Some complete $\omega$-powers of a one-counter language, for any Borel class of finite rank
Résumé
We prove that, for any natural number n ≥ 1, we can find a finite alphabet Σ and a finitary language L over Σ accepted by a one-counter automaton, such that the ω-power L ∞ := {w 0 w 1. .. ∈ Σ ω | ∀i ∈ ω w i ∈ L} is Π 0 n-complete. We prove a similar result for the class Σ 0 n .
Domaines
Logique [math.LO]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...