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‡Oze-Énergies.

Abstract

In this paper, we propose a new end-to-end methodology to optimize the energy perfor-
mance and the comfort, air quality and hygiene of large buildings. A metamodel based on a
Transformer network is introduced and trained using a dataset sampled with a simulation pro-
gram. Then, a few physical parameters and the building management system settings of this
metamodel are calibrated using the CMA-ES optimization algorithm and real data obtained
from sensors. Finally, the optimal settings to minimize the energy loads while maintaining a
target thermal comfort and air quality are obtained using a multi-objective optimization pro-
cedure. The numerical experiments illustrate how this metamodel ensures a significant gain in
energy efficiency while being computationally much more appealing than models requiring a
huge number of physical parameters to be estimated.

1 Introduction

Global energy demand for heating, ventilation and air-conditioning in commercial or public build-
ings has been increasing rapidly for the past few decades along with population and economic
growth. This rising demand is at the root of the complex problem of simultaneously ensuring a
better environmental impact, as higher consumption of fossil fuels implies higher greenhouse gas
emissions, while maintaining a satisfactory comfort in buildings (air and indoor temperature qual-
ity). In that respect, building designing and management have to integrate thermal performance
and comfort criteria, and to assess the environmental consequences of any chosen policy. This
makes the analysis of building energy performance a challenging multi-criteria problem, as detailed
for instance in [Bre et al., 2016]. Our paper sets the focus on analyzing and optimizing cooling,
heating and air conditioning loads by tuning the building management system in given buildings
without costly, invasive or time consuming renovation works. The aim is to provide the optimal
building management settings, governing Heating, Ventilation and Air-Conditioning (HVAC) and
Air Handling Units (AHU), in order to improve thermal comfort, energy loads as well as environ-
mental impact. This objective is decomposed into three steps: (i) provide a model to predict future
energy loads and temperature in a building based on the HVAC system and the weather forecast,
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(ii) calibrate the parameters of this model based on real data obtained in real time in each building
and (iii) optimize the HVAC equipment to minimize the total energy load in future periods while
maintaining a given thermal comfort.

The first category of approaches to model the energy performance of a building are based on
physical equations that describe heat transfer between the building and its environment. Thanks
to their increasing reliability, simulation based methods such as EnergyPlus, TRNSYS or DOE-2
are commonly used to simulate the system behavior based on a schematic view of the building.
EnergyPlus was used for instance in [Shabunko et al., 2018] to build three types of typical designs
and to benchmark the energy performance of 400 residential buildings. In [Zhao et al., 2016], the
authors proposed a predictive control framework based on Matlab and EnergyPlus in order to
optimize energy consumptions while meeting the individual thermal comfort preference. In these
papers, a schematic building is used in the simulation program and considered as a baseline for
energy loads. These approaches rely on a huge number of parameters, such as window to wall ratio,
window leakage, or wall construction. Instead of costly campaigns to measure these parameters,
that would have to be reiterated for each new building, they may be estimated using an automatic
calibration procedure by minimizing a cost function which associates, with each set of parameters,
the discrepancy between the true energy loads and temperatures, and the simulated ones, see
[Coakley et al., 2014, Le Corff et al., 2018]. As shown in [Nagpal et al., 2018], calibration yields
sufficiently accurate results for a variety of different buildings, thus ensuring limited additional
costs to generalize a given model. Once calibrated, the optimisation task consists in determining a
set of building management settings that will result in lower energy consumption, while preserving
comfort. Following numerous works such as [Bre et al., 2020], the multi-objective Non-dominated
Sorting Genetic Algorithm-II (NSGA-II), see [Deb et al., 2000], is the most widespread method to
solve the optimization task. However, when no prior knowledge is available on the thousands of
specific parameters required to specify each building, calibrating and optimizing such simulation
programs is computationally prohibitive, see [Westermann and Evins, 2019]. This shortcoming is
particularly severe in cases where many data are available from numerous wireless sensors installed
in a building but no intrusive and resource consuming in-site campaigns are deployed to fix the
values of the physical parameters.

Metamodeling approaches aim at overcoming this computational cost by proposing surrogate
models that replace the physical simulator during calibration and optimization tasks. The pa-
rameters of such metamodels are estimated during a training phase using simulations conducted
by a physical-based model, that aims at exhaustively capturing the building behavior for various
building management settings. In [Bre et al., 2020, Reynolds et al., 2018], statistical models are
trained on a dataset sampled from EnergyPlus, allowing significant computational savings during
optimization. In [Bre et al., 2020], the authors proposed to combine NSGA-II with an artificial
neural network metamodel to obtain a Pareto front of optimal HVAC parameters with the trained
metamodel, in order to optimize the consumption of a 83 m2 house. To fit this dataset, instead of
standard statistical models, this paper uses a Feed Forward Neural Network (FFN) as a metamodel.
Although they often yield very accurate predictions, these neural networks are not adapted to time
series problems, and are usually substituted for there sequential counter parts, such as recurrent
or convolutional based approaches. This FFN was only validated with EnergyPlus simulations,
and the calibration step was not performed, as no real historic data from the targeted building
were discussed. Similarly, [Reynolds et al., 2018] proposed a FFN based metamodeling approach
to reduce up to 25% the energy consumption in a small office building. EnergyPlus was used to
sample a dataset for various zones of the building, in order to train zone level metamodels. These
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simulation spread over 24 hours, and approximated the building behavior from January to March.
Once again, in the absence of real historic data, no calibration step was implemented. The first op-
timization method is similar to previous works, and consists in optimizing consumption by feeding
NSGA-II each metamodel. In a novel approach, optimization can also be updated every hour with
the newly collected data from the building, in hope to avoid the error drift of simulating 24 hours
of building behavior without any feedback. The study presented in [Magnier and Haghighat, 2010]
focused on the optimization of a 210 m2 two storey house. Despite measured data being available,
no automatic calibration step was discussed ; instead, TRNSYS was calibrated by hand to match
the real building, resulting in relative errors of 3.7%, 3.4%, and 7.3% for heating, cooling, and fan
monthly energy consumption, respectively. A FFN surrogate model was fit on a dataset of 450
samples, before being optimized using once again NSGA-II.

In this paper, we propose a end-to-end methodology, from dataset sampling to metamodel
calibration and optimization using data obtained from wireless sensors set in a large building.
The proposed metamodels involve classical recurrent neural networks and an approach based
on a Transformer architecture ([Vaswani et al., 2017]) which has recently proven both an accu-
rate and computing efficient alternative to traditional sequences to sequences models, such as
Long Short-Term Memory (LSTM, [Hochreiter and Schmidhuber, 1997]) and Gated Recurrent Unit
(GRU, [Cho et al., 2014]). Transformers combine an encoder-decoder architecture, see for instance
[Cho et al., 2014] or [Bahdanau et al., 2015], allowing the model to learn semantic information from
the observations using attention mechanisms ([Parikh et al., 2016, Zhu et al., 2019]) that could be
interpreted as the day to day patterns of our problem. Once the metadomel is trained using a
dataset built using TRNSYS, all the parameters of a real building and of its Building Management
System (BMS) are estimated using real measurements with the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) [Igel et al., 2007] which provides a derivative free optimization
procedure. A multi-objective methodology to improve energy efficiency and maintain thermal com-
fort is then implemented by acting only on the BMS. The NSGA-II approach is used to obtain the
Pareto optimal parameters. The performance of this metamodel are compared at each step with
the usual FFN alternatives, LSTM, and GRU metamodels.

The paper is organized as follows. Section 2 provides all the deep learning architectures used
in this paper to build a metamodel and describes the data and variables used in our metamodel.
Section 3 illustrates the performance of our metamodel in the calibration and optimization process
of a real building. The numerical experiments illustrate how this metamodel ensures a significant
gain in energy in comparison to the considered alternatives.

2 Metamodeling

2.1 Notations

Let (Xk)k>0 be the state of the building i.e. the inside temperatures and the consumptions of
the building management system. The index k denotes time and, in the setting of this paper,
data are collected each hour. The aim of the metamodel introduced in this paper is to provide
a numerically efficient solution to predict (Xk)k>0 from other variables and external observations
such as meteorological data. Such a metamodel is described by several sets of input variables.
A parameter θbuild containing all unknown parameters useful for the geometrical description of
the buildings (windows area ratio, etc.) and parameters related to heat transfer (capacitance,
airchange infiltration, etc.). Choosing such parameters allows to build a data set and design a
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metamodel able to mimick various buildings. A sequence (Wk, Ok, Ik)k>0 providing at each hour
the building management system variables in Ik (comfort and reduced temperatures for the HVAC),
the occupancy Ok (described as a percentage of a given maximum number of people) and in Wk

the weather data at time k. In this section, we describe how a simulation program may be used to
train the metamodel which aims at mimicking the outputs of this simulation program for various
choices of θbuild, (Ik)k>0, (Ok)k>0 and of meteorological data (Wk)k>0. The appendix displays
a complete list is of the variables contained in θbuild, (Ik)k>0, (Ok)k>0 and in (Wk)k>0 for the
numerical experiment of this paper.

2.2 Models

In most recent works, a great deal of research activities focused on FFN as surrogate models,
[Bre et al., 2020, Magnier and Haghighat, 2010, Reynolds et al., 2018]. Although they may lead to
interesting performance during the training phase, these fully connected architectures are not well
suited for time series prediction, in particular for long time spans. We ceased this opportunity to
explore other approaches that have proven to be more relevant for solving time series tasks in the
past few years. Therefore, we decided to evaluate the go-to architectures for time series: a standard
LSTM, a bidirectional GRU (BiGRU), a hybrid model mixing both convolutional and GRU layers
(ConvGru), and a Feed Forward Network (FFN) as used in previous works. In addition to those
models, a Transformer model which introduces an attention mechanism to model dependencies is
also considered. These models have been implemented using the deep learning framework PyTorch
and can be found on our Github1.

Recurrent Neural Network (RNN) were first introduced as a more suited architecture for dealing
with time varying input patterns [Mozer, 1989]. By replacing buffer based approaches with an
updated context state, RNN are able to solve time series problems with short time dependencies,
but are lackluster in problems requiring long term memory due to vanishing and exploding gradient
[Bengio et al., 1994]. Long Short Term Memory proposed in [Hochreiter and Schmidhuber, 1997]
aim at bridging that gap by enforcing error flow throughout time in the network. Later, the
authors of [Cho et al., 2014] modified the LSTM architecture in order to simplify implementation
and improve computation times, resulting in a novel model called Gated Recurrent Unit.

In parallel to these advances on recurrent architectures, Convolutional Neural Networks (CNN),
rendered popular by [Krizhevsky et al., 2012] for image classification, have been adapted to time
series problem. The approaches proposed in [Józefowicz et al., 2016, Kim et al., 2016] outperformed
traditional Natural Language Processing (NLP) models by replacing the embedding layer with a
character-level convolutional layer. Following this idea, [van den Oord et al., 2016] considerably
improved on the speech to text state of the art, by using dilated convolutions, increasing the
receptive fields of WaveNet at each layer. One year later, [van den Oord et al., 2018] improved on
the existing architecture by introducing Parallel WaveNet, which provided similar performance for
a lower computational cost.

Recurrent and convolutional approaches coincide in that temporally close time steps data are
matched together. In 2017, [Vaswani et al., 2017] proposed an attention based approach to solving
NLP tasks that consider the entire input sequence in parallel. The Transformer model is based on
a self-attention mechanism, that computes an attention value for every element of a sequence with
respect to all others to model their dependency. This attention mechanism allows to understand at
each time step k which input elements are crucial to predicting the new state Xk. This makes these

1https://pytorch.org and https://github.com/maxjcohen/transformer
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networks more interpretable than their most widely-used recurrent counterparts such as LSTM or
GRU networks and motivate a keen interest for such approach to predict complex time series.

Transformer differ from sequential architectures in that they compute prediction at each time
step in parallel. In our context, we propose to use a Transformer architecture as follows. Let Fθmeta

be the Transformer mapping which computes a prediction (X̂k)16k6n of the states (Xk)16k6n:

(X̂1, . . . , X̂n) = Fθmeta
(θbuild, (Wk, Ok, Ik)16k6n) ,

where θmeta contains all the unknown parameters specific to the metamodel. Following the state of
the art in sequence to sequence modeling, the Transformer adopts an encoder-decoder architecture.
The encoder computes a latent vector from the input data, which is fed to the decoder in order to
predict the outputs. These sub-networks are trained jointly and are supposed to foster learning of
a meaningful representation of the data. The encoder and decoder consist of a self attention block,
responsible for leveraging the relationship between time steps in the sequence, and a feed forward
network, which contains the non linearity of the Transformer.

Embedding. Similarly to the original embedding layer, our metamodel is first based on a linear
map, that allows setting the dimension demb of the latent representation of the inputs. Let ∆ > 0
be an attention window and k be a given time step. For all k − ∆ 6 j 6 k + ∆, let Uj =
(θbuild, Ij ,Wj , Oj) ∈ Rd be the vector at time j which stacks all inputs, and U emb

j the latent vector
for the corresponding time step,

U emb
j = Wemb · Uj + bemb ,

where Wemb ∈ Rdemb×d and bemb ∈ Rdemb are the unknown weight matrix and bias respectively,
that are estimated during the training phase.

Encoder. The encoder block proceeds by computing the query, key and value from Rj for this
state with a linear transform:

qj = W qU emb
j , κj = WκU emb

j , vj = W vU emb
j , (1)

where W q, Wκ and W v are the unknown r × demb matrices (parameters of the metamodel to
be estimated, r chosen by the user). Then, let Kk denote the matrix whose columns are κj ,
k −∆ 6 j 6 k + ∆, and compute for all k −∆ 6 j 6 k + ∆,

sjk = qTj Kk and πjk = σ(sk/
√
r)j ,

where σ is the softmax function. Finally, self-attention is computed as

zenck =

k+∆∑
`=k−∆

π`kv` . (2)

The output of the encoder is then given by a final transform of zenck which is considered as the input
of a FFN:

rlatk = FFNθatt(z
enc
k ) ,
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where θatt = {W1, b1,W2, b2} and

FFNθatt(z) = W2 ·max(0,W1 · z + b1) + b2 .

In practice, the self attention computation (2) is replicated h times, each referred to as ”head”,
that are concatenated before being fed to the FFN. Having multiple heads, i.e. computing multiple
instances of self attention in parallel, allows the transformer to set attention to multiple aspect of
the input sequence at the same time. In a multi-layer Transformer, the output of each layer is used
as an input for the next layer before being processed similarly.

Decoder. The decoder block acts similarly, except for one added attention step where the keys
and values are computed from the latent vectors rlatj , k −∆ 6 j 6 k + ∆. This produces a vector
zenck as in (2) which is a mixture of the values associated with the latent vectors. This mixture is

fed to a FFN to produce X̂k. The parameters to train are therefore Wemb, bemb, θatt and W q, Wκ

and W v.

2.3 Training and validation

The first step consists in sampling a dataset with TRNSYS to learn the metamodel and defining
ranges for each input parameters in θbuild, (Ik)k>0 and (Ok)k>0 with the help of energy managers,
such as highest and lowest scheduled temperature, or the most early and late hour of arrival of
occupants, see the appendix for a complete list of these ranges. In addition, real weather data
(Wk)k>0 acquired between May and December 2019 where used to obtain a dataset consistent with
the real building. As discussed in the previous section, some related papers use Latin Hypercube
sampling, introduced in [McKay et al., 2000], to form their dataset. In our numerical experiments,
we chose instead a uniform sampling method over the ranges of each variable. This allows us to
easily split the dataset into k-folds, which will be useful for the validation step discussed in the next
section.

During this step, daily values defined in the appendix are converted to a time series whose value
changes with every day. This way, there are 38 variables in the input vector at each time step: 19
variables from θbuild, 7 from Wk, 1 from Ok and 11 from Ik. A total of 38000 training examples
were sampled, an example being a week i.e. 168 hours. During the training phase, the parameters
of each metamodel described in Section 2 are estimated based on this dataset (called θmeta in the
detailed case of the Transformer approach). The metamodels compared in this section are defined
with a latent dimension of demb = 64 and a total of N = 8 layers. These values were obtained
through a grid search, see the appendix for additional information. Other hyper parameters, such
as learning rate dropout, number of epochs or batch size, were chosen empirically.

During training, for each example, we use a loss function defined by Energy Management experts,
consisting of a combination between mean squared consumption and temperature errors:

∆θmeta

T =

(
1

N

N∑
k=1

(T̂ θmeta

k − Tk)2

)1/2

and ∆θmeta

Q =

(
1

N

N∑
k=1

(Q̂θmeta

k −Qk)2

)1/2

,

loss(θmeta) = α log(1 + ∆θmeta

T ) + β · log(1 + ∆θmeta

Q ) ,

where N is the number of data in each example, Tk and Qk are the ground truth at time k, and
T̂ θmeta

k and Q̂θmeta

k are the predictions given by the metamodel with the current value θmeta of the
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Table 1: Metrics (means and standard deviations) of the metamodels on the validation dataset.
The best mean values are displayed in bold (the lowest losses and mean squared errors and the
coefficient of determination closest to 1).

Transformer BiGRU LSTM ConvGru FFN

Loss (×10−4) 1.13 (0.746) 1.43 (1.06) 13.8 (4.55) 2.78 (1.77) 61.1(27.4)
MSET (×10−5) 3.86 (4.53) 4.28 (5.18) 7.32 (7.75) 9.37 (11.5) 178(205)
MSEQ (×10−4) 2.47 (2.30) 3.34 (2.98) 43.7 (14.7) 6.16 (4.30) 146(54.2)
MSEocc

T (×10−5) 1.08 (1.32) 1.18 (1.54) 2.02 (2.52) 2.77 (3.37) 51.2(64.1)
MSEocc

Q (×10−4) 1.06 (1.29) 1.21 (1.92) 3.61 (2.93) 2.28 (2.35) 43.2(25.1)

R2
T (×10−3) 996 (0.832) 996 (1.40) 992 (1.64) 990 (2.10) 829(43.2)

R2
Q (×10−3) 760 (240) 657 (593) 559 (473) 707(268) −738(3080)

metamodel for temperature and consumption respectively. In this experiments below, we chose
α = 1 and β = 0.3. We chose the Adam optimizer [Kingma and Ba, 2014] ; all simulations were
computed on a single 1080TI GPU card. Table 1 displays the mean values and standard deviations
of the loss function on the validation dataset after training. The table also displays the mean
squared error MSET (resp. MSEQ) on the temperatures (resp. consumptions) only, and these
metrics computed only during occupation time MSEocc

T and MSEocc
Q . In addition, the coefficients

of determination (rescaled mean squared errors relative to the target data) of the temperatures R2
T

and consumptions R2
Q are given. These coefficients of determination are computed with the Python

function sklearn.metrics.r2 score.

3 Energy Optimization in a real building

The experiments conducted in our paper to analyze the performance of the metamodel trained
in Section 2.3 focused on the optimization of a 28733m2 building located in the Parisian region.
The total building is represented by a single thermal zone including 5 vertical walls with respective
following areas 3521m2, 2692m2, 3257m2, 599m2 and 16329m2, a horizontal roof and a horizontal
ground. Based on a commonly used rule, it is assumed that 2/3 of the full area is occupied by people.
Assuming that each occupant requires 12m2, this allows to set the initial values for the number of
occupants and the number of PCs (set to 1.2 times this value) in the building during occupancy
hours. These values are assumed to be known and fixed and used to sample the training dataset.

3.1 Calibration

During the training phase, metamodel parameters are estimated by minimizing the loss function
on the simulated dataset which corresponds to various choices of θbuild, (Ik, Ok,Wk)k>0, associated
with building behaviors (Xk)k>0. This metamodel has been trained on a dataset containing only
simulated data, ignoring real building related noise and measurement errors. Additionally, both
the BEM and our surrogate model take as input a number of variables, such as window to wall
ratio, window leakage, or wall construction, that cannot be properly identified for each building. By
comparing the metamodel predictions to real historic data during the calibration phase, we search
for a set of building related parameters that best match reality.
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Table 2: Metrics after calibration for two weeks, beginning the 4th and the 30th of November 2019.
Calibration run for 500 epochs (resp. 2500 epochs) for the metamodel (resp. for TRNSYS).

MSET MSEQ MSEocc
T MSEocc

Q R2
T R2

Q time (h)

Week 1
TRNSYS 1.04 · 10−1 4967 3.31 · 10−2 1434 0.644 0.848 2

Metamodel 1.62 · 10−2 3241 4.71 · 10−3 477 0.945 0.901 2

Week 2
TRNSYS 2.66 · 10−1 16067 6.58 · 10−2 6782 0.592 0.761 2

Metamodel 1.42 · 10−1 10493 6.55 · 10−2 5162 0.782 0.844 2

During this step, the weights θmeta of the metamodel are frozen, meaning that we no longer
back propagate the error, nor do we update each weight matrix of the neural network. Using the
coefficient of determination as a cost function, we can compute, for each given set of input parame-
ters θbuild, (Ik, Ok,Wk)k>0, the difference between estimated and real historical data. Because this
is a non differentiable problem, the cost function cannot be minimized using the same algorithm
as in the training step; instead we use the CMA evolution strategy (CMA-ES, [Hansen, 2016]), an
evolutionary algorithm adapted to derivative free non-convex optimisation problems in continuous
domain. It is implemented by the author of the paper in the pycma library2.

Calibration was run until convergence for the metamodel, and for a maximum of 8 hours for the
original BEM (TRNSYS). We can see the advantage of going through the training of a metamodel
when comparing a calibration for both TRNSYS and the metamodel, as we are now able to reach
lower costs in a much shorter time frame. This is confirmed by Table 2 which displays the Mean
squared error for the temperatures and heating consumption after calibration using TRNSYS and
the Transformer-based metamodel, for two different weeks shown in Figure 1.

3.2 Optimization

Once the metamodel is calibrated, we can use it as an accurate simulator for how the building
will react to changes in its usage. After a successful calibration, all building related variables
contained in θbuild are correctly estimated. The parameters Ik associated with the HVAC system
can be optimized for a given set of weather data Wk. The optimization tasks consists in finding a
set a usage related parameters that reduce consumption while keeping the same level of comfort.
Optimizing energy consumption requires minimizing two conflicting objectives, making it impossible
to find a solution that optimize both objectives simultaneously. Instead, we search for optimal
compromises between energy consumption and comfort, in the form of a Pareto front. Indeed, for
any such optimal compromise, we can always get a higher level of comfort, for the price of a higher
consumption. The consumption criteria is the energy load during the week ; the comfort criteria is
the gap between indoor temperature and a constant reference temperature T ∗:

∆opt
T =

1

Nopt
Occ

Nopt∑
k=1

1k∈Occ(T̂k − T ∗)2

1/2

and ∆opt
Q =

1

Nopt

Nopt∑
k=1

Q̂k ,

2https://github.com/CMA-ES/pycma
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Figure 1: Consumption and temperature simulations after calibration, for both the metamodel and
TRNSYS, for week 1 (top) and week 2 (bottom). Green bars indicate occupation periods.
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Figure 2: Pareto front after optimization for the second week. We select the point of closest
equivalent comfort, corresponding to a 9.31% reduction in consumption.

where T ∗ = 22.5◦C, Nopt is the number of hours to be considered in the optimization process
and Occ is a subset of daytime hours specifying at which hours the target temperature has to be
reached in the building. Following recent works in building energy optimization, we search for a
set of optimal parameters using NSGA-II ([Deb et al., 2000]), another evolutionary algorithm, but
adapted to multi objective problems. An implementation can be found in the Pygmo3 library.
In the absence of a stopping condition, we simply run the optimization for a set 3000 epochs (2
hours). The result can be viewed as a Pareto front which is given in Figure 2 for the second week
used in the calibration process. As observed during calibration, this process can take a colossal
number of epochs before achieving satisfactory results, once again justifying the use of a much faster
metamodel. The time series of consumption and temperatures associated with the BMS parameters
selected in Figure 2 are given in Figure 3.

3https://esa.github.io/pygmo2/
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Figure 3: Consumption and temperature simulations after optimization (metamodel) for the second
week. Green bars indicate occupation periods.
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Figure 4: Distribution of the outdoor temperature in the dataset, stored in the T AMB variable in
the Table 6. Squares indicates the mean value, while vertical bars represent 85% of the data.

4 Conclusion

In this paper, we proposed an end-to-end metamodeling methodology to optimize building energy
loads and to reduce computational costs. The proposed metamodel ensures compatibility between
simulations and real building observations through a calibration step. We experimented with various
deep learning architectures more suited to recurrent problems than Feed Forward Networks. Results
show that a wide variety of models display encouraging results on our sampled dataset, while largely
outperforming FFN. During optimization, we chose to maintain the same level of comfort as the
historical data, in order to have as little impact as possible on the working environment. Compared
to calibrated simulations, we were able to reduce consumptions significantly.

A Dataset

A.1 Inputs

The dataset is divided in four sub-variables, each representing a different aspect of the simulation.
When creating the dataset using the Building Energy Model (here TRNSYS), we sampled each
variable uniformly in a given interval. These intervals are also used for the calibration process.

- θbuilding represents the geometric properties of the building, see Table 3.

- Ik stores the schedules and settings of the heating and ventilation, see Table 4. This is the only
parameter tuned during the optimization process.

- Ok stores the occupation schedules of the building, see Table 5. These values are calibrated to
match real data, and kept fixed during the optimization.

- Wk stores the weather data for the week, see Table 6. In this paper, we exclusively use data
collected by weather institutes, that are available afterward. In practice, these data would be
replaced by weather forecasts.

The distribution of the outdoor temperature can be found in Figure 4. We sampled a total of
40 000 examples for our dataset, of which 38 000 were used for training, 1 000 for validation and
1000 for testing purposes.
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Variable Minimum Maximum Step

airchange infiltration vol per h 0.1 0.5 0.1
capacitance kJ perdegreK perm3 50 300 10
power VCV kW heat 0 1000 100
power VCV kW clim 0 1000 100
nb occupants 1000 2000 200
nb PCs 1000 2000 200
percent light night 0 70 10
percent PCs night 0 70 10
facade 1 thickness 2 0.05 0.15 0.05
facade 2 thickness 2 0.05 0.15 0.05
facade 3 thickness 2 0.05 0.15 0.05
facade 4 thickness 2 0.05 0.15 0.05
roof 1 thickness 3 0.05 0.15 0.05
facade 1 window area percent 40 50 5
facade 2 window area percent 40 50 5
facade 3 window area percent 40 50 5
facade 4 window area percent 40 50 5

Table 3: θ buidling ranges.

Variable Minimum Maximum Step

start clim day 7 9 1
end clim day 18 20 1
t clim red day 24 30 0.5
t clim conf day 20 24 0.5
start heat day 6 8 1
end heat day 17 19 1
t heat red day 17 22 0.5
t heat conf day 22 24 0.5
start ventilation day 7 9 1
end ventilation day 18 20 1
t ventilation day 18 26 0.5
vol ventilation day 0.7 1.7 0.3

Table 4: Ik ranges. Each parameter can hold a different value for each day of the week. For ease
of reading, we replaced them by a single line, as the ranges are the same for every day.
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Variable Minimum Maximum Step

start occupation monday 7 9 1
start occupation tuesday 7 9 1
start occupation wednesday 7 9 1
start occupation thursday 7 9 1
start occupation friday 7 9 1
end occupation monday 17 20 1
end occupation tuesday 17 20 1
end occupation wednesday 17 20 1
end occupation thursday 17 20 1
end occupation friday 17 20 1

Table 5: Ok ranges.

Variable Description

DNI Direct Normal Irradiance
IBEAM H Direct Horizontal Irradiance
IBEAM N Direct Normal Irradiance
IDIFF H Diffuse Horizontal Irradiation
IGLOB H Global Horizontal Irradiance

RHUM Humidity
TAMB Outdoor temperature

Table 6: Weather data as contained in Wk.
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Variable Tested values Chosen value

Latent dimension (demb) 16, 32, 64, 128 64
Queries (W q) and Keys (W k) matrix size 4, 8, 16 8

Values (W v) matrix size 4, 8, 16 8
Number of heads (h) 4, 8, 16 8
Number of layers (N) 4, 8, 16 4

Attention size (∆) 6, 12, 24 12

Table 7: Hyper parameters tuned during grid search, along with their tested and chosen values.

A.2 Outputs

The BEM outputs 8 simulated variables at each time step, representing inside temperature as
well as various consumption. These variables are aggregated differently during calibration and
optimization. Since the metamodel aims at replicating the BEM behavior, it is trained to output
these same 8 variables. See Table 8 for a exhaustive list and description of each one. Their
distributions in the dataset can be found in Figure 5.

B Metamodel training

In order to find an optimal set of hyper parameters, we conducted a grid search for the Transformer
model. A list of each parameter, along with its ranges and final value, can be found in Table 7.

C Calibration

Sensors installed in the building yield two time series.

• Indoor temperature: we average the values from a set of sensors, in order to obtain a
unique indoor temperature value at each time step. This temperature is compared to the
simulated indoor temperature (T INT).

• Heat consumption: we define building heat consumption as the sum of multiple private heat
consumptions obtained from sensors. This variable contains the heating consumption (cor-
responding to Q HEAT OFFICE for the metamodel), as well as the heating AHU consumption
(Q AHU HEAT), and the equipment and lighting consumption (Q EQP and Q LIGHT respectively),
see Table 8 for a description of the metamodel output variables. These four simulated variables
are summed and compared to the real heat consumption.

15



Max Cohen et al. End-to-end deep metamodeling to calibrate and optimize energy loads

Figure 5: Distribution of the output variables of the BEM. See Table 8 for a exhaustive list and
description of each one. Squares indicates the mean value, while vertical bars represent 85% of the
data. 16
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variable description

Q AC OFFICE AC consumption
Q HEAT OFFICE Heat consumption
Q PEOPLE Heating power due to human activities in the building
Q EQP Consumption of equipment, such as computers, elevators, fridges
Q LIGHT Consumption of lights
Q AHU C Consumption of AHU when cooling outside air
Q AHU H Consumption of AHU when heating outside air
T INT OFFICE Indoor temperature

Table 8: BEM’s output variables at each time step.
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[Parikh et al., 2016] Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016). A decompos-
able attention model for natural language inference. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing (2016), pages 2249–2255.

[Reynolds et al., 2018] Reynolds, J., Rezgui, Y., Kwan, A., and Piriou, S. (2018). A zone-level,
building energy optimisation combining an artificial neural network, a genetic algorithm, and
model predictive control. Energy, 151(15):729–739.

[Shabunko et al., 2018] Shabunko, V., Lim, C., and Mathew, S. (2018). EnergyPlus models for the
benchmarking of residential buildings in Brunei Darussalam. Energy and Buildings, 169:507–516.

[van den Oord et al., 2016] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,
Graves, A., Kalchbrenner, N., Senior, A. W., and Kavukcuoglu, K. (2016). Wavenet: A generative
model for raw audio. ArXiv:1609.03499.

[van den Oord et al., 2018] van den Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O.,
Kavukcuoglu, K., van den Driessche, G., Lockhart, E., Cobo, L. C., Stimberg, F., Casagrande,
N., Grewe, D., Noury, S., Dieleman, S., Elsen, E., Kalchbrenner, N., Zen, H., Graves, A., King,
H., Walters, T., Belov, D., and Hassabis, D. (2018). Parallel wavenet: Fast high-fidelity speech
synthesis. Proceedings of the 35 th International Conference on Machine Learning (ICML),
80:3918–3926.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30, pages 5998–6008.

[Westermann and Evins, 2019] Westermann, P. and Evins, R. (2019). Surrogate modelling for
sustainable building design-a review. Energy and Buildings, 198(1):170–186.

[Zhao et al., 2016] Zhao, J., Lam, K. P., Ydstie, B. E., and Loftness, V. (2016). Occupant-oriented
mixed-mode EnergyPlus predictive control simulation. Energy and Buildings, 117(1):362–371.

19



Max Cohen et al. End-to-end deep metamodeling to calibrate and optimize energy loads

[Zhu et al., 2019] Zhu, X., Cheng, D., Zhang, Z., Lin, S., and Dai, J. (2019). An empirical study
of spatial attention mechanisms in deep networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 6688–6697.

20


