin and J.-C Pesquet are with Université Paris-Saclay, Centrale-
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the resulting nonconvex maximum a posteriori (MAP) problem
with a method that guarantees the global optimality of the
solution by using recent advances in polynomial optimization
and moment problems, (iv) illustrating the good performance
of the method on several practical examples.

Our paper is organized as follows: Section II introduces
the considered data model as well as the general form of the
addressed optimization problem. Section III reformulates the
original optimization problem into a rational optimization one
and describes how to solve it globally. Numerical simulations
and results are presented in Section IV to validate our ap-
proach. Finally, Section V concludes the paper.

II. PG NOISE MODEL AND OPTIMIZATION PROBLEM

A. Considered model and problem

We consider the reconstruction of a discrete positive signal
x of length T from an observation vector y. The signal x
is first degraded by a linear operator represented by a matrix
with positive coefficients H and then by a scalar nonlinear
function φ which takes positive values. Finally, the output
signal is corrupted with a PG noise. For instance, matrix H can
model the convolution with a filter impulse response, while φ
can represent saturation effects such as clipping [9], [10]. Our
model hence reads

(∀t ∈ J1, T K) yt ∼ N
(
c+ P(φ

(
(Hx)t)

)
, σ2
)
, (1)

where (Hx)t denotes the t-th component of the vector Hx,
P and N denote respectively the PG distributions, c is a
nonnegative constant modelling the average background noise,
and σ2 is the variance of the Gaussian noise.

To reconstruct the original signal x, a MAP estimator x̂
is computed, which amounts to minimizing the sum of the
negative log-likelihood fy plus a regularization Rλ balanced
by a parameter λ > 0

x̂ = argmin
x∈RT

fy(x) +Rλ(x) . (2)

The likelihood of PG Model (1) is given by

T∏
t=1

+∞∑
n=0

e−φ((Hx)t)(φ((Hx)t))
n

n!

e
−
(
yt−n−c√

2σ

)2

√
2πσ

 . (3)

The corresponding log-likelihood is intricate and surrogates
are often used for fy.

When φ is the identity function, classical approaches of-
ten approximate the negative logarithm of (3) with a more
tractable function of the form

∑T
t=1 g((Hx)t, yt) [1], [3], [7],
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[11]. Such a good approximation is the Weighted least squares
with a logarithm term (WLOG):

gwlog(x, y) =
1

2

(y − x)
2

x+ σ2
+

1

2
log(x+ σ2) .

B. Sparse regularization

The regularization Rλ is chosen according to the prior
information available on x. We suppose here that, after a
suitable linear transformation D, x is a sparse signal, i.e.
only a few of its components are nonzero. This extends
our previous work where the signal itself was composed of
only a few spikes and the operator D was the identity [8].
Alternatively, D can be a gradient operator for a signal with
sharp discontinuities. The `0 regularization function is an
effective way to enforce the sparsity of the solution since it
penalizes equally the nonzero components of the vector Dx.
However, this choice yields NP-hard optimization problems.

A standard approximation to the `0 function is the `1
norm whose main benefit is to be convex. However, it also
introduces a bias in the estimate. In this work, we therefore
choose to replace `0 with a tight continuous approximation
such as the ones described in [8]. Those approximations,
although nonconvex, have been shown to possess nice proper-
ties like unbiasedness, continuity, and stability [12]. The pre-
composition with the operator D which is introduced in this
paper adds flexibility to the criterion.

Finally, in the following, to build our MAP estimator, we
consider the optimization Problem (2) with

fy(x) =

T∑
t=1

gwlog(φ((Hx)t) + c, yt) (4)

Rλ(x) =

T∑
t=1

Ψλ((Dx)t) , (5)

where Ψλ is a continuous approximation to the `0 function
such as the capped `p function [13]–[15], the smoothly clipped
absolute deviation (SCAD) [12], or the minimax concave
penalty (MCP) [16].

III. RATIONAL OPTIMIZATION FORMULATION

A. Rational formulation

Due to our choice in (4) and (5), Problem (2) is highly
nonconvex and is difficult to solve globally with standard
optimization methods. However, it can be noticed that the
approximations to the `0 function considered in Section II-B
are piecewise rational functions, i.e. on different intervals, they
are ratios of two polynomial functions. We assume here that
the nonlinearity φ is rational, which is not restrictive as any
function can be tightly approximated with a suitable rational
function. Furthermore, we substitute a rational approximation
l̂og for the log function in gwlog. An example of a good rational
approximation for the log function is given by the following
Padé approximant [17]

(∀x ∈ R∗+) l̂og(x) = (x− 1)
x+ 5

2(2x+ 1)
, (6)

such that, for all x in R∗+, log(x) ≤ l̂og(x). This approxima-
tion is satisfactory on a broad interval and especially accurate
on [0.2, 3.9] where the relative error is less than 8%.

Finally, substituting the log function with its rational ap-
proximation l̂og, Equation (4) becomes a sum of rational
functions while (5) is a sum of piecewise rational functions.
Problem (2) hence becomes the unconstrained minimization of
a sum of rational and piecewise rational functions. This can be
reformulated as the minimization of a sum of solely rational
functions by replacing the characteristic functions of each
subdomain of the piecewise functions with a binary variable as
described in [8], [18]. As an example, we express Problem (2)
as a rational optimization problem in the case of interest for
many practical applications where D is the discrete gradient
operator and Ψλ is the capped `1 regularization:

min
x,z,r

f̂y(x) +

T−1∑
t=1

(rt(1− zt) + λzt)

s.t. (∀t ∈ J1, T − 1K)


zt = z2t

(zt − 1/2)(rt − λ) ≥ 0

rt ≥ 0

r2t = (xt+1 − xt)2 ,

(7)

where f̂y is the function in (4) with the log term replaced
by l̂og, (zt)t∈J1,T−1K and (rt)t∈J1,T−1K are extra real-valued
variables used to handle respectively the indicator function and
the absolute value of the capped `1 function.

Note that the operator D imposes extra complexity to (7).
Instead of having a polynomial in the three variables
(xt, zt, rt) as in [8], we now have a polynomial in four
variables (xt+1, xt, zt, rt). The choice of the operator D is
thereby important for the complexity of the model: using a
higher-order discrete difference operator indeed leads to an
increase of the number of variables per polynomial.

B. Moment problem formulation

In (7), the objective is rational and the feasible set is com-
pact. It can hence be written minx∈K

p(x)
q(x) where p and q are

polynomials and K is the constraint set. Any such problem can
be formulated equivalently as an infinite-dimensional general
moment problem [19], where the variable µ is a positive
measure on K:

min
µ≥0

∫
K
p(x)µ(dx) s.t.

∫
K
q(x)µ(dx) = 1 . (8)

The main bottleneck for numerically solving (8) is the number
of variables on which the measure µ is applied. This number
has a critical influence on the size of the semidefinite program-
ming (SDP) relaxation obtained in Section III-C. To get around
this problem, we use the structure of the criterion. Indeed,
under mild assumptions, Formulation (8) can be generalized
to a criterion expressed as a sum of rational functions [20].
We hence define measures µ(1)

t and µ(2)
t for respectively each

least square and l̂og term of gwlog as well as a measure νt
for each term of the regularization. Under the assumption that
the matrix H has a Toeplitz-band structure, the number of
variables per measure is now much fewer than T . For example
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in Problem (7), each measure νt is defined on the 4 variables
(xt+1, xt, zt, rt) and the following criterion is minimized with
respect to the variables µ(1), µ(2), and ν:

T∑
t=1

∫
p
(1)
t dµ

(1)
t +

T∑
t=1

∫
p
(2)
t dµ

(2)
t +

T−1∑
t=1

∫
p
(3)
t dνt , (9)

where p(1)t and p(2)t are the polynomial numerators of respec-
tively 1

2

(yt−φ((Hx)t))
2

φ((Hx)t)+σ
2 and l̂og(φ((Hx)t)) while p

(3)
t is the

polynomial rt(1− zt) + λzt.
However, this formulation using several measures comes

at the cost of extra linear constraints linking the marginal
moments of different measures that are equal. For example
the moments of x1 in µ

(1)
1 in µ

(2)
1 , and in ν1 should be all

equal. Although there might be numerous additional linear
constraints, they have a negligible effect on the complexity
of the problem (see [18] for a more detailed discussion).

C. SDP relaxation
As the feasible set is defined by polynomial constraints,

the algorithm to solve minimization problems on measures
like (8) and (9) consists in (i) replacing the measures by their
moments with the additional semidefinite constraints on the
corresponding moment and localizing matrices, (ii) truncating
the moments up to a given maximal degree to obtain an SDP
relaxation, (iii) solving these SDP problems, for instance with
an interior point method, to obtain the moments of the sought
measures, (iv) extracting the global minimizers of Problem (7)
from the latter moments by an algebraic method [21]. Solving
the successive SDP problems for different maximal degree
results in an increasing sequence of lower bounds converging
to the optimal objective value of the original optimization
problem [19]. The main advantage of this method is its
guarantee on the global optimality of the returned solutions.

Using Criterion (9) instead of (8) results in block SDP prob-
lems in Lasserre’s hierarchy. Instead of having a single high-
dimensional moment matrix in the semidefinite constraints,
we have then lower-dimensional moment matrices, one for
each introduced measure. Therefore, by using the structure
of (2), we can drastically decrease the dimensions of the SDP
problem to solve, which is essential for the computability.

IV. NUMERICAL RESULTS

Throughout this part, H is a Toeplitz matrix corresponding
to the convolution with the lowpass filter with impulse re-
sponse h = [0.25, 0.5, 0.25] and with convolution boundaries
using zero padding. The variance σ2 of the Gaussian noise is
set to 0.15 (except in Table II) and c to 0. We solve Problem (2)
using (4) and (6) for the data fit term together with a SCAD
regularization (with parameter equal to 2.1) in (5). We use
the software GloptiPoly [22] to perform the relaxation of the
rational problem into SDP problems which are then solved
using SDPT3 [23]. We set the relaxation order in the SDP
hierarchy to 3, i.e. we consider moments up to degree 6.

We compare our method to proximal methods applied on
the following convex problem:

minimize
x∈RT

T∑
t=1

g((Hx)t, yt) + λ`1(Dx) , (10)

where g is one of the convex approximations to the negative
log-likelihood mentioned in Section II. We use the peak signal
to noise ratio (PSNR) between the original signal x and the
estimator x̂ to assess the quality of the reconstruction.

A. Sparse signal reconstruction

The linear operator D is first set to identity. We performed
simulations on 100 randomly generated sparse signals of
length T = 200 with 20 nonzero elements. The positions of
the latter are drawn uniformly between 1 and T .

1) Linear case: We first consider the case when φ = Id.
We compare our method to the classic Forward-Backward
algorithm (FB) applied to Problem (10) as the considered
function g is differentiable. More precisely, we compare our
method with the results obtained with FB applied for the four
approximations GAST (Generalized Anscombe transform),
WLS (Weighted least squares), WLOG, and SPOI (Shifted
Poisson) [1], [11] of the likelihood (3). The value of the
regularization parameter λ has been tuned empirically to 5.5
for our method and 0.5, 2.5, 0.9, and 1 for FB respectively
on GAST, WLS, WLOG, and SPOI.

Table I shows statistics on the PSNR of the estimated signal
over 100 runs for each tested methods. We set the maximum
number of iterations to 10000 for FB. Furthermore, we show
in Table II the impact of the variance σ2 on the quality of the
signal reconstructed with our method.

TABLE I
STATISTICS ON THE PSNR (IN DB) BETWEEN THE ORIGINAL SPARSE

SIGNAL AND THE ESTIMATED SIGNAL (100 REALIZATIONS)

Average Median Minimum Maximum
FB (GAST) 12.0 12.0 10.5 13.8
FB (WLS) 7.3 7.1 4.1 10.9

FB (WLOG) 8.8 8.7 7.1 11.8
FB (SPOI) 10.7 11.2 6.9 13.5
Our method 12.5 12.5 11.3 14.1

TABLE II
IMPACT OF THE VARIANCE σ2 ON THE RECONSTRUCTION QUALITY

σ2 0.15 0.25 0.5 0.85
Average PSNR on 100 realizations (in dB) 12.5 11.3 10.5 8.1

2) Nonlinear case: We now choose φ(x) = x
δ+|x| with

δ = 0.3. Since φ is nonconvex, we linearize it around 0 in (10)
in order to apply FB. Figure 1 shows an example of the re-
construction in the nonlinear case where our method performs
better than FB. Moreover, we observe that in both linear and
nonlinear cases, the convergence in the SDP hierarchy occurs
and that our method returns a global solution to (2). Indeed,
the relative gap between the lower bound returned by solving
the SDP problem of order 3 and the value of the criterion
in (2) is in the order of magnitude of 10−6.

3) Impact of logarithmic term: In this section, we study
the impact of the log term by dropping it in (4) and compare
it with the previous criterion. We use the same methodology
developed in Section III and the same experimental settings
of Section IV-A2.
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(a) From top to bottom: the observed signal y, the original
signal x, and the signal reconstructed with our method.

20 40 60 80 100 120 140 160 180 200
0

1

2

20 40 60 80 100 120 140 160 180 200
0

1

2

20 40 60 80 100 120 140 160 180 200
0

1

2

(b) From top to bottom, the estimator returned by FB for
respectively GAST, WLOG, and SPOI approximations.

Fig. 1. Example of sparse signal reconstruction with PG noise and a nonlinear
model.

In Figure 2, we zoom in the first 60 samples of the signals
to compare them. We observe that without the log term, the
weighted least squares (WLS) approximation always overes-
timate the amplitude of the peaks. This is consistent with [3]
where the authors evidence that WLS approximation, as well
as SPOI and GAST, introduce bias since the observations
y must be nonnegative. Conversely, we also note that after
adding the log term, the amplitude of the peaks are slightly
underestimated. However, many small artifacts are removed.
Table III shows that adding the log term results in an 1.4 dB
PSNR improvement in average.
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Fig. 2. Comparison of the reconstructed signal using our method. In red, the
original signal x, in dashed blue, the signal reconstructed using gwlog, and
in dotted green, the result by using gwls

TABLE III
COMPARISON ON THE PSNR (IN DB) FOR WLS AND WLOG

APPROXIMATIONS USING OUR METHOD (100 RANDOM REALIZATIONS)

Average Median Minimum Maximum
WLS 11.0 10.8 9.2 13.4

WLOG 12.0 11.9 10.5 15.1

B. Visible light communication (VLC) signals

We now observe y according to Model (1) when φ(x) =
x

δ+|x| and D is the discrete gradient operator. We consider
100 binary signals x such that there are only 20 transitions
between the 0 and 1 states. The location of the transitions
are drawn uniformly between 1 and T . This model is inspired
from VLC where a digital signal is transmitted by a LED that
is alternatively switching between high and low intensity [5].

As the proximal operator of `1 ◦D does not have a closed
form, our method is now compared to the forward-backward
primal-dual algorithm (FBPD) [24] instead of FB. Moreover,
we use the GAST approximation for the log-likelihood in
FBPD as it gives the best reconstruction results. The value
of the regularization parameters λ is tuned empirically to 2
for our method and to 1.1 for FBPD.

Figure 3 illustrates the obtained signals for a single test.
We observe that our method provides a better estimator of
the original signal. This is confirmed in Table IV that shows
different statistics on the PSNR between the original signal x
and the estimated one x̂.
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Fig. 3. Examples of VLC signals reconstruction. From top to bottom: the
observed signal y, the original signal x, the estimator obtained with our
method, and the estimator returned by FBPD.

TABLE IV
STATISTICS ON PSNR (IN DB) BETWEEN THE ORIGINAL VLC SIGNAL

AND THE ESTIMATED SIGNAL (100 REALIZATIONS)

Average Median Minimum Maximum
FBPD 8.16 8.18 5.87 9.94

Our method 9.20 9.12 6.38 12.22

V. CONCLUSION

We have considered the challenging problem of reconstruct-
ing a sparse signal in the presence of Poisson-Gaussian noise.
We have adopted a quite general degradation model involving
a convolutive effect and a nonlinear degradation. We have
defined a rational approximation to the MAP optimization
problem where we have proposed a nonconvex approximation
to the log-likelihood and a nonconvex approximation to the
`0 regularization that promotes sparsity after a given linear
transform. We have applied a recent methodology based on a
general moment problem to compute the MAP estimate as a
global minimizer of the so-defined objective function. Finally,
we have shown that our approximation to the MAP problem
together with our computational approach provide better re-
construction results than standard ones for two different types
of application.
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