End-to-end deep metamodeling to calibrate and optimize energy loads - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

End-to-end deep metamodeling to calibrate and optimize energy loads

Résumé

In this paper, we propose a new end-to-end methodology to optimize the energy performance and the comfort, air quality and hygiene of large buildings. A metamodel based on a Transformer network is introduced and trained using a dataset sampled with a simulation program. Then, a few physical parameters and the building management system settings of this metamodel are calibrated using the CMA-ES optimization algorithm and real data obtained from sensors. Finally, the optimal settings to minimize the energy loads while maintaining a target thermal comfort and air quality are obtained using a multi-objective optimization procedure. The numerical experiments illustrate how this metamodel ensures a significant gain in energy efficiency while being computationally much more appealing than models requiring a huge number of physical parameters to be estimated.
Fichier principal
Vignette du fichier
metamodel_2020.pdf (2.65 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02873577 , version 1 (18-06-2020)
hal-02873577 , version 2 (30-01-2021)
hal-02873577 , version 3 (04-11-2021)

Identifiants

  • HAL Id : hal-02873577 , version 1

Citer

Max Cohen, Maurice Charbit, Sylvain Le Corff, Marius Preda, Gilles Nozière. End-to-end deep metamodeling to calibrate and optimize energy loads. 2020. ⟨hal-02873577v1⟩
183 Consultations
169 Téléchargements

Partager

More