Some complete $\omega$-powers of a one-counter language, for any Borel class of finite rank - Archive ouverte HAL
Journal Articles Archive for Mathematical Logic Year : 2021

Some complete $\omega$-powers of a one-counter language, for any Borel class of finite rank

Olivier Finkel
  • Function : Author
  • PersonId : 924907
Dominique Lecomte
  • Function : Author
  • PersonId : 840880
  • IdRef : 157131912

Abstract

We prove that, for any natural number n ≥ 1, we can find a finite alphabet Σ and a finitary language L over Σ accepted by a one-counter automaton, such that the ω-power L ∞ := {w 0 w 1. .. ∈ Σ ω | ∀i ∈ ω w i ∈ L} is Π 0 n-complete. We prove a similar result for the class Σ 0 n .

Domains

Logic [math.LO]
Fichier principal
Vignette du fichier
Finkel-Lecomte revised.pdf (333.76 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02867587 , version 1 (14-06-2020)

Identifiers

Cite

Olivier Finkel, Dominique Lecomte. Some complete $\omega$-powers of a one-counter language, for any Borel class of finite rank. Archive for Mathematical Logic, 2021, 60 (1-2), pp.161 - 187. ⟨10.1007/s00153-020-00737-4⟩. ⟨hal-02867587⟩
81 View
59 Download

Altmetric

Share

More